
MADHA ENGINEERING COLLEGE 
 

(Affiliated to Anna University and Approved by AICTE, New 
Delhi) Madha Nagar, Kundrathur, 

Chennai-600069 

 

 
DEPARTMENT OF Master of Computer Application 

 
 

 

 

 

R-2021 

Lecture Notes 



 

11 

 

REFERENCES: 

1. Dallas E Johnson, “Applied multivariate methods for data Analysis”, Thomson and Duxbury 

press, Singapore, 1998. 

2. Richard A. Johnson and Dean W. Wichern, “Applied multivariate statistical Analysis”, 

Pearson Education, Fifth Edition, 6th Edition, New Delhi, 2013. 

3. Bronson, R.,”Matrix Operation” Schaum’s outline series, Tata McGraw Hill,  

New York, 2011. 

4. Oliver C. Ibe, “Fundamentals of Applied probability and Random Processes”, Academic 

Press, Boston, 2014. 

5. Johnson R. A. and Gupta C.B., “Miller and Freund’s Probability and Statistics for Engineers”, 

Pearson India Education, Asia, 9th Edition, New Delhi, 2017. 

 

CO-PO Mapping 

CO POs 

PO1 PO2 PO3 PO4 PO5 PO6 

1 2 - 2 2 1 2 

2 2 - 2 2 1 1 

3 2 - 2 1 1 2 

4 3 1 2 2 1 2 

5 3 - 2 3 2 3 

Avg 2.5 0.2 2 2 1.2 2.4 

 

 

RM4151                    RESEARCH METHODOLOGY AND IPR                            L  T  P  C                                                    

                                                                                                                             2   0  0  2 

 

UNIT I  RESEARCH DESIGN                                                                                           6 

Overview of research process and design, Use of Secondary and exploratory data to answer the 

research question, Qualitative research, Observation studies, Experiments and Surveys. 

 

UNIT II  DATA COLLECTION AND SOURCES                                                                  6                                                                  

Measurements, Measurement Scales, Questionnaires and Instruments, Sampling and methods.  

Data - Preparing, Exploring, examining and displaying. 

 

UNIT III DATA ANALYSIS AND REPORTING                                                                    6                                                                         

Overview of Multivariate analysis, Hypotheses testing and Measures of Association. Presenting 

Insights and findings using written reports and oral presentation. 

 

UNIT IV   INTELLECTUAL PROPERTY RIGHTS                                                                 6 

Intellectual Property – The concept of IPR, Evolution and development of concept of IPR, IPR 

development process, Trade secrets, utility Models, IPR & Biodiversity, Role of  WIPO and WTO in 

IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR 

Agreement, Trademark, Functions of UNESCO in IPR maintenance. 

 

 



 

12 

 

UNIT V   PATENTS                                                                                                               6 

Patents – objectives and benefits of patent, Concept, features of patent,  Inventive step, 

Specification, Types of patent application, process E-filling, Examination of patent, Grant of patent, 

Revocation, Equitable Assignments, Licences, Licensing of related patents, patent agents, 

Registration of patent agents. 

TOTAL: 30 PERIODS 

REFERENCES: 

1. Cooper Donald R, Schindler Pamela S and Sharma JK, “Business Research Methods”,                 

Tata McGraw Hill Education, 11e (2012). 

2. Catherine J. Holland, “Intellectual property: Patents, Trademarks, Copyrights, Trade 

Secrets”, Entrepreneur Press, 2007. 

3. David Hunt,  Long Nguyen,  Matthew Rodgers,  “Patent searching: tools & 

techniques”, Wiley, 2007. 

4. The Institute of Company Secretaries of India, Statutory body under an Act of parliament, 

“Professional Programme Intellectual Property Rights, Law and practice”, September 2013. 

 

Course Outcomes: 

At the end of this course, the students will have the ability to 

1. Formulate and Design research problem  

2. Understand and Comprehend the Data Collection Methods 

3. Perform Data analysis and acquire Insights  

4. Understand IPR and follow research ethics  

5. Understand and Practice Drafting and filing a Patent in research and development 

 

O-PO Mapping: 

 

CO PO 

1 2 3 4 5 6 

1 3 3 - 1 - 1 

2 3 2 - 2 - 1 

3 3 2 2 2 - 1 

4 3 2 - 1 - - 

5 3 3 - 1 - - 

Avg. 3 2.4 0.4 1.4 - 0.6 

 

MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS 

 

L T P C 

3  0 0 3 

COURSE OBJECTIVES: 

 To understand the usage of algorithms in computing  

 To learn and use hierarchical data structures and its operations  

 To learn the usage of graphs and its applications  

 To select and design data structures and algorithms that is appropriate for problems  

 To study about NP Completeness of problems. 

 

UNIT I ROLE OF ALGORITHMS IN COMPUTING & COMPLEXITY ANALYSIS 9 

Algorithms – Algorithms as a Technology -Time and Space complexity of algorithms- Asymptotic 

analysis-Average and worst-case analysis-Asymptotic notation-Importance of efficient algorithms- 

Program performance measurement - Recurrences: The Substitution Method – The Recursion-



MADHA ENGINEERING COLLEGE 

DEPARTMENT OF COMPUTER APPLICATION 

RM4151 – Research Methodology & IPR 

 N.Vinodh MBA, M.Phil, Department of Management Studies 

Unit-1  

Overview of research process and design, Use of Secondary and exploratory data to 

answer the research question, Qualitative research, Observation studies, Experiments 

and Surveys. 

 

Introduction and overview of  Research process : 

What is Research? 

Definition: Research is defined as careful consideration of study regarding a particular 
concern or problem using scientific methods. According to the American sociologist Earl 
Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and 
control the observed phenomenon. It involves inductive and deductive methods.” 

Inductive research methods analyze an observed event, while deductive methods verify 
the observed event. Inductive approaches are associated with qualitative research, and 
deductive methods are more commonly associated with quantitative analysis. 

Research is conducted with a purpose to: 

 Identify potential and new customers 
 Understand existing customers 
 Set pragmatic goals 
 Develop productive market strategies 
 Address business challenges 
 Put together a business expansion plan 
 Identify new business opportunities 

What are the characteristics of research? 

1. Good research follows a systematic approach to capture accurate data. 
Researchers need to practice ethics and a code of conduct while making 
observations or drawing conclusions. 

2. The analysis is based on logical reasoning and involves both inductive and 
deductive methods. 

3. Real-time data and knowledge is derived from actual observations in natural 
settings. 

4. There is an in-depth analysis of all data collected so that there are no 
anomalies associated with it. 

5. It creates a path for generating new questions. Existing data helps create more 
research opportunities. 

6. It is analytical and uses all the available data so that there is no ambiguity in 
inference. 

7. Accuracy is one of the most critical aspects of research. The information must 
be accurate and correct. For example, laboratories provide a controlled 
environment to collect data. Accuracy is measured in the instruments used, the 
calibrations of instruments or tools, and the experiment’s final result. 

https://www.questionpro.com/blog/qualitative-research-methods/


  

What is the purpose of research? 

There are three main purposes: 

1. Exploratory: As the name suggests, researchers conduct exploratory 
studies to explore a group of questions. The answers and analytics may not 
offer a conclusion to the perceived problem. It is undertaken to handle new 
problem areas that haven’t been explored before. This exploratory process 
lays the foundation for more conclusive data collection and analysis. 

2. Descriptive: It focuses on expanding knowledge on current issues through a 
process of data collection. Descriptive research describe the behavior of a 
sample population. Only one variable is required to conduct the study. The 
three primary purposes of descriptive studies are describing, explaining, and 
validating the findings. For example, a study conducted to know if top-level 
management leaders in the 21st century possess the moral right to receive a 
considerable sum of money from the company profit. 

3. Explanatory: Causal or explanatory research is conducted to understand the 
impact of specific changes in existing standard procedures. Running 
experiments is the most popular form. For example, a study that is conducted 
to understand the effect of rebranding on customer loyalty. 

 

Research methods are broadly classified as Qualitative and Quantitative. 

Both methods have distinctive properties and data collection methods. 

Qualitative methods 

Qualitative research is a method that collects data using conversational methods, 
usually open-ended questions. The responses collected are essentially non-numerical. 
This method helps a researcher understand what participants think and why they think 
in a particular way. 

Types of qualitative methods include: 

1. One-to-one Interview 
2. Focus Groups 
3. Ethnographic studies 
4. Text Analysis 
5. Case Study 

Quantitative methods 

Quantitative methods deal with numbers and measurable forms. It uses a systematic 
way of investigating events or data. It answers questions to justify relationships with 
measurable variables to either explain, predict, or control a phenomenon. 

Types of quantitative methods include: 

1. Survey research 
2. Descriptive research 
3. Correlational research 

https://www.questionpro.com/blog/exploratory-research/
https://www.questionpro.com/blog/exploratory-research/
https://www.questionpro.com/blog/descriptive-research/
https://www.questionpro.com/blog/explanatory-research/
https://www.questionpro.com/blog/qualitative-research-methods/
https://www.questionpro.com/blog/what-are-open-ended-questions/
https://www.questionpro.com/blog/focus-group/
https://www.questionpro.com/tour/text-analysis.html
https://www.questionpro.com/blog/quantitative-research/
https://www.questionpro.com/forms.html
https://www.questionpro.com/article/survey-research.html
https://www.questionpro.com/blog/descriptive-research/
https://www.questionpro.com/blog/correlational-research/#:~:text=Correlational%20research%20is%20a%20type,influence%20from%20any%20extraneous%20variable.


Remember, research is only valuable and useful when it is valid, accurate, and reliable. 
Incorrect results can lead to customer churn and a decrease in sales. 

It is essential to ensure that your data is: 

 Valid – founded, logical, rigorous, and impartial. 
 Accurate – free of errors and including required details. 
 Reliable – other people who investigate in the same way can produce similar 

results. 
 Timely – current and collected within an appropriate time frame. 
 Complete – includes all the data you need to support your business decisions. 

 

8 Tips for Accurate Research Results: 

1. Identify the main trends and issues, opportunities, and problems you observe. 
Write a sentence describing each one. 

2. Keep track of the frequency with which each of the main findings appears. 
3. Make a list of your findings from the most common to the least common. 
4. Evaluate a list of the strengths, weaknesses, opportunities, and threats that 

have been identified in a SWOT analysis. 
5. Prepare conclusions and recommendations about your study. 
6. Act on your strategies 
7. Look for gaps in the information, and consider doing additional inquiry if 

necessary 
8. Plan to review the results and consider efficient methods to analyze and 

dissect results for interpretation. 
 

Research design definition 

Research design is the framework of research methods and techniques chosen by a 
researcher. The design allows researchers to hone in on research methods that are 
suitable for the subject matter and set up their studies up for success. 

The design of a research topic explains the type of research (experimental, survey 
research, correlational, semi-experimental, review) and also its sub-type (experimental 
design, research problem, descriptive case-study).  

There are three main types of designs for research: Data collection, measurement, and 
analysis. 

The type of research problem an organization is facing will determine the research 
design and not vice-versa. The design phase of a study determines which tools to use 
and how they are used. 

An impactful research usually creates a minimum bias in data and increases trust in the 
accuracy of collected data. A design that produces the least margin of error in 
experimental research is generally considered the desired outcome. The essential 
elements are: 

1. Accurate purpose statement 
2. Techniques to be implemented for collecting and analyzing research 
3. The method applied for analyzing collected details 
4. Type of research methodology 

https://www.questionpro.com/blog/swot-analysis-example/
https://www.questionpro.com/tour/survey-research.html
https://www.questionpro.com/tour/survey-research.html
https://www.questionpro.com/blog/correlational-research/
https://www.questionpro.com/blog/data-collection/


5. Probable objections for research 
6. Settings for the research study 
7. Timeline 
8. Measurement of analysis 

Proper research design sets your study up for success. Successful research studies 
provide insights that are accurate and unbiased. You’ll need to create a survey that 
meets all of the main characteristics of a design. There are four key characteristics: 

Neutrality: When you set up your study, you may have to make assumptions about the 
data you expect to collect. The results projected in the research should be free from bias 
and neutral. Understand opinions about the final evaluated scores and conclusions from 
multiple individuals and consider those who agree with the derived results. 

Reliability: With regularly conducted research, the researcher involved expects similar 
results every time. Your design should indicate how to form research questions to 
ensure the standard of results. You’ll only be able to reach the expected results if your 
design is reliable. 

Validity: There are multiple measuring tools available. However, the only correct 
measuring tools are those which help a researcher in gauging results according to the 
objective of the research. The questionnaire developed from this design will then be 
valid. 

Generalization: The outcome of your design should apply to a population and not just a 
restricted sample. A generalized design implies that your survey can be conducted on 
any part of a population with similar accuracy. 

A researcher must have a clear understanding of the various types of research design to 
select which model to implement for a study. Like research itself, the design of your 
study can be broadly classified into quantitative and qualitative. 

Qualitative: Qualitative research determines relationships between collected data and 
observations based on mathematical calculations. Theories related to a naturally 
existing phenomenon can be proved or disproved using statistical methods. 
Researchers rely on qualitative research methods that conclude “why” a particular 
theory exists along with “what” respondents have to say about it. 

Quantitative: Quantitative research is for cases where statistical conclusions to collect 
actionable insights are essential. Numbers provide a better perspective to make critical 
business decisions. Quantitative research methods are necessary for the growth of any 
organization. Insights drawn from hard numerical data and analysis prove to be highly 
effective when making decisions related to the future of the business. 

You can further break down the types of research design into five categories: 

1. Descriptive research design: In a descriptive design, a researcher is solely 
interested in describing the situation or case under their research study. It is a theory-
based design method which is created by gathering, analyzing, and presenting collected 
data. This allows a researcher to provide insights into the why and how of research. 
Descriptive design helps others better understand the need for the research. If the 
problem statement is not clear, you can conduct exploratory research.  

2. Experimental research design: Experimental research establishes a relationship 
between the cause and effect of a situation. It is a causal design where one observes the 
impact caused by the independent variable on the dependent variable. For example, one 

https://www.questionpro.com/blog/surveys/
https://www.questionpro.com/blog/what-is-research/
https://www.questionpro.com/article/survey-question-answer-type.html
https://www.questionpro.com/blog/what-is-a-questionnaire/
https://www.questionpro.com/blog/sample/
https://www.questionpro.com/blog/qualitative-research-methods/
https://www.questionpro.com/blog/quantitative-research/
https://www.questionpro.com/blog/experimental-research/


monitors the influence of an independent variable such as a price on a dependent 
variable such as customer satisfaction or brand loyalty. It is a highly practical research 
method as it contributes to solving a problem at hand. 

The independent variables are manipulated to monitor the change it has on the 
dependent variable. It is often used in social sciences to observe human behavior by 
analyzing two groups. Researchers can have participants change their actions and study 
how the people around them react to gain a better understanding of social psychology. 

3. Correlational research design: Correlational research is a non-experimental 
research technique that helps researchers establish a relationship between two closely 
connected variables. This type of research requires two different groups. There is no 
assumption while evaluating a relationship between two different variables, and 
statistical analysis techniques calculate the relationship between them. 

A correlation coefficient determines the correlation between two variables, whose value 
ranges between -1 and +1. If the correlation coefficient is towards +1, it indicates a 
positive relationship between the variables and -1 means a negative relationship 
between the two variables.  

4. Diagnostic research design: In diagnostic design, the researcher is looking to 
evaluate the underlying cause of a specific topic or phenomenon. This method helps one 
learn more about the factors that create troublesome situations.  

This design has three parts of the research: 

· Inception of the issue 

· Diagnosis of the issue 

· Solution for the issue 

5. Explanatory research design: Explanatory design uses a researcher’s ideas and 
thoughts on a subject to further explore their theories. The research explains 
unexplored aspects of a subject and details about what, how, and why of research 
questions. 

Observation studies and experiment : 

Observational studies 

Observational studies are ones where researchers observe the effect of a risk factor, 
diagnostic test, treatment or other intervention without trying to change who is or isn’t 
exposed to it. Cohort studies and case control studies are two types of observational 
studies.  

Cohort study: For research purposes, a cohort is any group of people who are linked in 
some way. For instance, a birth cohort includes all people born within a given time 
frame. Researchers compare what happens to members of the cohort that have been 
exposed to a particular variable to what happens to the other members who have not 
been exposed. 

https://www.questionpro.com/blog/correlational-research/
https://www.questionpro.com/blog/non-experimental-research/
https://www.questionpro.com/blog/non-experimental-research/
https://www.questionpro.com/blog/explanatory-research/
https://www.questionpro.com/article/research-questions.html
https://www.questionpro.com/article/research-questions.html


Case control study: Here researchers identify people with an existing health problem 
(“cases”) and a similar group without the problem (“controls”) and then compare them 
with respect to an exposure or exposures. 

Experimental studies 

Experimental studies are ones where researchers introduce an intervention and study 
the effects. Experimental studies are usually randomized, meaning the subjects are 
grouped by chance. 

Randomized controlled trial (RCT): Eligible people are randomly assigned to one 
of two or more groups. One group receives the intervention (such as a new drug) while 
the control group receives nothing or an inactive placebo. The researchers then study 
what happens to people in each group. Any difference in outcomes can then be linked to 
the intervention. 

Strengths and weaknesses 

The strengths and weaknesses of a study design should be seen in light of the kind of 
question the study sets out to answer. Sometimes, observational studies are the only 
way researchers can explore certain questions. For example, it would be unethical to 
design a randomized controlled trial deliberately exposing workers to a potentially 
harmful situation. If a health problem is a rare condition, a case control study (which 
begins with the existing cases) may be the most efficient  way to identify potential 
causes. Or, if little is known about how a problem develops over time, a cohort study 
may be the best design.  

Difference between Survey and Experiment : 

S.No. SURVEY EXPERIMENT 

01. 

It refers to a way of gathering 

information regarding a variable 

under study from people. 

It refers to the way of experimenting 

something practically with the help of 

scientific procedure/approach and 

the outcome is observed. 

02. 

Surveys are conducted in case of 

descriptive research. 

Experiments are conducted in case of 

experimental research. 

03. 

Surveys are carried out to see 

something. 

Experiments are carried out to 

experience something. 

04. 

These studies usually have larger 

samples. 

These studies usually have smaller 

samples. 

05. 

The surveyor does not 

manipulate the variable or 

arrange for events to happen. 

The researcher may manipulate the 

variable or arrange for events to 

happen. 

06. 
It is appropriate in case of social It is appropriate in case of physical 



or behavioral science. and natural science. 

07. It comes under field research. It comes under laboratory research. 

08. 

Possible relationship between 

the data and the unknowns in the 

universe can be studied through 

surveys. 

Experiments are meant to determine 

such relationships. 

09. 

Surveys can be performed in less 

cost than a experiments. 

Experiments costs higher than the 

surveys. 

10. 

Surveys often deals with 

secondary data. Experiments deal with primary data. 

11. 

In surveys there is no 

requirement of laboratory 

equipment or there is a very 

small requirement of equipment 

just to collect any sample of data. 

In experiments usually laboratory 

equipment are used in various 

activities during the experiment 

process. 

12. It is vital in co-relational analysis. It is vital in casual analysis. 

13. 

No manipulation is involved in 

surveys. 

Manipulation is involved in 

experiments. 

14. 

In surveys data is collected 

through interview, questionnaire, 

case study etc. 

In experiments data is collected 

through several readings of 

experiment. 

15. 

Surveys can focus on broad 

topics. Experiments focuses on specific topic. 

 

Exploratory research: Definition 

Exploratory research is defined as a research used to investigate a problem which is not 
clearly defined. It is conducted to have a better understanding of the existing problem, 
but will not provide conclusive results. For such a research, a researcher starts with a 
general idea and uses this research as a medium to identify issues, that can be the focus 
for future research. An important aspect here is that the researcher should be willing to 
change his/her direction subject to the revelation of new data or insight. Such a 
research is usually carried out when the problem is at a preliminary stage. It is often 



referred to as grounded theory approach or interpretive research as it used to answer 
questions like what, why and how. 

For example: Consider a scenario where a juice bar owner feels that increasing the 
variety of juices will enable increase in customers, however he is not sure and needs 
more information. The owner intends to carry out an exploratory research to find out 
and hence decides to do an exploratory research to find out if expanding their juices 
selection will enable him to get more customers of if there is a better idea. 

Another example of exploratory research is a podcast survey template that can be used 
to collect feedback about the podcast consumption metrics both from existing listeners 
as well as other podcast listeners that are currently not subscribed to this channel. This 
helps the author of the podcast create curated content that will gain a larger audience. 

Types and methodologies of Exploratory research 

While it may sound a little difficult to research something that has very little 
information about it, there are several methods which can help a researcher figure out 
the best research design, data collection methods and choice of subjects. There are two 
ways in which research can be conducted namely primary and secondary.. Under these 
two types, there are multiple methods which can used by a researcher. The data 
gathered from these research can be qualitative or quantitative. Some of the most 
widely used research designs include the following: 

Primary research methods 

Primary research is information gathered directly from the subject.  It can be through a 
group of people or even an individual. Such a research can be carried out directly by the 
researcher himself or can employ a third party to conduct it on their behalf. Primary 
research is specifically carried out to explore a certain problem which requires an in-
depth study. 

 Surveys/polls: Surveys/polls are used to gather information from a predefined 
group of respondents. It is one of the most important quantitative method. 
Various types of surveys  or polls can be used to explore opinions, trends, etc. 
With the advancement in technology, surveys can now be sent online and can 
be very easy to access. For instance, use of a survey app through tablets, 
laptops or even mobile phones. This information is also available to the 
researcher in real time as well. Nowadays, most organizations offer short 
length surveys and rewards to respondents, in order to achieve higher 
response rates. 

For example: A survey is sent to a given set of audience to understand their opinions 
about the size of mobile phones when they purchase one. Based on such information 
organization can dig deeper into the topic and make business related decision. 

 Interviews: While you may get a lot of information from public sources, but 
sometimes an in person interview can give in-depth information on the subject 
being studied. Such a research is a qualitative research method. An interview 
with a subject matter expert can give you meaningful insights that a 
generalized public source won’t be able to provide. Interviews are carried out 
in person or on telephone which have open-ended questions to get meaningful 
information about the topic. 

For example: An interview with an employee can give you more insights to find out the 
degree of job satisfaction, or an interview with a subject matter expert of quantum 
theory can give you in-depth information on that topic. 

https://www.questionpro.com/survey-templates/podcast-survey-template/
https://www.questionpro.com/blog/data-collection/
https://www.questionpro.com/blog/qualitative-research-methods/
https://www.questionpro.com/blog/quantitative-research/
https://www.questionpro.com/blog/research-design/
https://www.questionpro.com/blog/primary-research/
https://www.questionpro.com/blog/surveys/
https://www.questionpro.com/features/polls.html
https://www.questionpro.com/mobile/
https://www.questionpro.com/blog/good-survey-response-rate/
https://www.questionpro.com/blog/good-survey-response-rate/
https://www.questionpro.com/blog/interview-questions/
https://www.questionpro.com/blog/qualitative-market-research/


 Focus groups: Focus group is yet another widely used method in exploratory 
research. In such a method a group of people is chosen and are allowed to 
express their insights on the topic that is being studied. Although, it is 
important to make sure that while choosing the individuals in a focus group 
they should have a common background and have comparable experiences. 

For example: A focus group helps a research identify the opinions of consumers if they 
were to buy a phone. Such a research can help the researcher understand what the 
consumer value while buying a phone. It may be screen size, brand value or even the 
dimensions. Based on which the organization can understand what are consumer 
buying attitudes, consumer opinions, etc. 

 Observations: Observation research can be qualitative 
observation or quantitative observation. Such a research is done to observe a 
person and draw the finding from their reaction to certain parameters. In such 
a research, there is no direct interaction with the subject. 

For example: An FMCG company wants to know how it’s consumer react to the new 
shape of their product. The researcher observes the customers first reaction and 
collects the data, which is then used to draw inferences from the collective information. 

Secondary research methods 

Secondary research is gathering information from previously published primary 
research. In such a research you gather information from sources likes case studies, 
magazines, newspapers, books, etc. 

 Online research: In today’s world, this is one of the fastest way to gather 
information on any topic. A lot of data is readily available on the internet and 
the researcher can download it whenever he needs it. An important aspect to 
be noted for such a research is the genuineness and authenticity of the source 
websites that the researcher is gathering the information from. 

For example: A researcher needs to find out what is the percentage of people that prefer 
a specific brand phone. The researcher just enters the information he needs in a search 
engine and gets multiple links with related information and statistics. 

 Literature research: Literature research is one of the most inexpensive method 
used for discovering a hypothesis. There is tremendous amount of information 
available in libraries, online sources, or even commercial databases. Sources 
can include newspapers, magazines, books from library, documents from 
government agencies, specific topic related articles, literature, Annual reports, 
published statistics from research organizations and so on. 

However, a few things have to be kept in mind while researching from these sources. 
Government agencies have authentic information but sometimes may come with a 
nominal cost. Also, research from educational institutions is generally overlooked, but 
in fact educational institutions carry out more number of research than any other 
entities. 

Furthermore, commercial sources provide information on major topics like political 
agendas, demographics, financial information, market trends and information, etc. 

For example: A company has low sales. It can be easily explored from available statistics 
and market literature if the problem is market related or organization related or if the 
topic being studied is regarding financial situation of the country, then research data 
can be accessed through government documents or commercial sources. 

https://www.questionpro.com/blog/focus-group/
https://www.questionpro.com/blog/qualitative-observation/
https://www.questionpro.com/blog/qualitative-observation/
https://www.questionpro.com/blog/quantitative-observation/
https://www.questionpro.com/blog/secondary-research/


 Case study research: Case study research can help a researcher with finding 
more information through carefully analyzing existing cases which have gone 
through a similar problem. Such analysis are very important and critical 
especially in today’s business world. The researcher just needs to make sure 
he analyses the case carefully in regards to all the variables present in the 
previous case against his own case. It is very commonly used by business 
organizations or social sciences sector or even in the health sector. 

For example: A particular orthopedic surgeon has the highest success rate for 
performing knee surgeries. A lot of other hospitals or doctors have taken up this case to 
understand and benchmark the method in which this surgeon does the procedure to 
increase their success rate. 

Exploratory research: Steps to conduct a research 

 Identify the problem: A researcher identifies the subject of research and the 
problem is addressed by carrying out multiple methods to answer the 
questions. 

 Create the hypothesis: When the researcher has found out that there are no 
prior studies and the problem is not precisely resolved, the researcher will 
create a hypothesis based on the questions obtained while identifying the 
problem. 

 Further research: Once the data has been obtained, the researcher will continue 
his study through descriptive investigation. Qualitative methods are used to 
further study the subject in detail and find out if the information is true or not. 

Characteristics of Exploratory research 

 They are not structured studies 
 It is usually low cost, interactive and open ended. 
 It will enable a researcher answer questions like what is the problem? What is 

the purpose of the study? And what topics could be studied? 
 To carry out exploratory research, generally there is no prior research done or 

the existing ones do not answer the problem precisely enough. 
 It is a time consuming research and it needs patience and has risks associated 

with it. 
 The researcher will have to go through all the information available for the 

particular study he is doing. 
 There are no set of rules to carry out the research per se, as they are flexible, 

broad and scattered. 
 The research needs to have importance or value. If the problem is not important 

in the industry the research carried out is ineffective. 
 The research should also have a few theories which can support its findings as 

that will make it easier for the researcher to assess it and move ahead in his 
study 

 Such a research usually produces qualitative data, however in certain cases 
quantitative data can be generalized for a larger sample through use of 
surveys and experiments. 

Advantages of Exploratory research 

 The researcher has a lot of flexibility and can adapt to changes as the research 
progresses. 

 It is usually low cost. 
 It helps lay the foundation of a research, which can lead to further research. 
 It enables the researcher understand at an early stage, if the topic is worth 

investing the time and resources  and if it is worth pursuing. 

https://www.questionpro.com/blog/nominal-ordinal-interval-ratio/


 It can assist other researchers to find out possible causes for the problem, which 
can be further studied in detail to find out, which of them is the most likely 
cause for the problem. 

Disadvantages of Exploratory research 

 Even though it can point you in the right direction towards what is the answer, it 
is usually inconclusive. 

 The main disadvantage of exploratory research is that they provide qualitative 
data. Interpretation of such information can be judgmental and biased. 

 Most of the times, exploratory research involves a smaller sample, hence the 
results cannot be accurately interpreted for a generalized population. 

 Many a times, if the data is being collected through secondary research, then 
there is a chance of that data being old and is not updated. 

Importance of Exploratory research 

Exploratory research is carried out when a topic needs to be understood in depth, 
especially if it hasn’t been done before. The goal of such a research is to explore the 
problem and around it and not actually derive a conclusion from it. Such kind of 
research will enable a researcher to  set a strong foundation for exploring his ideas, 
choosing the right research design and finding variables that actually are important for 
the analysis. Most importantly, such a research can help organizations or researchers 
save up a lot of time and resources, as it will enable the researcher to know if it worth 
pursuing. 

 

https://www.questionpro.com/audience/
https://www.questionpro.com/blog/research-design/
https://www.questionpro.com/blog/nominal-ordinal-interval-ratio/


 

RM4151 RESEARCH METHODOLOGY AND IPR 

N.Vinodh, Department of Management Studies 

UNIT V 

PATENTS  

Patents – objectives and benefits of patent, Concept, features of patent, Inventive step, Specification, Types of 

patent application, process E-filling, Examination of patent, Grant of patent, Revocation, Equitable 

Assignments, Licenses, Licensing of related patents, patent agents, Registration of patent agents 

 

What do you mean by patent? 

A patent is an exclusive right granted for an invention. In other words, a patent is an exclusive right to a 

product or a process that generally provides a new way of doing something, or offers a new technical solution 

to a problem 

 

What is a patent? 

A patent is an exclusive right granted for an invention, which is a product or a process that provides, in 

general, a new way of doing something, or offers a new technical solution to a problem. To get a patent, 

technical information about the invention must be disclosed to the public in a patent application. 

Benefits of Patents 

 

A patent gives you the right to stop others from copying, manufacturing, selling or importing your 

invention without your permission. See protecting intellectual property. You get protection for a pre-

determined period, allowing you to keep competitors at bay. You can then use your invention yourself. 

 

Objectives of the global patent system 

The core objective of the patent law is to promote the progress of Science and useful arts. It can be listed 

as: To encourage inventor: If a person puts efforts and resources in invention something that can be patented, 

he should have a provision that stops others from copying his work without his permission. 

The global patent system should: 

i. Be coherent and balanced: 

a. offering a fair level of protection to inventors/applicants from all backgrounds 

b. providing a fair balance between the rights of inventors/applicants and third parties 

ii. Provide legal certainty to inventors/applicants and third parties alike 

iii. Promote high quality patents by ensuring that patent protection is provided only to inventions that 

are new, involve an inventive step and are capable of industrial application 

iv. Support economic growth: 

a. enabling global patent rights to be acquired in an efficient manner 

b. promoting consistent results in multiple jurisdictions 

c. promoting innovation and competition 

Principles and commentary 

The following principles and commentary have been prepared by the Chair, taking account of the objectives 

outlined above and the views of sub-group members. The principles are intended to encompass the views of 

all members of the sub-group, whilst recognising that differing views remain on how the principles should 



best be implemented. The associated commentary takes account of these differing views, reflecting the 

various outcomes under consideration in respect of each principle, together with an indication of the level of 

support within the sub-group for each proposed solution. 

1. Non-prejudicial disclosures / grace period 

i. Inventors/applicants whose inventions have been disclosed prior to filing a patent application 

should, in certain circumstances, be given an opportunity to patent their invention 

ii. Such circumstances should include breach of confidence or theft of information 

iii. Any system which allows an invention to be patented after disclosure should take account of and 

balance the needs of: 

a. inventors/applicants, regardless of their level of IP expertise 

b. third parties (including those who could claim prior user rights) 

c. those whose primary focus is dissemination of knowledge and information 

iv. Any system which allows an invention to be patented after disclosure should: 

a. provide a high level of legal certainty for applicants and third parties 

b. encourage early filing 

c. encourage research and development 

d. be applicable according to globally harmonised principles and rules so as to promote 

consistent results in multiple jurisdictions 

 

Circumstances in which applicants should have the opportunity to patent a disclosed invention 

While there is consensus that applicants should be given an opportunity to patent their invention where it 

has been disclosed due to breach of confidence or theft of information, there is no consensus on whether 

applicants should be given an opportunity to patent their invention where they have disclosed it themselves. 

There was more support, though not unanimity, for the opportunity to patent an invention which had been 

inadvertently disclosed Footnote2 . 

 

Other characteristics of a potential grace period 

Notwithstanding that there is no consensus on the introduction of a grace period covering disclosures by the 

applicant, there is agreement that, if such a system were to be introduced: 

 It should be simple, with the same rules applying to all applicants and all types of disclosure deriving 

from the applicant, regardless of the intention or characteristics of the applicant. 

 Encouraging transparency of the fact that the grace period has been invoked, for example through 

some form of declaration requirement, would increase legal certainty but place a burden on the 

applicant, and therefore further work should be conducted to explore how these factors could best be 

balanced. 

 The duration of the grace period should be harmonised, and calculated from the priority date. 

Regarding a declaration requirement, some believe that the increased legal certainty this would bring would 

not warrant the increased burden on the applicant. Others believe that an applicant who benefits from the 

grace period should bear some of the risk of using it, and therefore should be required to declare the graced 

disclosures of which they are aware. Some of those in favour of mandatory declaration believe that failure to 

declare a disclosure should result in administrative sanctions only, rather than loss of the benefit of the grace 

period for that disclosure. 

https://www.ic.gc.ca/eic/site/cipointernet-internetopic.nsf/eng/wr04008.html#fn2


There is no consensus on the optimal duration of the grace period, some believing the principles are best 

supported by duration of 6 months, others 12 months. However, there is agreement that, whatever the 

duration, it should itself be harmonized and should be calculated from the priority date in all jurisdictions. 

 

Rights of third parties 

The sub-group noted that the rights of third parties may have a significant effect on the way in which any 

grace period is used. All systems envisage certain circumstances in which the disclosure of third party 

inventions prior to the date of filing could affect the patentability of an application relying on a graced 

disclosure. To this extent the system incentivizes early filing. 

 

Some members believe that it should be possible for prior user rights to arise where use of an invention in 

good faith is based on information derived from the applicant which has been disclosed to the public through 

a pre-filing disclosure during the grace period – to provide legal certainty to third parties and provide 

additional incentives for applicants to file early. Others believe that prior user rights should be a limited 

defence to patent infringement, and should not arise where knowledge of the invention has been derived 

from the applicant. 

The sub-group members were open to further thought as to the possible interplay between third party rights 

and the grace period. Some felt that if it proved possible to reach agreement on the right balance between the 

interests of applicants and third parties, setting appropriate incentives to filing first, prior to disclosing the 

invention, and providing adequate protection for third parties, then the specific duration of the grace period 

might be less important, though it should still be harmonized. 

 

2. Publication of applications 

i. The global publication regime should be formulated to provide a clear time limit by which 

information about a potentially patented invention will be made public 

ii. The timing of publication should provide for prompt dissemination of knowledge from all pending 

patent applications wherever filed 

iii. Pending patent applications should be published promptly after the expiry of a globally agreed 

timeframe 

iv. The globally agreed timeframe should balance the interests of inventors/applicants and those of 

third parties: 

a. inventors/applicants should be provided sufficient time to determine the likelihood of 

obtaining meaningful protection for their invention, and should they wish, to withdraw their 

application so as to retain the possibility of protecting their invention as a trade secret 

b. third parties should be provided with legal certainty regarding patent rights which are 

pending, so as to prevent duplication of R&D efforts and loss of investments 

v. Patent office’s should be able to delay or suppress publication of a pending application in exceptional 

circumstances 

vi. Inventors/applicants should be able to request publication of an application prior to the globally 

agreed timeframe if they wish, as long as the requirements for publication under the applicable law 

are met 

o There is consensus that: 



 18 months from priority date is an appropriate timeframe to meet the principles 

outlined in paragraphs (iii) and (iv). 

 Patent office’s should be able to delay publication of a pending application beyond 

18 months, or suppress publication of information within an application, in the 

following exceptional circumstances: 

 if publication would be prejudicial to public order, morality, or national 

security 

 if the application contains offensive or disparaging material 

 if a court order specifies that an application should not be published 

The sub-group is open to considering any additional exceptional reasons which can be justified. 

 

3. Conflicting applications 

i. The grant of multiple patents for the same invention in the same jurisdiction should be prevented 

ii. The patent system should allow for the protection of incremental inventions while ensuring that 

patent rights are not unjustifiably extended 

iii. Any system which allows incremental inventions to be patented should: 

a. balance the interests of inventors to protect incremental improvements on their own 

inventions with the interests of third parties to operate in the same field 

b. promote innovation and competition 

 There is consensus that: 

 Rules which govern conflicting applications should permit the patenting of 

incremental innovations, where this supports principle (iii). 

 Harmonised treatment of conflicting applications would be beneficial. 

 Further work should be conducted to compare various alternative 

approaches, bearing in mind the effects on innovation and competition. 

 There may be benefits to a harmonised system in which PCT applications 

apply as secret prior art upon international publication in any language. 

 Applications prosecuted directly through the national/regional route 

should apply as secret prior art only in those jurisdictions where they are or 

have been pending. 

 

While there is agreement that rules which govern conflicting applications should support the principles 

outlined above, there is no consensus on how this should be achieved. In particular, there are differing views 

on what combination of features would best promote innovation and balance third party interests. 

 

Some believe that innovation and competition are best supported by favouring the original applicant in 

respect of incremental inventions, by preventing their own earlier-filed applications (“secret prior art”) being 

cited against them (“anti-self-collision”). However, among those members of the sub-group who consider that 

the original applicant should be favoured in this way, there are differing views as to the extent to which their 

secret prior art should count against other applicants – in particular whether it should count for the purposes 

of “enlarged novelty” or novelty and inventive step. 



Other members of the sub-group believe that innovation and competition are best supported by providing 

equal access to the protection of incremental inventions for all applicants. They believe that this can be 

achieved by having no anti-self-collision, with secret prior art counting for novelty only against all applicants. 

 

It is recognized that there could also be merit in considering new solutions which as yet do not exist – for 

example a system where secret prior art is applied for novelty and inventive step, and anti-self-collision 

applies for inventive step only. 

 

The sub-group therefore agreed to carry out further work on these options. 

The sub-group could see the logic underlying all of the present approaches regarding applications filed under 

the Patent Cooperation Treaty (PCT) – whether they should be applicable as secret prior art once they have 

been published in any language, once they have been published in an official language of the jurisdiction in 

which they are to be considered, or once they have entered the national/regional phase of the jurisdiction in 

which they are to be considered. The sub-group did not reach a definitive position on this issue. However, as 

patent systems become increasingly internationalized the sub-group could see there may be benefits to a 

harmonized system in which PCT applications apply as secret prior art once they have been published in any 

language. This would provide consistent legal certainty across different jurisdictions and respect the purpose 

of the PCT to give international applications the effect of a national filing in all designated member states. The 

sub-group agreed that this merited further discussion. 

 

4. Prior user rights 

i. A third party who has started using an invention in good faith prior to the filing of a patent 

application for that invention by another party should have a right to continue to use that invention 

ii. The circumstances under which prior user rights arise, including the extent to which they rely on 

actual use having taken place, should balance the interests of third parties to protect their 

investments with the interests of the inventor/applicant 

o There is consensus that: 

 Prior user rights should not arise through mere possession or knowledge of an 

invention by a third party. 

 Prior user rights should be limited to the territory in which the activity giving rise to 

prior user rights has taken place. 

 

There is a degree of convergence, but not unanimity, that prior user rights should arise where a third party 

has, in good faith, made effective and serious preparations to use an invention. Those who hold this view 

believe that the process of innovation can be long and complex and it is arbitrary to use actual use of the 

invention as the threshold when substantial investments may have begun far before then. Those members 

believe, therefore, that it is fair, efficient and in the public interest that these investments should be protected 

whether or not actual use has taken place. 

Others believe that prior user rights should arise only where actual use of the invention has taken place, 

noting that this is a clear test which avoids uncertainty regarding whether preparations are substantial 

enough, and ensures that prior user rights exist as a limited defence to infringement. 



As far as the critical date is concerned, it was noted that in most, but not all, jurisdictions, prior user rights can 

arise up until the priority date of the invention. The sub-group recognised the benefits of harmonising the 

point in time by which prior user rights could arise. 

As noted in section 1, some believe that it should be possible for prior user rights to arise where use of an 

invention by a third party in good faith is based on knowledge derived from a graced disclosure by the 

inventor/applicant. Others believe that prior user rights should be a limited defence to patent infringement, 

and should not arise where the information is derived from the inventor/applicant. 

 

5. Prior art 

i. Patents should only be granted for contributions that place in the hands of the public information 

that had not been previously known 

ii. The scope of prior art should be properly defined to ensure that the subject matter for which 

exclusive rights are granted truly represents a contribution to, and not an encroachment on, the 

public domain 

iii. Subject to agreed exceptions, prior art should consist of all information that has been made available 

to the public anywhere in the world before the earliest effective filing date of the claimed invention 

o There is consensus that the principles outlined above underpin the patent system, and are 

therefore important for understanding how the principles in this document as a whole 

should operate. 

 

Advantages of patents 

 A patent gives you the right to stop others from copying, manufacturing, selling or importing your 

invention without your permission. See protecting intellectual property. 

 You get protection for a pre-determined period, allowing you to keep competitors at bay. 

 You can then use your invention yourself. 

 Alternatively, you can license your patent for others to use it or you can sell it. This can provide an 

important source of revenue for your business. Indeed, some businesses exist solely to collect the 

royalties from a patent they have licensed - perhaps in combination with a registered design and 

trade mark. See how to license a patent. 

 

Disadvantages of patents 

 Your patent application means making certain technical information about your invention publicly 

available. It might be that keeping your invention secret may keep competitors at bay more 

effectively. 

 Applying for a patent can be a very time-consuming and lengthy process (typically three to four 

years) - markets may change or technology may overtake your invention by the time you get a 

patent. 

 Cost - it will cost you money whether you are successful or not - the application, searches for existing 

patents and a patent attorney's fees can all contribute to a reasonable outlay. The potential for 

making a profit should outweigh the time, effort and money it takes to get and maintain a patent. Not 

all patents have financial value. 

 You'll need to remember to pay your annual fee or your patent will lapse. 

https://www.nibusinessinfo.co.uk/content/protecting-intellectual-property
https://www.nibusinessinfo.co.uk/content/how-license-patent
https://www.gov.uk/guidance/before-you-apply-for-a-patent#not-all-patents-have-a-financial-value
https://www.gov.uk/guidance/before-you-apply-for-a-patent#not-all-patents-have-a-financial-value


 You'll need to be prepared to defend your patent. Taking action against an infringer can be very 

expensive. On the other hand, a patent can act as a deterrent, making defense unnecessary. Read 

more about patent protection and enforcement. 

 

What are the features of patent rights? 

In other words, a patent provides its owner a 'right to exclude' others but not a 'right or freedom to use” 

the patented invention. So, a patent gives its owner only an exclusive right to prevent or stop others, from 

making, using, offering for sale, selling or importing a product or process. 

 

Patent applications: the three criteria 

Patent applications must satisfy the following three criteria: 

 Novelty 

This means that your invention must not have been made public – not even by yourself – before the 

date of the application. 

 Inventive step 

This means that your product or process must be an inventive solution. It cannot be a solution that 

would be obvious to a manufacturer. Take the example of a different attachment method. Instead of 

welding the tubes of a swing together, they might be screwed together. This may well be a new 

method of making swings. But for someone involved in making them, it is too obvious a solution to be 

called an inventive step. 

 Industrial applicability 

This criterion implies that it must be possible to actually manufacture the new invention. In other 

words, you can apply for a patent on a new kind of playing card that is easier to hold than existing 

cards. But you can’t obtain a patent for an idea for a new card game. 

 

What Is the Inventive Step? 

The inventive step is used to find out if the patent is in fact for a new item or just an obvious improvement on 

an existing item. Inventive steps make sure patents aren't awarded to existing inventions that the "inventor" 

just improved upon. These patents could allow someone to make money off of an item just because they 

tweaked it. This patent could also allow them to sue companies that improve their own processes just 

because they made small changes as well. 

The applicant must prove that the improvement isn't obvious to people within the industry and that there are 

actually improvements that come with patenting the idea. 

One of the key words when talking about the inventive step is "obvious." Many people also refer to the 

inventive step as the "non-obviousness clause." The EPO defines this as going beyond the expectations of 

technology, instead of just following the next natural step. 

 

For the most part, the term "inventive step" is used by our counterparts in Europe; however, it is 

synonymous with the term "non-obviousness" that Americans use today. 

For example of an inventive step, it's a fairly common fact in the gardening community that plants need water 

and vitamins to grow. An inventive step would be mixing the two in a product, because it's easy to assume 

that gardeners have been doing that for decades. 

https://www.nibusinessinfo.co.uk/content/patent-protection-and-enforcement
http://www.the-business-of-patents.com/inventive-step.html


Another term that is often used for the inventive step is novelty. In Future Science, Dr. Jonathan Atkinson and 

Dr. Rachel Jones define novelty as an idea that a patent should not be available to the public before it was 

filed. This includes: 

 Discussing it at a conference or exhibition. 

 Selling it or giving it away. 

 Promoting the event in marketing materials. 

By filing for a patent before it hits the market, the owner is able to prove that it was his idea, and that no one 

else has had the thought. 

 

Why is the Inventive Step Rule Important? 

The inventive step rule lets companies continue coming up with new ideas without worrying about running 

into a patent law. Instead of stopping natural progress (and creating a monopoly for the company that has the 

idea first), this clause allows companies to continue updating their systems to save money and resources. 

In a paper presented at the Fordham Conference, John Richards explains that 'obvious' is Latin for 'upon the 

road,' or the next steps that companies or inventors would take in the process. Technology is an important 

example of this. Over the past several years, new technology has followed a pattern where it becomes lighter, 

cheaper, and smaller. Look at the first cell phone and how far it has improved to become the phones we use 

today. Patenting a model that is slightly lighter or smaller than a competitor (like an iPhone that's made of 

plastic or a lighter metal) would be an inventive step that follows an obvious progression – not an invention. 

 

Reasons to Consider Not Using the Inventive Step 

One of the biggest challenges faced in patent law and novelty is the subjective nature of the tests. It's hard to 

prove something is just an inventive step, so today's rules follow interviews and personal opinions. 

The United States patent office uses the Teaching-Suggestion-Motivation (TSM) test to determine non-

obviousness. Some say it's too controversial to use, but it proves that there must be some teaching or 

suggestion involved to form an idea. It is also referred to as a way to prevent hindsight bias. 

Most legal teams compare the new idea with the existing item through interviews. They find people who are 

familiar with the industry and ask them about the differences between the two items. Some critics say this 

process is biased because of the person's background, education, and experience. This means the criteria 

changes from industry to industry, and also changes from person to person. 

 

Reasons to Consider Using the Inventive Step 

Even though some people might think the current rules are unfair, there are important reasons for keeping 

the inventive step rules on the books. The Omics Group says the inventive step rules follow the original goals 

of the patent system. Their main goal is to encourage people to come up with new ideas that they can protect 

and make money from. Trying to buy old ideas or making minor tweaks focuses on the money part of the 

patent office, not the invention part. 

 

There are also people who are trying to improve the current rules and how lawyers prove them.  

 

The European Journal of Law and Technology listed one study in which more than 200 students reviewed two 

products to see if it was an inventive step or actual invention. Based on this data, the patent judges had more 

information and opinions about whether something was obvious. 

http://www.future-science.com/doi/pdf/10.4155/fmc.11.146
http://www.future-science.com/doi/pdf/10.4155/fmc.11.146
https://www.upcounsel.com/patent-law
http://fordhamipconference.com/wp-content/uploads/2010/08/John_Richards_Obviousness_and_Inventive_Step_New_Differences.pdf
http://research.omicsgroup.org/index.php/Inventive_step_and_non-obviousness#Rationale
https://www.upcounsel.com/patent-system
http://ejlt.org/article/view/283/427


Currently, in the United States, determining obviousness requires three steps: 

 Evaluating the scope and content of the art. 

 Determining the differences between the original art and the new invention. 

 Resolving the skill level within the art. 

 

This provides a concrete way to determine obviousness that can be applied across most cases. 

These steps are also known as Graham factors, based on the case Graham et al. v. John Deere Co. of Kansas City 

et al. They also consider three additional factors in the products: 

 Commercial success 

 Long-felt but unsolved needs 

 Failure of others 

 

This helps create a big picture view of how the product will affect society if it is patented. 

 

Examples of the Inventive Step 

According to the World Intellectual Propery Organization, inventive step rules have been around since the 

15th century, but they became common in the 19th century. As patents become more advanced, the inventive 

step rules are used more often – especially in the tech field where software companies are making tools that 

common people aren't familiar with. 

What is the difference between an inventive step and a non-obvious rule? It all depends on where you 

live. Simplicable says that most American legal systems use the term "inventive step," while most European 

systems use the term "non-obviousness." While this article has used both terms, it's important to stick to the 

one within your region to prevent confusion. 

The inventive step clause will mostly be used in cases of patent challenges between two companies. One side 

will argue that the invention is new, while the other side says it was an inventive step that its clients came up 

with on their own. This shows the value of the non-obviousness rules even when a patent is approved. 

The nature of the inventive step means companies have a chance to win their patents when they face the 

judge. However, if your company is not sure how to develop a case to prove the difference between the two, 

consider posting a job to hire a lawyer through UpCounsel who has experience in facing patent challenges and 

these non-obvious clauses. You can receive multiple free custom quotes from the top 5% of lawyers with an 

average of 14 years of experience. 

 

Patent/ Types of Applications/ Specification - Reference 

A patent is a right granted by the government to inventors in order to exclude others from making, using, offering 

for sale, or selling the patented invention in the United States or importing the invention into the U.S. This means 

that you get total control over your patented invention and get to decide who, if anyone, can use your invention. 

 

Patents are valid for 20 years from the date you file your application, but patent rights are, in general, only 

enforceable from the date your patent is approved by the U.S. Patent and Trademark Office (USPTO). 

According to the patent office, an invention is “any new and useful process, machine, manufacture, or composition 

of matter, or any new and useful improvement thereof.” For technology product managers, just about any new 

product or feature is patentable: hardware, software, business methods, etc. Every new feature and product you 

create should be examined for patentability. 

http://www.wipo.int/edocs/mdocs/scp/en/scp_22/scp_22_3.pdf
http://research.omicsgroup.org/index.php/Inventive_step_and_non-obviousness#Graham_factors
http://www.wipo.int/edocs/mdocs/scp/en/scp_22/scp_22_3.pdf
http://simplicable.com/new/inventive-step-vs-non-obviousness
https://www.upcounsel.com/jobs/new


While just about anything can be patented, a few criteria must be met. Specifically, patented inventions must meet 

three characteristics: novel, useful and not obvious. 

 

Novel. The novelty requirement is straightforward: Your invention must be new. Inventions that already exist 

cannot be patented. This gets a little tricky, because you can patent new uses for existing products. This frequently 

happens when a new use is discovered for an old pharmaceutical drug, where new testing shows the drug to 

effectively treat a completely unrelated disease. The new use has to be truly new and unrelated to the original use. 

 

Useful. The usefulness requirement is two-fold: That your invention has a useful purpose and that it must actually 

perform its intended purpose. A useful purpose can be almost anything: The patent office, for example, issued 

Patent No. 6,368,227 to a boy who claimed the invention of swinging side-to-side, claiming the usefulness of joy. 

Along with good feelings or whatever other benefit you wish to claim, the invention must also work in order to be 

useful. If the patent office thinks your invention might not work, they may ask you to prove that it does. 

Patent application number 20,030,114,313 claimed the invention of warp drive, which is “a system whose 

propulsion relies on warping space-time as opposed to the ejection of material to provide thrust.” While the 

application packed more than400 paragraphs of technical detail, the patent office cast a skeptical eye, and asked 

the inventor to provide a working model before the patent application could be examined. (A model, working or 

otherwise, was unfortunately not delivered by the inventor.) 

 

Not obvious. The “not obvious” requirement means that an inventive step is required. Your invention has to be 

different enough from what is already out there in the field in order to be patentable. This is an area, however, 

where the law is not very clear.Patents are regularly granted for surprisingly small improvements in a field.You 

should not let your thinking on this requirement prevent you from trying to patent something. If you have an idea 

that you think is worth patenting, explain it to your patent agent or attorney, and let them tell you if they think it 

meets the “not obvious” requirement. 

 

In addition, you cannot patent the laws of nature, physical phenomena, and abstract ideas. Things like Isaac 

Newton’s theory of universal gravitation or Albert Einstein’s theory of general relativity are not patentable. 

 

Three basic kinds of patents are allowed: 

1. Utility patents, which cover inventions that function uniquely to produce a useful result. 

2. Design patents, which cover the unique, ornamental, or visible shape or surface of an object. 

3. Plant patents, which cover asexually reproducing plants. 

 

Types of Patent Application 

A patent is a statutory authorization or license which establishes a right or title over an invention for a 

particular period. It is primarily meant for the prevention of other businesses or its kind from making, using 

or selling an invention of a similar nature. In this article, we look at the different types of patent application in 

detail. 

 

Patent Application 

A patent application is a plea for the grant of a patent for the invention described and claimed by the 

applicant. An application for this purpose generally comprises of a description of the invention, added with 

https://www.indiafilings.com/patent-registration


official forms and correspondence relevant to the application. Patent applications are of several types, and 

each one of them caters to a unique purpose. 

 

Types of Patent 

The types of patent application are: 

1. Provisional Application 

2. Ordinary or Non-Provisional Application 

3. Convention Application 

4. PCT International Application 

5. PCT National Phase Application 

6. Patent of Addition 

7. Divisional Application 

The rest of the article covers these types in detail. 

 

Provisional Application 

A provisional application, also known as a temporary application, is filed when an invention is under 

experimentation and isn’t finalized. Moreover, it is a preliminary application which is filed before the patent 

office for claiming priority, as the Indian Patent Office follows the ‘First to File’ system (known popularly as 

the First-Come-First-Served-Basis). In technical terms, early filing of an invention will prevent the occurrence 

of any other related inventions from being designated as prior art to the inventor’s application. 

To add more, this type of patent application is filed when an invention requires additional time for 

development. If an application is supported by a provisional specification, the applicant is necessitated to file 

a complete specification within twelve months from the date of filing a provisional application. A failure in 

this part would render the application void. 

An application for this purpose must include a brief explanation of the invention and must be drafted in a 

meticulous manner so as to ensure that the priority rights are secured for the invention. 

 

Ordinary or Non-Provisional Application 

This type of application is filed if the applicant doesn’t have any priority to claim or if the application is not 

filed in pursuance of any preceding convention application. It must be supported by a complete specification, 

the likes of which must depict the invention in detail. 

Complete specification can be filed through: 

 Direct Filing – wherein complete specification is initially filed with the Indian Patent Office without 

filing any corresponding provisional specification. 

 Subsequent Filing – wherein complete specification is filed subsequent to the filing of the 

corresponding provisional specification and claiming priority from the filed provisional specification. 

A complete specification entails the following: 

1. Title 

2. A preamble to the invention. 

3. The technical field of the invention. 

4. Background of the invention. 

5. Objects of the invention. 

6. Statement of the invention. 



7. A brief description of the drawings 

8. A detailed description of the invention. 

9. Claims 

10. Abstract 

 

Convention Application 

A convention application is filed for claiming a priority date based on the same or substantially similar 

application filed in any of the convention countries. To avail a status of convention, an applicant is required to 

file an application in the Indian Patent Office within a year from the date of the initial filing of a similar 

application in the convention country. To re-iterate in simpler terms, a convention application entitles the 

applicant to claim priority in all the convention countries. 

 

PCT International Application 

As can be deciphered from its name, a PCT Application is an international application. Though the application 

does not provide for the grant of an international patent, it paves the way for a streamlined patent application 

process in many countries at one go. It is governed by the Patent Corporation Treaty and can be validated in 

up to 142 countries. Filing this application would protect an invention from being replicated in these 

designated countries. 

Unlike other applications, it renders the application a time-frame of 30-31 months to enter into various 

countries from the international filing date or the priority date, thereby affording the applicant with 

additional time to access the viability of the invention. 

Apart from this, it renders the following other benefits: 

 The application provides an International Search Report citing prior art, which discloses whether or 

not the invention is novel. 

 It provides an option for requesting an International Preliminary Examination Report, which is a 

report that contains an option on the patentability of the invention. 

 The aforementioned reports facilitate the applicant to make more informed choices early in the 

patent process, as he/she can amend the application to deal with any conflicting material. Also, the 

applicant would receive a glimpse of the patentability of the invention before incurring charges for 

filing and prosecuting the application in each country. 

An applicant from India can file this application at: 

 The Indian Patent Office (IPO), which acts as the receiving office. 

 The International Bureau of WIPO, either after availing a foreign filing permit from IPO or after six 

weeks and 12 months of filing an application in India. 

 

PCT National Phase Application 

It is considered essential for an applicant to file a national phase application in each of the country wherein 

protection is sought for. The time-frame for filing the same is scheduled within 31 months from the priority 

date or the international filing date, whichever is earlier. The time-limit could be enhanced through National 

Laws by each member country. 

With respect to the National Phase Application, the title, description, abstract and claims as filed in the 

International Application under PCT shall be considered as the Complete Specification. Apart from this, the 

regulations applicable for filing and processing an ordinary patent application is also applied here. 



Patent of Addition 

This application must be filed if the applicant discovers that he has come across an invention which is a slight 

modification of the invention which has already been applied for or patented by the applicant. It can only be 

filed if the invention doesn’t involve a substantial inventive step. 

A patent of addition is only granted after the grant of the parent patent, and hence no separate renewal fee 

should be remitted during the term of the main patent. Moreover, it shall be granted for a term equal to that 

of the patent for the main invention, and therefore expires along with the main patent.  The date of filing here 

shall be the date on which the application for patent of addition has been filed. 

 

Divisional Application 

An applicant may choose to divide an application and furnish two or more applications if a particular 

application claims for more than one invention. The priority date for these applications is similar to that of 

the parent application. 

 

What are the five steps to filing a patent? 

1. Understand Your Invention. 

2. Research Your Invention. 

3. Choose the Type of Protection. 

4. Draft Your Patent Application. 

5. Wait for a Formal Response. 

 

1. Understand Your Invention 

The first step in how to get a patent is to understand your invention. What aspect (or aspects) of the invention 

makes it new and useful? Suppose you made a custom pair of shears that are useful for cutting thin strips of 

fabric. The scissors have a custom-designed handle with different shaped finger loops and an additional set of 

pivots that allow the cutter to feel the slightest resistance when cutting through very thin fabric. 

Once you identify the aspects that make your invention new and useful then you need to consider the scope. 

Are there other ways to make your invention? For example, could you use springs instead of pivots? Could 

you change the shape of the finger loops or the materials they are made out of? Find all the possible ways to 

make your invention work, even if they're not as good as the preferred way you make your invention. 

Next, look at whether or not your invention has a broader application. Is there something special about thin 

fabric or could you use the scissors for any type of delicate work? Would the shears be useful for surgery or 

other precision applications? If so, would you need to make further modifications? Asking these types of 

questions early on will help you search, protect and benefit from the full scope of your invention. It will give 

you more strategic options and, most likely, a more valuable patent. 

 

2. Research Your Invention 

A patent requires absolute novelty. Part of the rationale of giving inventors exclusive rights to their 

inventions is to encourage the inventor to teach the public how to make the invention work. If a reasonably 

skilled person could make the invention work from information already available to the public, then what 

benefit is there to giving the inventor exclusive rights? 

You have to search to find any relevant publication, presentation, sales brochure, patent application or 

issued patent that overlaps with your invention or some components of your invention. For example, you may 

https://www.legalzoom.com/patents/provisional-patent-application-overview.html


find a technical white paper that discusses precision robotic manufacturing. You notice that the robotic arms 

have the same kind of pivots as your super sensitive scissors. The reference is considered prior art, even if it 

is in a different field. 

The United States Patent and Trademark Office (USPTO) requires you to disclose any publication, patent or 

other written document that you know to be relevant to your patent. Failure to do so could disqualify your 

patent, even after the USPTO issues it. 

 

3. Choose the Type of Protection 

Back to the pair of scissors that you made. Let's say you really like them, but they leave a lot to be desired. The 

pivots are too loose and you want to spend more time tinkering to get the tension just right. You also want to 

try out some new materials for the finger loops. If you want to get a patent on file but leave some room to 

tinker, you may want to file a provisional patent application. 

A provisional application serves as proof that you are the inventor as of the date you file the patent. You can 

then take a year to file the actual patent application (what most people call a patent is actually called a utility 

patent). In that year, you can experiment and perfect the prototype that you built. You cannot, however, add 

anything new. If your new prototype includes super sensitive pressure sensors that you did not include in the 

provisional application then you will need to file a new patent application to get the benefit of the new 

sensors. 

 

When considering what patent protection is available to you, do not rule anything out. For example, you may 

shape the finger loops on your scissors because they have a real functional improvement in improving 

sensitivity to resistance. They may also produce a very distinctive appearance. You could file a design patent 

application for the distinct appearance of the finger loops in addition to or in place of a utility patent 

application. Generally, a design patent protects the way an article looks, while a utility patent protects the 

way an article is used and works. Overlapping patent protection is incredibly important and makes 

your intellectual property that much more valuable. 

 

4. Draft Your Patent Application 

Drafting a patent application, even a provisional patent application, is tricky. Patent applications have several 

parts, each of which can be rejected for technical or formal reasons. If you are going to file it yourself, read the 

Manual of Patent Examining Procedure. Make checklists for each portion of your application and triple-check 

your work. If you are lucky, a mistake will only cost you time and money. If you are not, you can lose your 

filing date or cripple your ability to get an issued patent. 

Drafting a patent is a skill that takes experience to develop and a team to execute. At all other steps, there is a 

lot of work the inventor can do. But when it comes to drafting the application itself, a professional will be very 

helpful. 

 

5. Wait for a Formal Response 

Do not expect to hear back from the patent office for a long time, usually a year or longer. When you do hear 

back, the examiner may argue that your invention is not novel in light of the prior art, that your invention is 

not the kind of thing that you can get a patent for, or that you have failed to fully explain how the invention 

works. If this does happen, you might want to seek professional advice to help craft your response. 

https://www.legalzoom.com/business/intellectual-property/design-patent-overview.html
https://www.legalzoom.com/business/intellectual-property/design-patent-overview.html
https://www.legalzoom.com/utility-patents/utility-patents-overview.html
https://www.legalzoom.com/utility-patents/utility-patents-overview.html
https://www.legalzoom.com/articles/an-overview-of-intellectual-property-rights


In the meantime, while you are waiting for your response, get to work. Unless inventing is purely a hobby, 

you are investing your time and money in intellectual property that you think may have commercial value. If 

you are looking to license your scissor design to a leading tool company, for example, start talking to them 

now-and make sure your patent protects the features they consider most valuable. Because your patent is 

pending and your invention is protected, you can discuss whatever you need to seal the deal you want. 

 

Patent Examination Process: 

Once a patent application is filed in India and published after 18 months of filing the application, the next step 

involves the examination of the patent application. The examination process starts once the applicant files a 

request for examination within 48 months from the date of filing of the application or the priority date 

whichever is earlier. 

During the first examination stage, the examiner prepares the examination report incorporating all the 

statutory objections for the given patent application. The examiner performs a patent search in order to 

identify the prior arts relevant to the invention. The objections are well communicated and properly defined 

so as to be understood by the addressee without seeking further clarification. The First  

Examination Report (FER) is generally sent to the applicant along with the application and specification 

within six months from the date of publication or from the date of request for examination. The law in place 

requires that the objections are supported by correct legal provisions and proper reasoning. The objections 

once taken are maintained and are withdrawn only after justifying the proper reason for withdrawal. 

The examination report may either be favorable or adverse to the applicant. If the report is favorable, the 

applicant has to put the application in order for grant within 12 months from its date. If the report is adverse, 

it normally includes formal objections relating to errors in the Forms or Fees and substantive objections 

relating to patentability requirements. During the process, the applicant can draft a response by amending 

the application in order to overcome the objections raised in the FER. The amendment can be allowed only if 

it is by way of disclaimer, correction or explanation. The amendment will not be allowed if the specification as 

amended describes matters which are not in substance disclosed or shown in the specification. Alternatively, 

the applicant may also request for a hearing within 1 month from the date of receiving the examination 

report to explain the reasons for non-acceptance of objections to the examiner.  

The examiner can also withdraw the application any time after filing of application and before the grant of 

patent by filing a written request and paying the requisite fee. 

 

Patentability: Applying For Patent 

As we know that not every invention get patented, Patent is granted to the owner of the Patent when his/her 

invention satisfies the conditions for Patentability. Such conditions are as follows: 

 Novelty 

 Inventive step or non-obviousness 

 Industrial Application 

Section 3 and Section 4 deals with the list of exceptions that do not fall under the invention and hence are 

non-patentable. 

 

Procedure for Grant of Patent 

Persons entitled to apply for patents 

https://indiankanoon.org/doc/874310/


—(1) Subject to the arrangements contained in section 134, an application for a patent for an invention might 

be made by any of the accompanying persons, in other words,—  

(a) By any individual professing to be the valid and first creator of the invention;  

(b) By any individual being the assignee of the individual professing to be the valid and first innovator in 

regard of the privilege to make such an application;  

(c) By the legitimate agent of any deceased individual who is preceding his demise and is qualified to make 

such an application.  

(2) An application under sub-section (1) might be made by any of the persons alluded to in that either alone 

or mutually with some other individual. 

Filing of Application- Provisional/Complete: The Patent Application should be filed in form 

1 accompanied by either provisional or complete specification in form 2 (If an applicant is not ready with the 

complete invention and need some more time for it then filing for the provisional application is 

recommended).   

Publication of Application: The publication of the application is made after the expiry of 18 months from 

the priority date and no fees are required by the inventor. A prior- request for publication can be made (Rule 

24A) under section 11A(2) in form 9 (optional step). 

Request for Examination(REF): The request for examination to examine the patent application is made 

in form 18 (including fee) within 48 months from the filing date by the applicant.                               

Examination issue of First Examination Report(FER): The controller sends the patent application to the 

examiner who checks for patentability as per the patentability criteria and creates the first examination 

report (FER).  

Any objection raised regarding the patentability requirements during examining the patent application has to 

have complied within 12 months.                               

Grant of Patent: Once the application meets all the requirements of patentability, the patent is granted to the 

inventor with the seal form patent office and is notified in the journal from time to time. 

Opposition: Section 25 of the Act deals with the opposition to grant of patents and are of two types: Pre 

Grant (before the patent is granted) and Post Grant (after 1 year of grant of the patent). The opposition can 

be filed by anyone interested in the field of the invention in form 7 with the prescribed fee within 12 

months from the date of publication of the patent. 

Grounds of Opposition to Patent 

 Obtained wrongly or fraudulently. 

 The invention has been already published and known. 

 Not involved in any of the inventive step. 

 Not completed within 12 months. 

 No clear and explicit description of the invention. 

 Not considered an invention based on the subject matters for the invention. 

 

Types of Patent Application 

There are four types of Patent Application namely: 

 

Provisional Application: This application is filed when the inventor is not quite ready with the invention 

and needs more time for the development of his invention and also don’t want to lose the priority date. After 



12 months of filing the provisional application, the complete application should be filed otherwise the patent 

application will not be considered. The provisional certificate may or may not have claimed. 

Complete Application: Filing of the complete application, describes that the invention is complete. The 

complete application have claims. 

 

Elements of complete application: 

 Description of invention 

 The best method of performing 

 Claims  

 Abstract  

 

Convention Application: When an inventor or an applicant files the patent application in Indian Patent 

Office claiming for a priority date based on a similar application filed in convention countries, such 

applications are convention application. 

 

Patent Cooperation Treaty (PCT) – International Application: A PCT application is an international 

application governed by the Patent Cooperation Treaty further administered by the World Intellectual 

Property Rights (WIPO). 

 

Divisional Application: When an applicant feels that he has come across an invention which is a slight 

modification of the invention for which he has already applied for or has obtained the patent, the applicant 

can go for the patent of addition if the invention does not involve a substantial inventive step. There is no 

need to pay the separate renewal fee for the patent of addition during the term of the main patent and it 

expires along with the main patent. 

 

Patent of Addition:  when application made by applicant claims more than one invention, the applicant on 

his own files two or more applications, as applicable for each of the inventions. This type of application, 

divided out of the parent one, is called a Divisional Application. The priority date for all the divisional 

applications will be the same as that claimed by the Parent Application. 

 

Documents Required For Patent Application 

o Application for grant of the patent in form 1 

o Proof of right to file the application from the inventor.  

o Provisional/complete specification in form -2 

o Statement and undertaking under section 8 in Form 3 

o Declaration as to inventorship 

o Power of authority in form 26 

o Applicant’s signature and an appropriate date 

o If application pertains to a biological material obtained from India, submission of 

the permission from the National Biodiversity Authority 

o Request for Examination- Form 18 

o Requisite Statutory Fees 



Rights of Patentee 

Section 48 of the Act deals with the rights of conferring upon the patentee after the grant of the Patent. 

 Exclusion of the third party to use, sell, or import the patented product without the patentee’s 

consent. 

 Exclusion of the third party from using, selling or importing the patented product (if the subject 

matter is the process) without the patentee’s consent. 

Infringement and Remedies for patent 

Infringement of patent refers to the violation of the rights of the patent holder that is whenever a person 

exercises the rights of the patent holder without the patent owner’s consent, he causes infringement. 

Types of Patent Infringement: 

 Direct Infringement – Directly selling, marketing, or using commercially, any product which is 

substantially close to the patented product without the consent of the patentee. 

 Indirect Infringement- Deceitful and accidental patent infringement in any incident is an indirect 

infringement. 

 Contributory infringement- If the person knowingly infringes the rights of the patent holder, it 

refers to contributory infringement. 

Some acts that would not lead to infringement are as follows. 

 Government use: As per Section 100 a patented invention can be used by the central government for 

its own use and as per section 47, the patented invention can be imported by the government. 

 Exemption on experiments and research: the use of a patented invention for experiments and 

teaching purposes does not come under infringement. 

 Patented inventions on drugs and medicines can be imported by the government. 

 Any patented invention on foreign vessel/ aircraft/ vehicle comes to India is not an infringement. 

 

Filing suits for infringement 

Section 104 of the Patent Act, 1970 deals with the filing of the suit by the patentee against the infringement. 

The patentee can file a suit in a district court or directly in the high court. Suit for patent infringement can be 

filed after the grant of patent yet the patentee can also claim for damages committed between the publication 

of patent application to the grant of the patent. 

The burden of proof is on the patentee after the grant of the patent but if the invention is a process than the 

burden to prove for infringement lies on the defendant. 

Remedies for patent 

Section 108 deals with relief or remedies against the infringement.  

Injunction 

The injunction is the most common form of Remedy granted in Patent infringement proceedings. The 

injunction is the order of the court restricting a person from beginning or continuing a course of action 

(infringing in this case) threatening or invading legal rights of a person. 

 

Types of Injunction 

There are two types of an injunction- 

1. Interim Injunction 

2. Permanent Injunction 

Interim Injunction restricts the person temporarily from doing act and is granted before the full-fledged trial. 



Permanent Injunction, on the other hand, restrains a person from doing a specified act and can be granted 

after the full-fledged trial.  

 

Injunctions are preventive, prohibitive or restrictive that is restricting someone from doing a specified act or 

mandatory that is, they compel or orders a person to do something. 

 

The plaintiff can obtain interlocutory order in the form of a temporary injunction whenever a case of patent 

infringement occurs from the court by proving the following facts: 

1.  The prima facie case of infringement 

2. The balance of convenience in his favour 

3. If the injunction is not granted he/she shall suffer irreparable damage. 

 

Damages and account of profit 

If the suit is in favour of the plaintiff, the court can award either damages or directs the defendant to render 

an account of profits but not both. 

Exceptions and Limitations of Patent in India 

Types of Exceptions & Limitations 

 

Article 30 of TRIPS (Trade-Related Aspects of Intellectual Property Rights) allows for limited exceptions to 

the exclusive rights conferred by a patent. 

 Exception on Non-Commercial use 

The exclusive rights conferred by a patent does not allow the private or commercial activity. 

The Government has the power to grant a license, known as Compulsory License (CL) , to a third party to use 

the patented invention (when the patentee is not using the invention for profit) so as to restrict the rights of 

the patentee for the purpose of preventing the abuse/ misuse of the rights by the property holder and to 

prevent the negative effect of such action on the public. 

When the patented invention is not commercialized in India or the invention is not available to the public at 

reasonable prices or the invention is not manufactured in requisite amount, then the government grant such 

license.  

 Exception on Experimental / Scientific Research 

 

Section 47 of the Act subsection 3 deals with the exception on  experimental and scientific use of Patented 

invention, the grant of a patent is subject to the condition that any product or process, in respect of which the 

patent is granted, may be made or used by any person for the purpose merely of experiment or research 

including the imparting of instructions to the students. 

This form of exception grants third parties to carry out experiments and scientific processes for teaching 

students without infringing the rights of the patent holder. 

 Exception on Regulatory use or Private use 

 

Section 107A of the Indian Patent (Amendment) Act, 2005  deals with the exception of regulatory and 

private use also referred as bolar Provision, this exemption allows the manufacturers of generic drugs to 

undertake steps reasonably related to the development and submission of information required for obtaining 



marketing approval anywhere in the world in respect of a patented product without the consent of the 

patentee. 

 

This provision allows the generic producers to market and manufacture their goods before the expiration of 

the term of the patent. Bolar Provision has been upheld as conforming to the TRIPS agreement and is used in 

several countries to advance science and technology.  

 Exception on Foreign Vessels, Aircraft or Land Vehicles  

 

Section 49 the Indian Patents Act deals with the said exception, when the foreign vessels, aircraft, or land 

vehicles accidentally or temporarily comes to India, the patent rights are not infringed when the patented 

invention is used exclusively for the needs of foreign vessels, aircraft, or land vehicles and other accessories. 

Conclusion 

 

Patenting in India has protected the intellectual property of many innovators and has been useful in the 

growth of commerce and technology in India. One has to go through a certain process for the grant of Patent. 

Grant of Patent confers monopolistic rights upon the Patentee excluding the third party to sell, use, 

manufacture or import of the patented product without the consent of the patentee. If someone tries to use, 

sell, manufacture or import such patented products leading to the infringement of the rights of the patentee, 

the patentee can sue the person.  

 

Can you revoke an assignment? 

It can be revoked by an assignor later assigning the same right (the last assignment controls), the death or 

incapacity of the assignor, or by the delivery of notification of revocation to the assignee or obligor. Example: 

I verbally assign to you my rights to receive payment under a contract. 

 

What is the meaning of equitable assignment? 

An assignment which does not fulfil the statutory criteria for a legal assignment. An equitable 

assignment may be made in one of two ways: The assignor can inform the assignee that he transfers a right or 

rights to him. 

 

Patent revocation means cancellation of the rights granted to a person by the grant of a patent. A patent 

can be revoked on petition of any person interested or of the Central Government or on a counter claim in a 

suit for infringement of the patent by the High Court. 

 

Revocation of Patents in India 

The term “Revocation” means Cancellation of the patent rights acquired to patentee. The revocation 

of patent can be applied by making a petition by any person interested or it can be also applied by the Central 

Government. In most of the cases revocation are filed on a counter claim against patent infringement suits in 

High Court or in IPAB (the Intellectual Property Appellate Board). The provision for Revocation of patents is 

mentioned under section 104. 

Section 104 of the Patents Act, 1970 states that only IPAB or the High Court can be approached for 

revocation as no suit of infringement can be brought before a court inferior to the District Court having 

jurisdiction. 

https://www.effectualservices.com/patent-services/patent-licensing-services/infringement-search/


Section 64: Grounds for Revocation 

Principally, Section 64 contains in-exhaustive grounds that dictate the conditions that warrant the revocation 

of patents. These grounds are following: 

1. Invention is obvious, lacks an inventive step or utility 

2. Invention isn’t new and, has been publicly used or published in India before the priority date or it is 

foreseen in light of the knowledge available within any local or native community in India or 

elsewhere. 

3. Either the party wasn’t entitled to the patent, or the subject isn’t patentable or doesn’t amount to 

invention 

4. The scope of patent specificationsis incomplete or the specifications have either been already 

claimed in a patent that is granted 

5. The patent was wrongfully obtained in violation of another party’s rights, such as through incorrect 

or false representation, or leave to modify specifications was obtained through fraudulent means 

6. The information that has been disclosed under Section 8 is known to be false by the Applicant or he 

has been unable to furnish the required details 

7. Complete specification omits or erroneously attributes geographical origin or biological matter used 

in the invention 

8. The invention was either secretly used before the date or claim or the Applicant contravened secrecy 

instructions under Section 35 

9. The complete specification neither describes the invention and method sufficiently nor does it 

disclose the best method of performing it which was known and entitled protection. 

  

Other provisions for revocation of patents 

A revocation petition can be filed undersection 65 if the patent granted relates to atomic energy. 

If the Central Government find the facts that a granted patent has been exercising by wrong means and it is 

mischievous to the State or prejudicial to the public, the central government has rights in the case to revoke 

the concerned patent and such decision is also published in official journal of patents. 

Moreover, to prevent the wastage of judicial machinery, it was laid down by the Supreme Court in 

the Enercon (India) Ltd and Ors. v. Enercon Gmbh, that post grant opposition proceedings and petitions or 

counter-claims of revocation against the same patent, cannot be simultaneously instituted. Frivolous 

litigation shouldn’t be encouraged as it is viewed as a tool for cash-rich litigants with dishonest interests. 

 

Revocation of patent under Section 85 of the Patents Act 

An application for revocation of patent can be filed after 2 years of grant of compulsory license.  The grounds 

for revocation of a patent are same which are covered under Section 85 which mainly deal with following:- 

 reasonable price, 

 availability in the territory of India, and 

 requirements of the public not met. 

Section 85 reveals provision in the benefit of public. In these cases where the patentee does not take 

necessary actions that may help in better distribution of the product to the public and more profound 

availability at reasonable prices. Such revocations of patent are really useful to public. 

 

http://ipindia.nic.in/writereaddata/Portal/ev/sections/ps64.html


Equitable Assignment: Everything You Need to Know 

An equitable assignment is one that does not fulfill the statutory criteria for a legal assignment, but is binding 

and upheld by the courts in the interest of equability, justice, and fairness.3 min read 

1. Equitable Assignment 

2. The Doctrine of Equitable Assignment in Wisconsin 

 

An equitable assignment is one that does not fulfill the statutory criteria for a legal assignment, but is binding 

and upheld by the courts in the interest of equability, justice, and fairness. 

 

Equitable Assignment 

An equitable assignment may not appear to be self-evident by the law's standard, but it presents the assignee 

with a title that is protected and recognized in equity. It's based on the essence of a declaration of trust; 

specifically, essential fairness and natural justice. As long as there is valuable consideration involved, it does 

not matter if a formal agreement is signed. There needs to be some sort of intent displayed from one party to 

assign and the other party to receive. 

The evaluation of a righteous equitable assignment is completed by determining if a debtor would rationally 

pay the debt to another party alleging to be the assignee. Equitable assignments can be created by: 

1. The assignor informing the assignee that they transferred a right to them 

2. The assignor instructing the other party to release their obligation from the assignee and place it 

instead on the assignor 

The only part of an agreement that can be assigned is the benefit. Generally speaking, there is no prerequisite 

for the written notice to be received or given. The significant characteristic that separates an equitable 

assignment from a legal assignment is that most of the time, an equitable assignee may not take action against 

a third party. Instead, it must rely on the guidelines governing equitable assignments. In other words, the 

equitable assignee must team up with the assignor to take action. 

 

The Doctrine of Equitable Assignment in Wisconsin 

In Dow Family LLC v. PHH Mortgage Corp., the Wisconsin Supreme Court issued in favor of the doctrine of 

equitable assignment. The case was similar to many other foreclosure cases, except this one came with a 

twist. Essentially, Dow Family LLC purchased a property and the property owner insisted the mortgage on 

the property had been paid off. However, in actuality, it wasn't.  

Prior to the sale, the mortgage on the property was with PHH Mortgage Corp. When PHH went to foreclose on 

the mortgage, Dow Family LLC contested it. There was one specific rebuttal that caught the attention of the 

Wisconsin Supreme Court. The official mortgage on record was with MERS, an appointee for the original 

lender, U.S. Bank. 

 

Dow argued that PHH couldn't foreclose on the property because the true owner was MERS. Essentially, Dow 

was stating that the mortgage was never assigned to PHH. Based on this argument, PHH utilized the doctrine 

of equitable assignment. 

Based on a case from 1859, Croft v. Bunster, the court determined that the security for a note is equitably 

assigned when the note is assigned without a need for an independent, written assignment. Additionally, Dow 

contended that the statute of frauds prohibits the utilization of the doctrine, mainly because it claimed every 

assignment on a property must be formally recorded. 

https://www.upcounsel.com/assignment-of-contracts
https://www.wisbar.org/NewsPublications/InsideTrack/Pages/Article.aspx?Volume=0&Issue=0&ArticleID=11661
https://www.investopedia.com/terms/s/statute-of-frauds.asp


During the case, Dow argued that the MERS system, which stored the data regarding the mortgage, was 

fundamentally flawed. According to the court, the statute of frauds was satisfied because the equitable 

assignment was in accordance with the operation of law. Most importantly, the court avoided all 

consideration regarding the MERS system, concluding it was not significant in their decision.  

The outcome was a major win for lenders, as they were relying on the doctrine specifically for these types of 

circumstances. 

 

Most experts agree that this outcome makes sense in the current mortgage-lending environment. This is due 

to the fact that it is still quite common for mortgages to be bundled up into mortgage-backed securities and 

sold on the secondary market. 

Many economists claim that by not requiring mortgages to be recorded each time a transfer is completed, the 

loans are more easily marketed to investors. Additionally, debtors know who their current mortgage 

company is because the new lender must always notify the current borrower in order to receive payment. It 

was determined that recording and documenting the mortgage merely provides a signal to the rest of the 

world that the property owner secures a debt. 

https://www.upcounsel.com/securities


RM4151 RESEARCH METHODOLOGY AND IPR 

N.Vinodh, Department of Management Studies 

UNIT IV 

INTELLECTUAL PROPERTY RIGHTS 

 Intellectual Property – The concept of IPR, Evolution and development of concept of IPR, IPR development 

process, Trade secrets, utility Models, IPR & Bio diversity, Role of WIPO and WTO in IPR establishments, Right 

of Property, Common rules of IPR practices, Types and Features of IPR Agreement, Trademark, Functions of 

UNESCO in IPR maintenance. 

 

Intellectual Property 

Intellectual Property (IP) deals with any basic construction of human intelligence such as artistic, literary, 

technical or scientific constructions. Intellectual Property Rights (IPR) refers to the legal rights granted to the 

inventor or manufacturer to protect their invention or manufacture product. These legal rights confer an 

exclusive right on the inventor/manufacturer or its operator who makes full use of it’s his invention/product 

for a limited period of time. 

 

INTELLECTUAL PROPERTY RIGHTS  

The intellectual property right is a kind of legal right that protects a person’s artistic works, literary works, 

inventions or discoveries or a symbol or design for a specific period of time. Intellectual property owners are 

given certain rights by which they can enjoy their Property without any disturbances and prevent others 

from using them, although these rights are also called monopoly rights of exploitation, they are limited in 

geographical range, time and scope. 

 

Nature of intellectual Property 

 Intangible Rights over Tangible Property: The main Property that distinguishes IP from other forms 

of Property is its intangibility. While there are many important differences between different 

forms of IP, one factor they share is that they establish property protection over intangible things 

such as ideas, inventions, signs and information whereas intangible assets and close relationships 

are a tangible object. In which they are embedded. It allows creators or owners to benefit from 

their works when they are used commercially. 

 Right to sue: In the language of the law, IP is an asset that can be owned and dealt with. Most forms of 

IP are contested in rights of action that are enforced only by legal action and by those who have 

rights. IP is a property right and can, therefore, be inherited, bought, gifted, sold, licensed, 

entrusted or pledged. The holder of an IPR owner has a type of Property that he can use the way 

he likes subject to certain conditions and takes legal action against the person who without his 

consent used his invention and can receive compensation against real Property. 

 Rights and Duties: IP gives rise not only to property rights but also duties. The owner of the IP has 

the right to perform certain functions in relation to his work/product. He has the exclusive right 

to produce the work, make copies of the work, market work, etc. There is also a negative right to 

prevent third parties from exercising their statutory rights. 

 Coexistence of different rights: Different types of IPRs can co-exist in relation to a particular function. 

For example, an invention may be patented, and the invention photograph may be copyrighted. A 

design can be protected under the Design Act, and the design can also be incorporated into a 



trademark. There are many similarities and differences between the various rights that can exist 

together in IP. For example, there are common grounds between patent and industrial design; 

Copyright and neighboring rights, trademarks and geographical indications, and so on. Some 

intellectual property rights are positive rights; the rest of them are negative rights. 

 Exhaustion of rights: Intellectual property rights are generally subject to the doctrine of exhaustion. 

Exhaustion basically means that after the first sale by the right holder or by its exhaustion 

authority, his right ceases and he is not entitled to stop further movement of the goods. Thus, once 

an IP rights holder has sold a physical product to which IPRs are attached, it cannot prevent 

subsequent resale of that product. The right terminates with the first consent. This principle is 

based on the concept of free movement of goods which is in force by consent or right of the rights 

holder. The exclusive right to sell goods cannot be exercised twice in relation to the same goods. 

The right to restrict further movements has expired as the right holder has already earned his 

share by the act of placing goods for the first sale in the market. 

 Dynamism: IPR is in the process of continuous development. As technology is rapidly evolving in all 

areas of human activities, the field of IP is also growing. As per the requirement of scientific and 

technological progress, new items are being added to the scope of IPR, and the scope of its 

preservation is being expanded. Bio Patents, Software Copyrights, Plant Diversity Protection, 

these are few names which reflect contemporary developments in the field of IPR. The importance 

of intellectual property and its mobility is well established and reflected at all levels, including 

statutory, administrative and judicial. 

 

Scope of intellectual Property 

The scope of IP rights is broad; two classification modes are used to determine whether IP is copyright or 

Industrial Property. Industrial properties include patents or inventions, trademarks, trade names, 

biodiversity, plant breeding rights and other commercial interests. A patent gives its holder the exclusive 

right to use the Intellectual Property for the purposes of making money from the invention.  

An invention is itself a new creation, process, machine or manufacture. Having copyright does not give you 

the exclusive right to an idea, but it protects the expression of ideas that are different from a patent. Copyright 

covers many fields, from art and literature to scientific works and software. 

Even music and audio-visual works are covered by copyright laws. The duration of copyright protection 

exists 60 years after the death of the creator. In other words, an author’s book is copyrighted for his entire life 

and then 60 years after his death. Unlike patent laws, there is no requirement of the administrative process in 

copyright laws. 

 

Why promote and protect Intellectual Property? 

There are several reasons for promoting and protecting intellectual property. Some of them are: 

1. Progress and the good of humanity remain in the ability to create and invent new works in the 

field of technology and culture. 

2. IP protection encourages publication, distribution, and disclosure of the creation to the public, 

rather than keeping it a secret. 

3. Promotion and protection of intellectual Property promote economic development, generates 

new jobs and industries, and improves the quality of life. 



Intellectual Property helps in balancing between the innovator’s interests and public interest, provide an 

environment where innovation, creativity and invention can flourish and benefit all. 

 

Kinds of intellectual Property 

The subject of intellectual property is very broad. There are many different forms of rights that together make 

up intellectual property. IP can be basically divided into two categories, that is, industrial Property and 

intellectual property. Traditionally, many IPRs were collectively known as industrial assets. 

It mainly consisted of patents, trademarks, and designs. Now, the protection of industrial property extends to 

utility models, service marks, trade names, passes, signs of source or origin, including geographical 

indications, and the suppression of unfair competition. It can be said that the term ‘industrial property” is the 

predecessor of ‘intellectual property”. 

 

Copyright 

Copyright law deals with the protection and exploitation of the expression of ideas in a tangible form. 

Copyright has evolved over many centuries with respect to changing ideas about creativity and new means of 

communication and media. In the modern world, the law of copyright provides not only a legal framework for 

the protection of the traditional beneficiaries of copyright, the individual writer, composer or artist, but also 

the publication required for the creation of work by major cultural industries, film; Broadcast and recording 

industry; And computer and software industries. 

 

It resides in literary, dramatic, musical and artistic works in ”original’ cinematic films, and in sound 

recordings set in a concrete medium. To be protected as the copyright, the idea must be expressed in original 

form. Copyright acknowledges both the economic and moral rights of the owner. The right to copyright is, by 

the principle of fair use, a privilege for others, without the copyright owner’s permission to use copyrighted 

material. By the application of the doctrine of fair use, the law of copyright balances private and public 

interests. 

 

Patent 

Patent law recognizes the exclusive right of a patent holder to derive commercial benefits from his invention. 

A patent is a special right granted to the owner of an invention to the manufacture, use, and markets the 

invention, provided that the invention meets certain conditions laid down in law. Exclusive right means that 

no person can manufacture, use, or market an invention without the consent of the patent holder. This 

exclusive right to patent is for a limited time only. 

 

To qualify for patent protection, an invention must fall within the scope of the patentable subject and satisfy 

the three statutory requirements of innovation, inventive step, and industrial application. As long as the 

patent applicant is the first to invent the claimed invention, the novelty and necessity are by and large 

satisfied. Novelty can be inferred by prior publication or prior use. Mere discovery ‘can’t be considered as an 

invention. Patents are not allowed for any idea or principle. 

 

The purpose of patent law is to encourage scientific research, new technology, and industrial progress. The 

economic value of patent information is that it provides technical information to the industry that can be used 

for commercial purposes. If there is no protection, then there may be enough incentive to take a free ride at 



another person’s investment. This ability of free-riding reduces the incentive to invent something new 

because the inventor may not feel motivated to invent due to lack of incentives.  

 

Trademark 

A trademark is a badge of origin. It is a specific sign used to make the source of goods and services public in 

relation to goods and services and to distinguish goods and services from other entities. This establishes a 

link between the proprietor and the product. It portrays the nature and quality of a product. The essential 

function of a trademark is to indicate the origin of the goods to which it is attached or in relation to which it is 

used. It identifies the product, guarantees quality and helps advertise the product. The trademark is also the 

objective symbol of goodwill that a business has created. 

 

Any sign or any combination thereof, capable of distinguishing the goods or services of another undertaking, 

is capable of creating a trademark. It can be a combination of a name, word, phrase, logo, symbol, design, 

image, shape, color, personal name, letter, number, figurative element and color, as well as any combination 

representing a graph. Trademark registration may be indefinitely renewable. 

Geographical indication 

 

It is a name or sign used on certain products which corresponds to a geographic location or origin of the 

product, the use of geographical location may act as a certification that the product possesses certain qualities 

as per the traditional method. Darjeeling tea and basmati rice are a common example of geographical 

indication. The relationship between objects and place becomes so well known that any reference to that 

place is reminiscent of goods originating there and vice versa. 

 

It performs three functions. First, they identify the goods as origin of a particular region or that region or 

locality; Secondly, they suggest to consumers that goods come from a region where a given quality, 

reputation, or other characteristics of the goods are essentially attributed to their geographic origin, and 

third, they promote the goods of producers of a particular region. They suggest the consumer that the goods 

come from this area where a given quality, reputation or other characteristics of goods are essentially 

attributable to the geographic region. 

 

It is necessary that the product obtains its qualities and reputation from that place. Since those properties 

depend on the geographic location of production, a specific link exists between the products and the place of 

origin. Geographical Indications are protected under the Geographical Indication of Goods (Registration and 

Protection) Act, 1999. 

 

Industrial design 

It is one of the forms of IPR that protects the visual design of the object which is not purely utilized. It consists 

of the creation of features of shape, configuration, pattern, ornamentation or composition of lines or colours 

applied to any article in two or three-dimensional form or combination of one or more features. Design 

protection deals with the outer appearance of an article, including decoration, lines, colours, shape, texture 

and materials. It may consist of three-dimensional features such as colours, shapes and shape of an article or 

two-dimensional features such as shapes or surface textures or other combinations. 



Plant variety 

A new variety of plant breeder is protected by the State. To be eligible for plant diversity protection, diversity 

must be novel, distinct and similar to existing varieties and its essential characteristics under the Plant 

Protection and Protection Act, 2001 should be uniform and stable. A plant breeder is given a license or special 

right to do the following in relation to different types of promotional material: 

1. Produce and reproduce the material  

2. Condition the material for the purpose of propagation 

3. Offer material for sale 

4. Sell the materials 

5. Export the materials 

6. Import the materials 

7. The stock of goods for the above purposes 

 

Typically, countries are protecting new plant varieties through the Sui Genis system. The general purpose of 

conservation is to encourage those who intend to manufacture, finance, or exploit such products to serve 

their purpose, particularly where they otherwise do not work at all. 

 

The enactment of the Protection of Plant Varieties and ‘Farmers’ Rights Act 2001 is an outcome of the India’s 

obligation which arose from article 27(3)(b) of the TRIPs Agreement of 2001 which obliges members to 

protect plant varieties either by patents or by effective sui generic system or by any combination thereof 

India declined to protect plant varieties by a sui generis law, i.e. the Plant Varieties Act.  

 

The Concept of Intellectual Property 

Intellectual property, very broadly, means the legal property which results from intellectual activity in the 

industrial, scientific and artistic fields. Countries have laws to protect intellectual property for two main 

reasons. One is to give statutory expression to the moral and economic rights of creators in their creations 

and such rights of the public in access to those creations. The second is to promote, as a deliberate act of  

government policy, creativity and the dissemination and application of its results and to encourage fair 

trading which would contribute to economic and social development. 

 

Generally speaking, IP law aims at safeguarding creators and other producers of intellectual goods and 

services by granting them certain time- limited rights to control the use made of those productions. These 

rights do not apply to the physical object in which the creation may be embodied but instead to the 

intellectual creation as such. IP is traditionally divided into two branches: “industrial property and copyright”. 

The convention establishing the World Intellectual Property Organization (WIPO), concluded in Stockholm on 

July 14, 1967 (Art. 2(viii) provides that 

“Intellectual property shall include rights relating to: 

1) Literary, artistic and scientific works: 

2) Performances of performing artists, phonograms and broadcasts; 

3) Inventions in all fields of human behavior; 

4) Scientific discoveries; 

5) Industrial designs; 

6) Trademarks, service marks, and commercial names and designations; 



7) Protection against unfair competition and all other rights resulting from intellectual activity in industrial 

scientific, literary or artistic fields”. 

 

The areas mentioned under 

(1) Belong to the copyright branch of intellectual property. The areas mentioned in  

(2) Are usually called “neighboring rights”, that is, rights neighboring on copyright?  

 

The areas mentioned under 3, 5 and 6 constitute the industrial property branch of IP. The areas mentioned 

may also be considered as belonging to that branch. 

 

 

 

 

The expression industrial property covers inventions and industrial designs. Simply stated, inventions are 

new solutions to technical problems, and industrial designs are aesthetic creations determining the 

appearance of industrial products. In addition, industrial property includes trademarks, service marks, 

commercial names and designations, including indications of source and appellations of origin, and 

protection against unfair competition. Hence the aspect of intellectual creations -although existent -is less 

prominent, but what counts here is that the object of industrial property typically consists of signs 

transmitting information to consumers, in particular, as regards products and services offered on the market, 

and that the protection is directed against unauthorized use of such signs which is likely to mislead 

consumers and misleading practices in general. 

 

 

 

 

 



Evolution of IPR 

 

  

 



 

 

 

 



What Is a Trade Secret? 

A trade secret is any practice or process of a company that is generally not known outside of the 

company. Information considered a trade secret gives the company a competitive advantage over its 

competitors and is often a product of internal research and development. 

 

To be legally considered a trade secret in the United States, a company must make a reasonable effort in 

concealing the information from the public; the secret must intrinsically have economic value, and the trade 

secret must contain information. Trade secrets are a part of a company's intellectual property. Unlike 

a patent, a trade secret is not publicly known. 

 

What are examples of trade secrets? 

Examples of trade secrets can include engineering information; methods, processes, and know-how; 

tolerances and formulas; business and financial information; computer programs (particularly source code) 

and related information; pending, unpublished patent applications; business plans; budgets; 

 

What is a utility model?  

Similar to patents, utility models protect new technical inventions through granting a limited exclusive 

right to prevent others from commercially exploiting the protected inventions without consents of the 

right holders. 

 

What is biological diversity in IPR? 

“Biological Diversity” means the variability among living organisms from. all sources and the ecological 

complexes of which they are part and includes. diversity within species or between species and of eco-

systems “Biological resources” means plants, animals and microorganisms or parts. 

 

The WTO and World Intellectual Property Organization 

The link between the WTO and the World Intellectual Property Organization (WIPO) is deeply rooted in the 

multilateral trading system. During the Uruguay Round, negotiators sought to connect the two institutions. 

The Preamble to the TRIPS Agreement encapsulates this connection by calling on the two organizations to 

establish a mutually supportive relationship. Further, the TRIPS Agreement legally requires Members to 

abide by certain rules of key conventions administered by WIPO 

 

1995 WIPO-WTO Cooperation Agreement 

The complementarily between the two organizations was further strengthened by the WIPO-WTO 

Cooperation Agreement. The Agreement covers transparency mechanisms, technical assistance and training 

and the implementation of a provision of WIPO’s Paris Convention on state emblems. 

The WIPO is an observer to the TRIPS Council, and the WTO enjoys observer status at the WIPO. 

 

Joint Technical Assistance 

Joint technical assistance and training activities, based, inter alia, on the joint initiatives of 1998 and 2001, 

aim to build the capacity of developing countries and LDCs in implementing the TRIPS Agreement, to enhance 

an understanding and participation in the global IP system and to help foster IP law and policy decision-

making that coheres with broader public policy objectives. 

https://www.wto.org/english/tratop_e/trips_e/wtowip_e.htm
https://www.wto.org/english/news_e/pres98_e/pr108_e.htm
https://www.wto.org/english/news_e/pres01_e/pr231_e.htm


The two flagship Geneva-based joint courses, the IP Advanced Course for policymakers and the Colloquium 

for IP teachers, are intensive programmes that give detailed and multi-stakeholder insight into the global IP 

system. The organizations also jointly publish the IP Colloquium Research Paper series – a collection of 

papers on IP issues directly relevant to developing countries. 

 

WIPO's two main objectives are  

(i) to promote the protection of intellectual property worldwide; and  

(ii) to ensure administrative cooperation among the intellectual property Unions established by the 

treaties that WIPO administers. 

 

In order to attain these objectives, WIPO, in addition to performing the administrative tasks of the Unions, 

undertakes a number of activities, including:  

(i) normative activities, involving the setting of norms and standards for the protection and 

enforcement of intellectual property rights through the conclusion of international treaties;  

(ii) program activities, involving legal and technical assistance to States in the field of intellectual 

property;  

(iii) international classification and standardization activities, involving cooperation among 

industrial property offices concerning patent, trademark and industrial design documentation; 

and 

(iv) Registration and filing activities, involving services related to international applications for 

patents for inventions and for the registration of marks and industrial designs. 

 

Common rules of IPR 

The concepts that underpin the protection of ideas and inventions are not new; such laws have been around 

for several hundred years and are discussed under the broad heading of intellectual property (IP). IP is easily 

misunderstood, but at the same time most scientists encounter it at some point in their career, as it is a 

necessary feature in the commercialization of research. 

 

The term intellectual property includes such concepts and rights as copyright, trademarks, industrial design 

rights, and patents. It is important to remember that IP is a tool to help your endeavours, and not a goal in 

itself. Having IP for its own sake is pointless. IP can be crucial in commercializing research and running a 

successful science-based business, but having a patent and having a successful patented product are two very 

different things. 

 

Above all, IP can only work for you if you understand what it is, why you want it, and what you are going to do 

with it. These ten simple rules are intended to provide an overview of these issues; however, we must start 

with a warning. Laws relating to IP change all the time, they are complex, sometimes rather obscure, and are 

very different from country to country. For example, research surrounding methods of treatment by surgery 

and therapy and diagnostic methods are patentable in the United States, but specifically excluded from 

patentability in Europe [1]. However, these boundaries seem to be shifting in both the US and Europe. In 

short, we are dealing with a complex and changing subject and restrict ourselves here to the guiding 

principles. 

https://www.wto.org/english/tratop_e/trips_e/colloquium_main_e.htm
https://www.wto.org/english/tratop_e/trips_e/colloquium_main_e.htm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493459/#pcbi.1002766-The1


Rule 1: Get Professional Help 

Although the process of obtaining IP looks deceptively simple, like many things the devil is in the detail. Let's 

consider patents as an example. The practicalities of patent application are straightforward; you simply file 

documents with the relevant body indicating that a patent is sought, and provide the identity of the person 

applying and a description of the “invention” for which a patent is sought. The patent office will then write 

back to you with an application number. 

 

However, there is no guarantee that a patent application will become a granted patent. Indeed, at the 

application stage they do not even check that your description describes an invention at all. Even if you draft 

a description in as much detail as you would for an academic research paper and file it yourself, the prospect 

that it will be granted and enforceable is very low. There is skill and technique, even a language, that patent 

attorneys and patent agents have that allows them to describe and define inventions in the way a patent 

office requires. As an example, in everyday parlance, the terms “comprise” and “consist” could be considered 

to mean the same, whereas they have very distinct meanings in a patent application. 

 

The dangers are possibly even greater with trademarks and registered designs (also known as “design 

patents”)—these are generally granted with very little examination and patent offices are often even less 

inclined to suggest using a patent/trademark attorney for such “simpler” rights; however, the lack of 

examination means the validity of such a right is uncertain and they become open to challenge. 

The costs of redrafting a self-filed application are invariably higher than the costs for drafting an application 

from scratch, and if there has been any disclosure it will probably not be possible to re-draft. So, in summary, 

if you want your IP to be valuable, you should seek professional advice at an early stage. 

 

Rule 2: Know Your (Intellectual Property) Rights 

IP rights come in various guises, and each is a defensive right to pursue legal action in the event that a third 

party infringes. In very basic terms: 

 Patents protect inventions—broadly, things that are new and not obvious—and the way they work. 

Sometimes this is expressed as “everything under the sun made by man”; however, there are numerous local 

exceptions from patentability—we touched on the complexities of methods of treatment above—but there 

are similar issues in relation to genes, computer programs, and business methods, for example. 

 Registered designs protect the appearance of products (not the function, which is protected by patents). 

 Trademarks protect brands (e.g., trade names and logos). 

 Copyright protects the expression of ideas—i.e., the words you choose to use to describe your idea—not an 

idea itself. 

 

Most businesses do not need the trinity of patents, trademarks, and designs; in fact, trademarks are probably 

the only IP most companies have or need, however for a few companies the full house is required: for 

example, consider the Apple® iPad®: two registered trademarks, a registered design for its shape, and of 

course patents for the way it interacts with the user. Not to mention copyright covering the code and the 

packaging. A huge battle in the courts around the world is currently taking place over these rights that may 

well effect changes in the law. The Wall Street Journal calls the recent Apple/Samsung case “the patent trial of 

the century”. 



Rule 3: Think about Why You Want IP (i.e., What You Will Actually Do with It) 

Any money spent on IP is capital that cannot be spent on production, marketing, etc., so think carefully about 

why you are investing in protecting your IP. There are many good reasons: to stop people from copying you; 

to add value to your company if you want to sell it; to sell or license to a third party; to hold it in your armory 

if you suspect you are going to be sued and want to countersue (for example, Google has spent a substantial 

amount of money buying patents recently; even to reduce your tax bill (in certain countries profits attributed 

to patents can be taxed at a lower rate ). 

 

However, in general, IP is a right to prevent other people from doing something; owning IP does not 

necessarily give you the right to do anything yourself. 

One school of thought says that IP is only valuable if you are willing to enforce or defend it, and the cost of 

such an action can be prohibitive. Indeed, the business model of “patent trolls” is to purchase patents, 

sometimes from those who cannot afford to enforce them, not to use the invention, but just to enforce against 

infringing companies. On the other hand, the term “defensive IP” has been used to describe IP obtained, not to 

stop other people from competing, but to stop a competitor from patenting something that you may wish to 

use in the future. Thus a patent application may be filed, and published but allowed to lapse, with no intention 

of ever enforcing it, simply because the step of publication will mean that should a competitor apply to patent 

the same or a similar invention, the patent office will locate your application and it will anticipate the 

competitor's application. 

 

Note also that while this article is titled “Ten Simple Rules to Protect Your IP”, it is important not to be too 

introspective and to consider other people's IP. For example, successful strategies can be built around taking 

exclusive licenses—licenses that exclude even the IP owner from using the IP. One tactic to improve your 

competitive position can be to take an exclusive license under a patent, then either expand your range to 

include the patented product, or continue only to sell your own product, but use the exclusive license to 

prevent manufacture of the other by anybody else. 

 

Rule 4: If You Don't Protect the IP, Your Innovation Is Less Likely to Happen 

Maybe you are not an entrepreneur yourself, but have an idea that you would like to see it exploited—it 

could, after all, make the world a better place. You can publish it—then anyone who wishes can use it freely. 

But the big question here is, will they? Many inventors think that by publishing their ideas freely they are 

more likely to have them exploited; however, the converse is often true (for example, in health care, where 

lack of patent protection is often cited as a major reason for not following up an idea (T. Roberts, former 

president of the Chartered Institute of Patent Attorneys [UK]). 

 

The reason is economic: most innovations require investment, and investors look for a return on their money. 

However, ideas that are released without any IP protection will often immediately attract competitors who 

can perhaps undercut the inventor (for example, with economies of scale). This decreases the likelihood of 

investment in the development of an invention (which is often more crucial than the invention itself) and 

increases the need for investment in marketing, etc. to obtain a competitive edge. 

So what we have to consider here is that—even if you don't want to profit personally from the innovation—it 

may still pay to protect it so that it will see the light of day through other investors. Remember, IP can be 

licensed and what happens to the resulting income is up to the IP's owner. And this is a point where it gets 



complex for scientists and others who invent as part of their employment. We will cover this in more detail in 

Rule 10. 

 

Rule 5: What's in a Name? 

You have a great idea but it's not patentable, or you have applied for patent protection but are worried that it 

may not cover everything, and of course the protection will expire after 20 years [5]. This is where 

trademarks come in to fill the gap in your protection. Unlike patents and designs, a trademark or brand can be 

protected with a registration at any time (unless someone else has got there before you)—you do not need to 

have kept your name a secret, and once registered the right will only expire if you stop using it or fail to 

renew it (generally every 10 years). So, you can protect your invention with a patent and sell it under your 

brand, which is also protected. Once the patent protection expires, customers are used to buying your 

product with reference to your brand, and will hopefully continue to do so even though competitors may start 

offering rival products. Just make sure your brand is something memorable and unique to you. 

 

Viagra is just one example of a trademark so closely associated with the product (sildenafil) that a good 

proportion of the market should remain in the hands of the trademark owner well after the patent has 

expired (in this instance, if priced competitively). You do need to be careful here in selecting the name you are 

protecting: descriptive brands are easy to market but hard to protect because descriptive terms do not fulfil 

the requirement of “distinct character”. And you can be too successful: many people now use the trademark 

Hoover to mean a generic vacuum cleaner, Thermos for a vacuum flask to keep food hot, or Tannoy for a 

public address system. It can be very expensive in terms of lawyers fees to police such trademarks and keep 

protecting these names and prevent them becoming simply part of the language and hence devalued. 

 

Rule 6: Be Realistic about What You Can, and Cannot, Protect 

IP rights are, generally speaking, national rights provided by individual governments to regulate activity in 

that particular country. In some cases there are bilateral and multilateral agreements (for example, most of 

the world has signed up to the Berne Agreement, which accords the same level of copyright protection to 

foreign nationals of other Berne states that is provided to nationals of the state concerned [6]). 

However, for most rights, it is a national issue. In an ideal world, each incremental improvement would be 

patented in each national jurisdiction (there are approximately 200 countries in the world), along with the 

name you trade under, and every brand would be the subject of a trademark, as would any color associated 

with your company and any sound you use, your products and their packaging would be the subject of 

registered designs, and your patent attorneys would be very wealthy! 

 

In the real world it is essential to be realistic. A patenting regime covering more than the US, Europe, and a 

handful of other countries is a rare sight outside the realms of very large companies (such as big pharma), 

and even many big companies restrict themselves to key markets. 

 

Rule 7: It's Big Business and Controversial 

The world of IP is a big one. It's controversial, as it has a huge impact on international relations and trade. It's 

also controversial for political reasons, as many people feel that aggressive protection stifles the utility of 

products that have the potential to do good in the emerging world (again, for example, big pharma). The 

World Intellectual Property Organization (WIPO) is the United Nations agency dedicated to this area [7], and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493459/#pcbi.1002766-The2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493459/#pcbi.1002766-World1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493459/#pcbi.1002766-World2


it's worth considering its overarching aims, which include reducing the knowledge gap between developed 

and developing countries, and ensuring that the IP system continues to effectively serve its fundamental 

purpose of encouraging creativity and innovation in all countries. 

Of course, many question the value to society of IP, or at least the expansion of IP, in promoting creativity and 

innovation. The Public Library of Science describes itself as a driving force of the open-access movement, and 

accordingly, unlike many copyrighted works, this article may be copied without seeking permission, provided 

that the original authors and source are cited. 

 

It can be hard, for example, to defend the extension of copyright from 50 years after an author's death to 70 

years on the grounds that the extra 20 years of protection is in any way likely to encourage creativity. 

Whatever your thoughts on IP, it is worth bearing in mind that others may disagree. 

As a scientist and innovator you may be driven by many ideals: to make the world a better place, perhaps, or 

to buy yourself a yacht—we are all different. But like it or not, if you want to commercialize your ideas you 

cannot avoid the issue of IP, and we go back to Rule 1 here—get professional advice. Even if your aim is 

totally philanthropic you may still need to invest to protect your innovation, perversely because this is what 

will give it the biggest chance of actually succeeding. Simply make sure you tell your patent attorney what 

your ultimate aims are. 

 

Rule 8: Keep Your Idea Secret until You Have Filed a Patent Application 

Little upsets a patent attorney more than hearing “I have a great idea—it's selling really well” or “I've shown 

it to a few companies and they seem very interested”. 

 

There is an old maxim that says a secret shared is not a secret anymore. While a secret shared under a non-

disclosure agreement (NDA)—documents most people have heard about but probably never read—ought to 

stay secret, discussing an invention under the umbrella of confidentiality is no substitute for being able to 

freely discuss or publish an idea that is protected by a patent application. 

Obviously, once your idea is published by a journal it is too late to file a patent application—your invention 

has been made available to the public. However, earlier in the publication cycle the situation is different. If 

you send a paper to a journal for submission, it will (excluding open review) be treated as a confidential 

disclosure to the publisher and the reviewers. Notwithstanding, the best advice is still to file a patent 

application before submitting a paper, either to avoid a potential “abusive disclosure” or hold up the 

publication of the paper. 

 

In summary, novelty is key to patentability and your own disclosures count against you, so remember to file a 

patent application before telling anybody who is not bound by confidence. 

 

Rule 9: Trade Secrets 

Regarding patents, the economic reasoning behind the system is an exchange between you and the public. 

The government allows you a monopoly, and your side of the bargain is to disclose fully your invention so 

that once your 20 years of protection is up, it can be freely exploited for the good of society. A patent can 

provide you with a 20-year government approved monopoly. However, some ideas cannot be patented and 

indeed, some innovators don't want to patent their ideas. All is not lost here, however, as we fall back on an 

older idea and one much beloved of thriller writers: the trade secret. 



If you really can keep a secret, your monopoly on an idea or product may never end. But once the genie's out 

of the bottle, like a champagne cork, you won't get it back in and you are unlikely to extract sufficient 

damages from whoever breaches confidentiality. Thus, if you have an idea that cannot be reverse engineered, 

you do not have to enter into the patent bargain. Trade secrets are free—just prevent the secret being 

disclosed. But bear in mind that that this can be very difficult indeed, but not impossible. Famous successful 

examples include the recipe for Coca-Cola and the formulation of the alcoholic beverage Chartreuse, which is 

only known by two monks. 

 

Rule 10: Make Sure the IP Is Owned in a Way That Allows Development 

Notice that we don't suggest “make sure you own the IP of your invention”. If you discover something whilst 

working as an employee (e.g., of a company or an academic establishment), there will certainly be something 

in your contract about this. Generally, the employer will have first call on the invention, but may have clauses 

that will return rights to the individual if it is not exploited within a certain time—in some countries this is 

enshrined in law. 

 

Ownership of IP is a minefield, and can be particularly difficult in an academic setting where numerous 

complicating features are involved. Universities, as employers, are likely to have a right to their employees' 

inventions; funding bodies may make their own claim; inventorship is not like authorship—the people whose 

names are on an academic paper are unlikely all to be inventors; and in cross-border collaborations, national 

laws on ownership may well be in competition with each other. One complicating factor that is often 

encountered is joint ownership: if you can, avoid joint ownership; instead, set up a company to own the IP 

and license it to partners if necessary (otherwise you face differing national rules on what joint owners can 

do with and without each other's permission). 

 

If it is necessary to share IP, work out at the beginning who owns what, what rights each party has and 

importantly who will have the right to future inventions. In fact this is a common theme in several of our Ten 

Simple Rules: as soon as money rears it ugly head, strife follows, so it's as well to plan for dispute resolution 

right from the beginning. 

 

In summary, first, you can never act too early, but it's very easy to act too late. Like many topics that involve 

the law, IP is a mind-numbingly complex topic and more so, perhaps, as it's not national, but international, so 

get the very best professional advice you can. If you are working as an employee, speak to your company at 

the earliest stage; they have a vested interest in helping get it right. Second, because significant sums of 

money are involved, plan for future discord. Finally, persevere: your invention can make the world a better 

place. 

 

Types and Features of IPR Agreement 

The areas of intellectual property that it covers are: copyright and related rights (i.e. the rights of performers, 

producers of sound recordings and broadcasting organizations); trademarks including service 

marks; geographical indications including appellations of origin; industrial designs; patents including the 

protection of new varieties of plants; the layout-designs of integrated circuits; and undisclosed 

information including trade secrets and test data. 

The three main features of the Agreement are: 

https://www.wto.org/english/tratop_e/trips_e/intel2_e.htm#relatedright
https://www.wto.org/english/tratop_e/trips_e/intel2_e.htm#trademark
https://www.wto.org/english/tratop_e/trips_e/intel2_e.htm#industrialdesigns
https://www.wto.org/english/tratop_e/trips_e/intel2_e.htm#patents
https://www.wto.org/english/tratop_e/trips_e/intel2_e.htm#layoutdesigns
https://www.wto.org/english/tratop_e/trips_e/intel2_e.htm#tradesecrets
https://www.wto.org/english/tratop_e/trips_e/intel2_e.htm#tradesecrets


 Standards. In respect of each of the main areas of intellectual property covered by the TRIPS 

Agreement, the Agreement sets out the minimum standards of protection to be provided by each 

Member. Each of the main elements of protection is defined, namely the subject-matter to be 

protected, the rights to be conferred and permissible exceptions to those rights, and the minimum 

duration of protection. The Agreement sets these standards by requiring, first, that the 

substantive obligations of the main conventions of the WIPO, the Paris Convention for the 

Protection of Industrial Property (Paris Convention) and the Berne Convention for the Protection 

of Literary and Artistic Works (Berne Convention) in their most recent versions, must be complied 

with. With the exception of the provisions of the Berne Convention on moral rights, all the main 

substantive provisions of these conventions are incorporated by reference and thus become 

obligations under the TRIPS Agreement between TRIPS Member countries. The relevant 

provisions are to be found in Articles 2.1 and 9.1 of the TRIPS Agreement, which relate, 

respectively, to the Paris Convention and to the Berne Convention. Secondly, the TRIPS Agreement 

adds a substantial number of additional obligations on matters where the pre-existing 

conventions are silent or were seen as being inadequate. The TRIPS Agreement is thus sometimes 

referred to as a Berne and Paris-plus agreement. 

 Enforcement. The second main set of provisions deals with domestic procedures and remedies for 

the enforcement of intellectual property rights. The Agreement lays down certain general 

principles applicable to all IPR enforcement procedures. In addition, it contains provisions on civil 

and administrative procedures and remedies, provisional measures, special requirements related 

to border measures and criminal procedures, which specify, in a certain amount of detail, the 

procedures and remedies that must be available so that right holders can effectively enforce their 

rights. 

 Dispute settlement. The Agreement makes disputes between WTO Members about the respect of the 

TRIPS obligations subject to the WTO's dispute settlement procedures. 

 

In addition the Agreement provides for certain basic principles, such as national and most-favored-nation 

treatment, and some general rules to ensure that procedural difficulties in acquiring or maintaining IPRs do 

not nullify the substantive benefits that should flow from the Agreement. The obligations under the 

Agreement will apply equally to all Member countries, but developing countries will have a longer period to 

phase them in. Special transition arrangements operate in the situation where a developing country does not 

presently provide product patent protection in the area of pharmaceuticals. 

 

The TRIPS Agreement is a minimum standards agreement, which allows Members to provide more extensive 

protection of intellectual property if they so wish. Members are left free to determine the appropriate method 

of implementing the provisions of the Agreement within their own legal system and practice 

 



 

REFERENCE 

FOUR TYPES OF INTELLECTUAL PROPERTY PROTECTIONS 

There are four types of intellectual property rights and protections (although multiple types of intellectual 

property itself). Securing the correct protection for your property is important, which is why consulting with 

a lawyer is a must. The four categories of intellectual property protections include: 

 

T R A D E  S E C R E T S  

Trade secrets refer to specific, private information that is important to a business because it gives the 

business a competitive advantage in its marketplace. If a trade secret is acquired by another company, it 

could harm the original holder. 

Examples of trade secrets include recipes for certain foods and beverages (like Mrs. Fields’ cookies or Sprite), 

new inventions, software, processes, and even different marketing strategies.  

When a person or business holds a trade secret protection, others cannot copy or steal the idea. In order to 

establish information as a “trade secret,” and to incur the legal protections associated with trade secrets, 

businesses must actively behave in a manner that demonstrates their desire to protect the information. 

Trade secrets are protected without official registration; however, an owner of a trade secret whose rights are 

breached–i.e. someone steals their trade secret–may ask a court to ask against that individual and prevent 

them from using the trade secret. 

 

P A T E N T S  

As defined by the U.S. Patent and Trademark Office (USPTO), a patent is a type of limited-duration protection 

that can be used to protect inventions (or discoveries) that are new, non-obvious, and useful, such a new 

process, machine, article of manufacture, or composition of matter. 

When a property owner holds a patent, others are prevented, under law, from offering for sale, making, or 

using the product. 

 

C OP Y R I G H T S  

Copyrights and patents are not the same things, although they are often confused. A copyright is a type of 

intellectual property protection that protects original works of authorship, which might include literary 

works, music, art, and more. Today, copyrights also protect computer software and architecture. 

Copyright protections are automatic; once you create something, it is yours. However, if your rights under 

copyright protections are infringed and you wish to file a lawsuit, then registration of your copyright will be 

necessary. 

 

T R A D E M A R KS  

Finally, the fourth type of intellectual property protection is a trademark protection. Remember, patents are 

used to protect inventions and discoveries and copyrights are used to protect expressions of ideas and 

creations, like art and writing. 

Trademarks, then, refer to phrases, words, or symbols that distinguish the source of a product or services of 

one party from another. For example, the Nike symbol–which nearly all could easily recognize and identify–is 

a type of trademark. 

https://www.uspto.gov/help/patent-help#patents


While patents and copyrights can expire, trademark rights come from the use of the trademark, and therefore 

can be held indefinitely. Like a copyright, registration of a trademark is not required, but registering can offer 

additional advantages. 

 

UNESCO: United Nations Educational, Scientific and Cultural Organization 

The main functions of UNESCO are to ensure that every child has access to a proper education, promoting 

cultural acceptance between nations while protecting historical sites, improving technology to aid in the 

distribution of resources and energy, and secure the safety of individual expression and basic human rights. 

 

The United Nations Educational, Scientific and Cultural Organization (UNESCO) was born on 16 November 

1945. UNESCO has 195 Members and 8 Associate Members and is governed by the General Conference and 

the Executive Board.  The Secretariat, headed by the Director-General, implements the decisions of these two 

bodies. The Organization has more than 50 field offices around the world and its headquarters are located in 

Paris. 

UNESCO’s mission is to contribute to the building of a culture of peace, the eradication of poverty, sustainable 

development and intercultural dialogue through education, the sciences, culture, communication and 

information. 

UNESCO works to create the conditions for dialogue among civilizations, cultures and peoples, based upon 

respect for commonly shared values. It is through this dialogue that the world can achieve global visions of 

sustainable development encompassing observance of human rights, mutual respect and the alleviation of 

poverty, all of which are at the heart of UNESCO’s mission and activities. 

UNESCO focuses on a set of objectives in the global priority areas “Africa” and “Gender Equality” 

And on a number of overarching objectives: 

 Attaining quality education for all and lifelong learning 

 Mobilizing science knowledge and policy for sustainable development 

 Addressing emerging social and ethical challenges 

 Fostering cultural diversity, intercultural dialogue and a culture of peace 

 Building inclusive knowledge societies through information and communication  

http://www.unesco.org/new/en/africa/
http://portal.unesco.org/en/ev.php-URL_ID=3160&URL_DO=DO_TOPIC&URL_SECTION=201.html


MADHA Engineering College, Kundrathur, Chennai-69. 

Master of Computer Application 

N.Vinodh, MBA, M.Phil, Department of Management Studies 

Unit-2 Research Methodology & IPR 

 

Measurements, Measurement Scales, Questionnaires and Instruments, Sampling and 

methods. Data - Preparing, Exploring, examining and displaying. 

 

Measurement: 

Measurement is the process of observing and recording the observations that are 

collected as part of a research effort. There are two major issues that will be considered 

here. 

First, to understand the fundamental ideas involved in measuring. Here we consider 

two of major measurement concepts. In Levels of Measurement, the meaning of the four 

major levels of measurement: nominal, ordinal, interval and ratio. Then we move on to 

the reliability of measurement, including consideration of true score theory and a 

variety of reliability estimators. 

Second, to understand the different types of measures that you might use in social 

research. We consider four broad categories of measurements. Survey 

research includes the design and implementation of interviews and 

questionnaires. Scaling involves consideration of the major methods of developing and 

implementing a scale. Qualitative research provides an overview of the broad range of 

non-numerical measurement approaches. And unobtrusive measures presents a 

variety of measurement methods that don’t intrude on or interfere with the context of 

the research. 

 

LEVELS OF MEASUREMENT 

There are different levels of measurement.  These levels differ as to how closely they 

approach the structure of the number system we use.  It is important to understand the 

level of measurement of variables in research, because the level of measurement 

determines the type of statistical analysis that can be conducted, and, therefore, the type 

of conclusions that can be drawn from the research. 

 

Nominal Level 

A nominal level of measurement uses symbols to classify observations into categories 

that must be both mutually exclusive and exhaustive.  Exhaustive means that there must 

be enough categories that all the observations will fall into some category.  Mutually 

exclusive means that the categories must be distinct enough that no observations will fall 

https://conjointly.com/kb/levels-of-measurement/
https://conjointly.com/kb/measurement-reliability/
https://conjointly.com/kb/survey-research/
https://conjointly.com/kb/survey-research/
https://conjointly.com/kb/scaling-in-measurement/
https://conjointly.com/kb/qualitative-measures/
https://conjointly.com/kb/unobtrusive-measures/


into more than one category.  This is the most basic level of measurement; it is essentially 

labeling.  It can only establish whether two observations are alike or different, for 

example, sorting a deck of cards into two piles:  red cards and black cards. 

 

In a survey of boaters, one variable of interest was place of residence.  It was measured 

by a question on a questionnaire asking for the zip code of the boater's principal place of 

residence.  The observations were divided into zip code categories.  These categories are 

mutually exclusive and exhaustive.  All respondents live in one zip code category 

(exhaustive) but no boater lives in more than one zip code category (mutually exclusive). 

Similarly, the sex of the boater was determined by a question on the 

questionnaire.  Observations were sorted into two mutually exclusive and exhaustive 

categories, male and female.  Observations could be labeled with the letters M and F, or 

the numerals 0 and 1. 

 

The variable of marital status may be measured by two categories, married and 

unmarried.  But these must each be defined so that all possible observations will fit into 

one category but no more than one:  legally married, common-law marriage, religious 

marriage, civil marriage, living together, never married, divorced, informally separated, 

legally separated, widowed, abandoned, annulled, etc. 

In nominal measurement, all observations in one category are alike on some property, 

and they differ from the objects in the other category (or categories) on that property 

(e.g., zip code, sex).  There is no ordering of categories (no category is better or worse, or 

more or less than another). 

 

Ordinal Level 

An ordinal level of measurement uses symbols to classify observations into categories 

that are not only mutually exclusive and exhaustive; in addition, the categories have some 

explicit relationship among them. 

 

For example, observations may be classified into categories such as taller and shorter, 

greater and lesser, faster and slower, harder and easier, and so forth.  However, each 

observation must still fall into one of the categories (the categories are exhaustive) but 

no more than one (the categories are mutually exclusive).  Meats are categorized as 

regular, choice, or prime; the military uses ranks to distinguish categories of soldiers. 

 

Most of the commonly used questions which ask about job satisfaction use the ordinal 

level of measurement.  For example, asking whether one is very satisfied, satisfied, 



neutral, dissatisfied, or very dissatisfied with one's job is using an ordinal scale of 

measurement. 

 

Interval Level 

An interval level of measurement classifies observations into categories that are not only 

mutually exclusive and exhaustive, and have some explicit relationship among them, but 

the relationship between the categories is known and exact.  This is the first quantitative 

application of numbers. 

 

In the interval level, a common and constant unit of measurement has been established 

between the categories.  For example, the commonly used measures of temperature are 

interval level scales.  We know that a temperature of 75 degrees is one degree warmer 

than a temperature of 74 degrees, just as a temperature of 42 degrees is one degree 

warmer than a temperature of 41 degrees. 

 

Numbers may be assigned to the observations because the relationship between the 

categories is assumed to be the same as the relationship between numbers in the number 

system.  For example, 74+1=75 and 41+1=42. 

 

The intervals between categories are equal, but they originate from some arbitrary 

origin.  that is, there is no meaningful zero point on an interval scale. 

 

Ratio Level 

The ratio level of measurement is the same as the interval level, with the addition of a 

meaningful zero point.  There is a meaningful and non-arbitrary zero point from which 

the equal intervals between categories originate. 

For example, weight, area, speed, and velocity are measured on a ratio level scale.  In 

public policy and administration, budgets and the number of program participants are 

measured on ratio scales. 

 

In many cases, interval and ratio scales are treated alike in terms of the statistical tests 

that are applied. 

 

Variables measured at a higher level can always be converted to a lower level, but not 

vice versa.  For example, observations of actual age (ratio scale) can be converted to 

categories of older and younger (ordinal scale), but age measured as simply older or 

younger cannot be converted to measures of actual age. 

 



 

 

  

Questionaries & Instruments: 

A questionnaire is a research tool featuring a series of questions used to collect useful 

information from respondents. These instruments include either written or oral 

questions and comprise an interview-style format. Questionnaires may be qualitative or 

quantitative and can be conducted online, by phone, on paper or face-to-face, and 

questions don’t necessarily have to be administered with a researcher present. 

Questionnaires feature either open or closed questions and sometimes employ a mixture 

of both. Open-ended questions enable respondents to answer in their own words in as 

much or as little detail as they desire. Closed questions provide respondents with a series 

of predetermined responses they can choose from. 

 

Is a Questionnaire Just Another Word for “Survey”? 

While the two terms seem synonymous, there are not quite the same. A questionnaire is 

a set of questions created for the purpose of gathering information; that information may 

not be used for a survey. However, all surveys do require questionnaires. If you are using 



a questionnaire for survey sampling, it’s important to ensure that it is designed to gather 

the most accurate answers from respondents. 

 

Why Are Questionnaires Effective in Research? 

Questionnaires are popular research methods because they offer a fast, efficient and 

inexpensive means of gathering large amounts of information from sizeable sample 

volumes. These tools are particularly effective for measuring subject behavior, 

preferences, intentions, attitudes and opinions. Their use of open and closed research 

questions enables researchers to obtain both qualitative and quantitative data, resulting 

in more comprehensive results. 

 

Advantages of Questionnaires 

Some of the many benefits of using questionnaires as a research tool include: 

 Practicality: Questionnaires enable researchers to strategically manage their 

target audience, questions and format while gathering large data quantities on any 

subject. 

 Cost-efficiency: You don’t need to hire surveyors to deliver your survey questions 

— instead, you can place them on your website or email them to respondents at 

little to no cost. 

 Speed: You can gather survey results quickly and effortlessly using mobile tools, 

obtaining responses and insights in 24 hours or less. 

 Comparability: Researchers can use the same questionnaire yearly and compare 

and contrast research results to gain valuable insights and minimize translation 

errors. 

 Scalability: Questionnaires are highly scalable, allowing researchers to distribute 

them to demographics anywhere across the globe. 

 Standardization: You can standardize your questionnaire with as many 

questions as you want about any topic. 

 Respondent comfort: When taking a questionnaire, respondents are completely 

anonymous and not subject to stressful time constraints, helping them feel relaxed 

and encouraging them to provide truthful responses. 

 Easy analysis: Questionnaires often have built-in tools that automate analyses, 

making it fast and easy to interpret your results. 

Disadvantages of Questionnaires 

Questionnaires also have their disadvantages, such as: 

 Answer dishonesty: Respondents may not always be completely truthful with 

their answers — some may have hidden agendas, while others may answer how 

they think society would deem most acceptable. 



 Question skipping: Make sure to require answers for all your survey questions. 

Otherwise, you may run the risk of respondents leaving questions unanswered. 

 Interpretation difficulties: If a question isn’t straightforward enough, 

respondents may struggle to interpret it accurately. That’s why it’s important to 

state questions clearly and concisely, with explanations when necessary. 

 Survey fatigue: Respondents may experience survey fatigue if they receive too 

many surveys or a questionnaire is too long. 

 Analysis challenges: Though closed questions are easy to analyze, open 

questions require a human to review and interpret them. Try limiting open-ended 

questions in your survey to gain more quantifiable data you can evaluate and 

utilize more quickly. 

 Unconscientious responses: If respondents don’t read your questions 

thoroughly or completely, they may offer inaccurate answers that can impact data 

validity. You can minimize this risk by making questions as short and simple as 

possible. 

Types of Questionnaires in Research 

There are various types of questionnaires in survey research, including: 

 Postal: Postal questionnaires are paper surveys that participants receive through 

the mail. Once respondents complete the survey, they mail them back to the 

organization that sent them. 

 In-house: In this type of questionnaire, researchers visit respondents in their 

homes or workplaces and administer the survey in person. 

 Telephone: With telephone surveys, researchers call respondents and conduct 

the questionnaire over the phone. 

 Electronic: Perhaps the most common type of questionnaire, electronic surveys 

are presented via email or through a different online medium. 

 

What are Research Instruments? 

A research instrument is a tool used to collect, measure, and analyze data related 

to your subject. 

 

Research instruments can be tests, surveys, scales, questionnaires, or 

even checklists. 

 

A research instrument is a tool used to obtain, measure, and analyze data from subjects 

around the research topic.  

 



To decide the instrument to use based on the type of study you are conducting: 

quantitative, qualitative, or mixed-method. For instance, for a quantitative study, you may 

decide to use a questionnaire, and for a qualitative study, you may choose to use a scale.  

 

While it helps to use an established instrument, as its efficacy is already established, you 

may if needed use a new instrument or even create your own instrument. 

 

What are the Different Types of Interview Research Instruments? 

The general format of an interview is where the interviewer asks the interviewee to 

answer a set of questions which are normally asked and answered verbally. There are 

several different types of interview research instruments that may exist. 

1. A structural interview may be used in which there are a specific number of 

questions that are formally asked of the interviewee and their responses recorded 

using a systematic and standard methodology. 

2. An unstructured interview on the other hand may still be based on the same 

general theme of questions but here the person asking the questions (the 

interviewer) may change the order the questions are asked in and the specific way 

in which they’re asked. 

3. A focus interview is one in which the interviewer will adapt their line or content 

of questioning based on the responses from the interviewee. 

4. A focus group interview is one in which a group of volunteers or interviewees are 

asked questions to understand their opinion or thoughts on a specific subject. 

5. A non-directive interview is one in which there are no specific questions agreed 

upon but instead the format is open-ended and more reactionary in the discussion 

between interviewer and interviewee. 

 

What is sampling? 

Sampling is a technique of selecting individual members or a subset of the population to 

make statistical inferences from them and estimate characteristics of the whole 

population. Different sampling methods are widely used by researchers in market 

research so that they do not need to research the entire population to collect actionable 

insights. 

 

It is also a time-convenient and a cost-effective method and hence forms the basis of 

any research design. Sampling techniques can be used in a research survey software for 

optimum derivation. 

 

https://www.questionpro.com/blog/what-is-market-research/
https://www.questionpro.com/blog/what-is-market-research/
https://www.questionpro.com/blog/research-design/


For example, if a drug manufacturer would like to research the adverse side effects of a 

drug on the country’s population, it is almost impossible to conduct a research study that 

involves everyone. In this case, the researcher decides a sample of people from 

each demographic and then researches them, giving him/her indicative feedback on the 

drug’s behavior. 

 

Types of sampling: sampling methods  

Sampling in market research is of two types – probability sampling and non-probability 

sampling. Let’s take a closer look at these two methods of sampling. 

1. Probability sampling: Probability sampling is a sampling technique where a 

researcher sets a selection of a few criteria and chooses members of a 

population randomly. All the members have an equal opportunity to be a part 

of the sample with this selection parameter. 

2. Non-probability sampling: In non-probability sampling, the researcher 

chooses members for research at random. This sampling method is not a fixed 

or predefined selection process. This makes it difficult for all elements of a 

population to have equal opportunities to be included in a sample. 

 

In this blog, we discuss the various probability and non-probability sampling methods 

that you can implement in any market research study. 

 

Types of probability sampling with examples: 

Probability sampling is a sampling technique in which researchers choose samples from 

a larger population using a method based on the theory of probability. This sampling 

method considers every member of the population and forms samples based on a fixed 

process. 

 

For example, in a population of 1000 members, every member will have a 1/1000 

chance of being selected to be a part of a sample. Probability sampling eliminates bias in 

the population and gives all members a fair chance to be included in the sample. 

 

There are four types of probability sampling techniques: 

 Simple random sampling: One of the best probability sampling techniques that 

helps in saving time and resources, is the Simple Random Sampling method. It 

is a reliable method of obtaining information where every single member of a 

population is chosen randomly, merely by chance. Each individual has the same 

probability of being chosen to be a part of a sample. 

 

https://www.questionpro.com/blog/probability-sampling/
https://www.questionpro.com/blog/non-probability-sampling/
https://www.questionpro.com/blog/what-is-market-research/
https://www.questionpro.com/blog/probability-sampling/
https://www.questionpro.com/blog/simple-random-sampling/


 For example, in an organization of 500 employees, if the HR team decides on 

conducting team building activities, it is highly likely that they would prefer 

picking chits out of a bowl. In this case, each of the 500 employees has an equal 

opportunity of being selected. 

 

 Cluster sampling: Cluster sampling is a method where the researchers divide the 

entire population into sections or clusters that represent a population. Clusters 

are identified and included in a sample based on demographic parameters like 

age, sex, location, etc. This makes it very simple for a survey creator to derive 

effective inference from the feedback. 

 

For example, if the United States government wishes to evaluate the number of 

immigrants living in the Mainland US, they can divide it into clusters based on 

states such as California, Texas, Florida, Massachusetts, Colorado, Hawaii, etc. 

This way of conducting a survey will be more effective as the results will be 

organized into states and provide insightful immigration data. 

 

 Systematic sampling: Researchers use the systematic sampling method to 

choose the sample members of a population at regular intervals. It requires the 

selection of a starting point for the sample and sample size that can be repeated 

at regular intervals. This type of sampling method has a predefined range, and 

hence this sampling technique is the least time-consuming. 

For example, a researcher intends to collect a systematic sample of 500 people 

in a population of 5000. He/she numbers each element of the population from 

1-5000 and will choose every 10th individual to be a part of the sample (Total 

population/ Sample Size = 5000/500 = 10). 

 

 Stratified random sampling: Stratified random sampling is a method in which 

the researcher divides the population into smaller groups that don’t overlap but 

represent the entire population. While sampling, these groups can be organized 

and then draw a sample from each group separately. 

For example, a researcher looking to analyze the characteristics of people 

belonging to different annual income divisions will create strata (groups) 

according to the annual family income. Eg – less than $20,000, $21,000 – 

$30,000, $31,000 to $40,000, $41,000 to $50,000, etc. By doing this, the 

researcher concludes the characteristics of people belonging to different 

income groups. Marketers can analyze which income groups to target and which 

ones to eliminate to create a roadmap that would bear fruitful results. 

https://www.questionpro.com/blog/cluster-sampling/
https://www.questionpro.com/blog/systematic-sampling/
https://www.questionpro.com/blog/stratified-random-sampling/


Uses of probability sampling 

There are multiple uses of probability sampling: 

 Reduce Sample Bias: Using the probability sampling method, the bias in the 

sample derived from a population is negligible to non-existent. The selection of 

the sample mainly depicts the understanding and the inference of the 

researcher. Probability sampling leads to higher quality data collection as the 

sample appropriately represents the population. 

 

 Diverse Population: When the population is vast and diverse, it is essential to 

have adequate representation so that the data is not skewed towards 

one demographic. For example, if Square would like to understand the people 

that could make their point-of-sale devices, a survey conducted from a sample 

of people across the US from different industries and socio-economic 

backgrounds helps. 

 

 Create an Accurate Sample: Probability sampling helps the researchers plan and 

create an accurate sample. This helps to obtain well-defined data. 

 

Types of non-probability sampling with examples 

The non-probability method is a sampling method that involves a collection of feedback 

based on a researcher or statistician’s sample selection capabilities and not on a fixed 

selection process. In most situations, the output of a survey conducted with a non-

probable sample leads to skewed results, which may not represent the desired target 

population. But, there are situations such as the preliminary stages of research or cost 

constraints for conducting research, where non-probability sampling will be much more 

useful than the other type. 

 

Four types of non-probability sampling explain the purpose of this sampling method in a 

better manner: 

 Convenience sampling: This method is dependent on the ease of access to 

subjects such as surveying customers at a mall or passers-by on a busy street. It 

is usually termed as convenience sampling, because of the researcher’s ease of 

carrying it out and getting in touch with the subjects. Researchers have nearly 

no authority to select the sample elements, and it’s purely done based on 

proximity and not representativeness. This non-probability sampling method is 

used when there are time and cost limitations in collecting feedback. In 

situations where there are resource limitations such as the initial stages of 

research, convenience sampling is used. 

https://www.questionpro.com/blog/data-collection/
https://www.questionpro.com/blog/demographic-examples/
https://www.questionpro.com/blog/non-probability-sampling/
https://www.questionpro.com/blog/convenience-sampling/


For example, startups and NGOs usually conduct convenience sampling at a mall 

to distribute leaflets of upcoming events or promotion of a cause – they do that 

by standing at the mall entrance and giving out pamphlets randomly. 

 

 Judgmental or purposive sampling: Judgemental or purposive samples are 

formed by the discretion of the researcher. Researchers purely consider the 

purpose of the study, along with the understanding of the target audience. For 

instance, when researchers want to understand the thought process of people 

interested in studying for their master’s degree. The selection criteria will be: 

“Are you interested in doing your masters in …?” and those who respond with a 

“No” are excluded from the sample. 

 

 Snowball sampling: Snowball sampling is a sampling method that researchers 

apply when the subjects are difficult to trace. For example, it will be extremely 

challenging to survey shelterless people or illegal immigrants. In such cases, 

using the snowball theory, researchers can track a few categories to interview 

and derive results. Researchers also implement this sampling method in 

situations where the topic is highly sensitive and not openly discussed—for 

example, surveys to gather information about HIV Aids. Not many victims will 

readily respond to the questions. Still, researchers can contact people they 

might know or volunteers associated with the cause to get in touch with the 

victims and collect information. 

 

 Quota sampling:  In Quota sampling, the selection of members in this sampling 

technique happens based on a pre-set standard. In this case, as a sample is 

formed based on specific attributes, the created sample will have the same 

qualities found in the total population. It is a rapid method of collecting samples. 

 

Uses of non-probability sampling 

Non-probability sampling is used for the following: 

 Create a hypothesis: Researchers use the non-probability sampling method to 

create an assumption when limited to no prior information is available. This 

method helps with the immediate return of data and builds a base for further 

research. 

 

 Exploratory research: Researchers use this sampling technique widely when 

conducting qualitative research, pilot studies, or exploratory research. 

https://www.questionpro.com/blog/judgmental-sampling/
https://www.questionpro.com/blog/snowball-sampling/
https://www.questionpro.com/blog/quota-sampling/


 Budget and time constraints: The non-probability method when there are 

budget and time constraints, and some preliminary data must be collected. 

Since the survey design is not rigid, it is easier to pick respondents at random 

and have them take the survey or questionnaire. 

 

How do you decide on the type of sampling to use? 

For any research, it is essential to choose a sampling method accurately to meet the goals 

of your study. The effectiveness of your sampling relies on various factors. Here are some 

steps expert researchers follow to decide the best sampling method. 

 Jot down the research goals. Generally, it must be a combination of cost, precision, 

or accuracy. 

 Identify the effective sampling techniques that might potentially achieve the 

research goals. 

 Test each of these methods and examine whether they help in achieving your goal. 

 Select the method that works best for the research. 

 

Difference between probability sampling and non-probability sampling methods 

We have looked at the different types of sampling methods above and their subtypes. To 

encapsulate the whole discussion, though, the significant differences between probability 

sampling methods and non-probability sampling methods are as below: 

 
Probability Sampling 

Methods 

Non-Probability Sampling 

Methods 

Definition 

Probability Sampling is a 

sampling technique in which 

samples from a larger 

population are chosen using a 

method based on the theory of 

probability. 

Non-probability sampling is a 

sampling technique in which the 

researcher selects samples based 

on the researcher’s subjective 

judgment rather than random 

selection. 

Alternatively Known as Random sampling method. Non-random sampling method 

Population selection 
The population is selected 

randomly. 

The population is selected 

arbitrarily. 

Nature The research is conclusive. The research is exploratory. 

Sample 

Since there is a method for 

deciding the sample, the 

population demographics are 

conclusively represented. 

Since the sampling method is 

arbitrary, the population 

demographics representation is 

almost always skewed. 

https://www.questionpro.com/features/survey-design/
https://www.questionpro.com/blog/what-is-a-questionnaire/


Time Taken 

Takes longer to conduct since 

the research design defines the 

selection parameters before the 

market research study begins. 

This type of sampling method is 

quick since neither the sample or 

selection criteria of the sample are 

undefined. 

Results 

This type of sampling is entirely 

unbiased and hence the results 

are unbiased too and 

conclusive. 

This type of sampling is entirely 

biased and hence the results are 

biased too, rendering the research 

speculative. 

Hypothesis 

In probability sampling, 

there is an underlying 

hypothesis before the study 

begins and the objective of 

this method is to prove the 

hypothesis. 

In non-probability sampling, the hypothesis is 

derived after conducting the research study. 

 

 

Data Preparation Steps 

The specifics of the data preparation process vary by industry, organization and need, but 

the framework remains largely the same. 

1. Gather data 

The data preparation process begins with finding the right data. This can come from an 

existing data catalog or can be added ad-hoc. 



2. Discover and assess data 

After collecting the data, it is important to discover each dataset. This step is about 

getting to know the data and understanding what has to be done before the data becomes 

useful in a particular context. 

Discovery is a big task, but Talend’s data preparation platform offers visualization tools 

which help users profile and browse their data. 

3. Cleanse and validate data 

Cleaning up the data is traditionally the most time consuming part of the data preparation 

process, but it’s crucial for removing faulty data and filling in gaps. Important tasks here 

include: 

 Removing extraneous data and outliers. 

 Filling in missing values. 

 Conforming data to a standardized pattern. 

 Masking private or sensitive data entries. 

Once data has been cleansed, it must be validated by testing for errors in the data 

preparation process up to this point. Often times, an error in the system will become 

apparent during this step and will need to be resolved before moving forward. 

4. Transform and enrich data 

Transforming data is the process of updating the format or value entries in order to reach 

a well-defined outcome, or to make the data more easily understood by a wider 

audience. Enriching data refers to adding and connecting data with other related 

information to provide deeper insights. 

5. Store data 

Once prepared, the data can be stored or channeled into a third party application—such 

as a business intelligence tool—clearing the way for processing and analysis to take place. 

 

 

https://bi-survey.com/data-discovery


 

What is Data Exploration? 

Data exploration definition: Data exploration refers to the initial step in data analysis in 

which data analysts use data visualization and statistical techniques to describe dataset 

characterizations, such as size, quantity, and accuracy, in order to better understand the 

nature of the data. 

 

Data exploration techniques include both manual analysis and automated data 

exploration software solutions that visually explore and identify relationships between 

different data variables, the structure of the dataset, the presence of outliers, and the 

distribution of data values in order to reveal patterns and points of interest, enabling data 

analysts to gain greater insight into the raw data. 

 

Data is often gathered in large, unstructured volumes from various sources and data 

analysts must first understand and develop a comprehensive view of the data before 

extracting relevant data for further analysis, such as univariate, bivariate, multivariate, 

and principal components analysis. 

 

Data Exploration Tools 

Manual data exploration methods entail either writing scripts to analyze raw data or 

manually filtering data into spreadsheets. Automated data exploration tools, such as data 

visualization software, help data scientists easily monitor data sources and perform big 

data exploration on otherwise overwhelmingly large datasets. Graphical displays of data, 

such as bar charts and scatter plots, are valuable tools in visual data exploration. 

 

A popular tool for manual data exploration is Microsoft Excel spreadsheets, which can be 

used to create basic charts for data exploration, to view raw data, and to identify the 

correlation between variables. To identify the correlation between two continuous 

variables in Excel, use the function CORREL() to return the correlation. To identify the 

correlation between two categorical variables in Excel, the two-way table method, the 

stacked column chart method, and the chi-square test are effective. 

 

There is a wide variety of proprietary automated data exploration solutions, 

including business intelligence tools, data visualization software, data preparation 

software vendors, and data exploration platforms. There are also open source data 

exploration tools that include regression capabilities and visualization features, which 

can help businesses integrate diverse data sources to enable faster data exploration. Most 

data analytics software includes data visualization tools. 

https://www.omnisci.com/learn/data-visualization
https://www.omnisci.com/role/omnisci-for-data-scientists
https://www.omnisci.com/learn/bi-tools
https://www.omnisci.com/platform/big-data-integration


 

 

 

Why is Data Exploration Important? 

 

Humans process visual data better than numerical data, therefore it is extremely 

challenging for data scientists and data analysts to assign meaning to thousands of rows 

and columns of data points and communicate that meaning without any visual 

components. 

 

Data visualization in data exploration leverages familiar visual cues such as shapes, 

dimensions, colors, lines, points, and angles so that data analysts can effectively visualize 

and define the metadata, and then perform data cleansing. Performing the initial step of 

data exploration enables data analysts to better understand and visually identify 

anomalies and relationships that might otherwise go undetected. 

 

What is Data Preparation? 

Data preparation is the process of cleaning and transforming raw data prior to processing 

and analysis. It is an important step prior to processing and often involves reformatting 

data, making corrections to data and the combining of data sets to enrich data. 

 

Data preparation is often a lengthy undertaking for data professionals or business users, 

but it is essential as a prerequisite to put data in context in order to turn it into insights 

and eliminate bias resulting from poor data quality. 

 

For example, the data preparation process usually includes standardizing data formats, 

enriching source data, and/or removing outliers. 

 

Benefits of Data Preparation + The Cloud 

76% of data scientists say that data preparation is the worst part of their job, but the 

efficient, accurate business decisions can only be made with clean data. Data preparation 

helps: 

 Fix errors quickly — Data preparation helps catch errors before 

processing. After data has been removed from its original source, these 

errors become more difficult to understand and correct. 

 Produce top-quality data — Cleaning and reformatting datasets ensures 

that all data used in analysis will be high quality. 

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/


 Make better business decisions — Higher quality data that can be 

processed and analyzed more quickly and efficiently leads to more timely, 

efficient and high-quality business decisions. 

  

Additionally, as data and data processes move to the cloud, data preparation moves with 

it for even greater benefits, such as: 

 

 Superior scalability — Cloud data preparation can grow at the pace of the 

business. Enterprise don’t have to worry about the underlying 

infrastructure or try to anticipate their evolutions. 

 

 Future proof — Cloud data preparation upgrades automatically so that new 

capabilities or problem fixes can be turned on as soon as they are released. 

This allows organizations to stay ahead of the innovation curve without 

delays and added costs. 

 

 Accelerated data usage and collaboration — Doing data prep in the cloud 

means it is always on, doesn’t require any technical installation, and lets 

teams collaborate on the work for faster results. 

 

What Is Data Analysis? 

Although many groups, organizations, and experts have different ways to approach data 

analysis, most of them can be distilled into a one-size-fits-all definition. Data analysis is 

the process of cleaning, changing, and processing raw data, and extracting actionable, 

relevant information that helps businesses make informed decisions. The procedure 

helps reduce the risks inherent in decision-making by providing useful insights and 

statistics, often presented in charts, images, tables, and graphs. 

It’s not uncommon to hear the term “big data” brought up in discussions about data 

analysis. Data analysis plays a crucial role in processing big data into useful information. 

Neophyte data analysts who want to dig deeper by revisiting big data fundamentals 

should go back to the basic question, “What is data?” 

 

Why is Data Analysis Important? 

Here is a list of reasons why data analysis is such a crucial part of doing business today. 

 Better Customer Targeting: You don’t want to waste your business’s precious 

time, resources, and money putting together advertising campaigns targeted at 

demographic groups that have little to no interest in the goods and services you 

https://www.simplilearn.com/tutorials/big-data-tutorial/what-is-big-data
https://www.simplilearn.com/what-is-data-article


offer. Data analysis helps you see where you should be focusing your 

advertising efforts. 

 

 You Will Know Your Target Customers Better: Data analysis tracks how well 

your products and campaigns are performing within your target demographic. 

Through data analysis, your business can get a better idea of your target 

audience’s spending habits, disposable income, and most likely areas of 

interest. This data helps businesses set prices, determine the length of ad 

campaigns, and even help project the quantity of goods needed. 

 

 Reduce Operational Costs: Data analysis shows you which areas in your 

business need more resources and money, and which areas are not producing 

and thus should be scaled back or eliminated outright. 

 

 Better Problem-Solving Methods: Informed decisions are more likely to be 

successful decisions. Data provides businesses with information. You can see 

where this progression is leading. Data analysis helps businesses make the 

right choices and avoid costly pitfalls. 

 

 You Get More Accurate Data: If you want to make informed decisions, you need 

data, but there’s more to it. The data in question must be accurate. Data analysis 

helps businesses acquire relevant, accurate information, suitable for 

developing future marketing strategies, business plans, and realigning the 

company’s vision or mission. 

 

What Is the Data Analysis Process? 

Answering the question “what is data analysis” is only the first step. Now we will look at 

how it’s performed. The data analysis process, or alternately, data analysis steps, involves 

gathering all the information, processing it, exploring the data, and using it to find 

patterns and other insights. The process consists of: 

 

 Data Requirement Gathering: Ask yourself why you’re doing this analysis, what 

type of data analysis you want to use, and what data you are planning on 

analyzing. 

 

 Data Collection: Guided by the requirements you’ve identified, it’s time to 

collect the data from your sources. Sources include case studies, surveys, 

https://www.simplilearn.com/what-is-data-collection-article


interviews, questionnaires, direct observation, and focus groups. Make sure to 

organize the collected data for analysis. 

 

 Data Cleaning: Not all of the data you collect will be useful, so it’s time to clean 

it up. This process is where you remove white spaces, duplicate records, and 

basic errors. Data cleaning is mandatory before sending the information on for 

analysis. 

 

 Data Analysis: Here is where you use data analysis software and other tools to 

help you interpret and understand the data and arrive at conclusions. Data 

analysis tools include Excel, Python, R, Looker, Rapid Miner, Chartio, Metabase, 

Redash, and Microsoft Power BI. 

 

 Data Interpretation: Now that you have your results, you need to interpret 

them and come up with the best courses of action, based on your findings. 

 

 Data Visualization: Data visualization is a fancy way of saying, “graphically 

show your information in a way that people can read and understand it.” You 

can use charts, graphs, maps, bullet points, or a host of other methods. 

Visualization helps you derive valuable insights by helping you compare 

datasets and observe relationships. 

 

What Is the Importance of Data Analysis in Research? 

A huge part of a researcher’s job is to sift through data. That is literally the definition of 

“research.” However, today’s Information Age routinely produces a tidal wave of data, 

enough to overwhelm even the most dedicated researcher. 

 

Data analysis, therefore, plays a key role in distilling this information into a more accurate 

and relevant form, making it easier for researchers to do to their job. 

 

Data analysis also provides researchers with a vast selection of different tools, such as 

descriptive statistics, inferential analysis, and quantitative analysis. 

So, to sum it up, data analysis offers researchers better data and better ways to analyze 

and study said data. 

 

What is Data Analysis: Types of Data Analysis 

There are a half-dozen popular types of data analysis available today, commonly 

employed in the worlds of technology and business. They are:  

https://www.simplilearn.com/data-cleaning-why-and-how-to-get-started-article
https://www.simplilearn.com/top-data-analysis-tools-article
https://www.simplilearn.com/top-data-analysis-tools-article
https://www.simplilearn.com/data-visualization-article


 Diagnostic Analysis: Diagnostic analysis answers the question, “Why did this 

happen?” Using insights gained from statistical analysis (more on that later!), 

analysts use diagnostic analysis to identify patterns in data. Ideally, the analysts 

find similar patterns that existed in the past, and consequently, use those 

solutions to resolve the present challenges hopefully. 

 

 Predictive Analysis: Predictive analysis answers the question, “What is most 

likely to happen?” By using patterns found in older data as well as current 

events, analysts predict future events. While there’s no such thing as 100 

percent accurate forecasting, the odds improve if the analysts have plenty of 

detailed information and the discipline to research it thoroughly. 

 

 Prescriptive Analysis: Mix all the insights gained from the other data analysis 

types, and you have prescriptive analysis. Sometimes, an issue can’t be solved 

solely with one analysis type, and instead requires multiple insights. 

 

 Statistical Analysis: Statistical analysis answers the question, “What 

happened?” This analysis covers data collection, analysis, modeling, 

interpretation, and presentation using dashboards. The statistical analysis 

breaks down into two sub-categories: 

 

1. Descriptive: Descriptive analysis works with either complete or selections of 

summarized numerical data. It illustrates means and deviations in continuous 

data and percentages and frequencies in categorical data. 

 

2. Inferential: Inferential analysis works with samples derived from complete 

data. An analyst can arrive at different conclusions from the same 

comprehensive data set just by choosing different samplings. 

 

 Text Analysis: Also called “data mining,” text analysis uses databases and data 

mining tools to discover patterns residing in large datasets. It transforms raw data 

into useful business information. Text analysis is arguably the most 

straightforward and the most direct method of data analysis. 

 Displaying data in research is the last step of the research process. It is important to display 

data accurately because it helps in presenting the findings of the research effectively to the 

reader. The purpose of displaying data in research is to make the findings more visible and 

make comparisons easy. When the researcher will present the research in front of the research 

committee, they will easily understand the findings of the research from displayed data. The 

readers of the research will also be able to understand it better. Without displayed data, the 

data looks too scattered and the reader cannot make inferences. 

https://www.simplilearn.com/what-is-predictive-analytics-article
https://www.simplilearn.com/what-is-statistical-analysis-article
https://www.simplilearn.com/what-is-data-collection-article
https://www.simplilearn.com/what-is-data-mining-article


 There are basically two ways to display data: tables and graphs. The tabulated data and the 

graphical representation both should be used to give more accurate picture of the research. In 

quantitative research it is very necessary to display data, on the other hand in qualitative data 

the researcher decides whether there is a need to display data or not. The researcher can use 

an appropriate software to help tabulate and display the data in the form of graphs. Microsoft 

excel is one such example, it is a user-friendly program that you can use to help display the 

data. 

 

Tables for displaying data in research 

 The use of tables to display data is very common in research. Tables are very 

effective in presenting a large amount of data. They organize data very well and 

makes the data very visible. A badly tabulated data also occurs, in case, you do not 

have knowledge of tables and tabulating data consult a statistician to do this step 

effectively. 

 Parts of a table 

 To know the tables and to tabulate data in tables you should know the parts or 

structure of the tables. There are five parts of a tables, namely; 

 Title 

 The title of the table speaks about the contents of the table. The title should have 

to be concise and precise, no extra details. The title should be written in sentence 

case. 

 Stub 

 The column at the left-most of the table is called as stub. A stub has a stub-heading 

at the top of the column, not all tables have stub. The stub shows the subcategories 

that are listed along Y-axis. 

 Caption 

 The caption is the column heading, the variable might have subcategories which 

are captioned. These subcategories are provided on the X-axis, the captions are 

provided on the top of each column. 

 Body 

 The body of the table is the actual part of the table in which resides the whole 

values, results, and analysis. 

 Footnotes 

 There can be many different types of notes that you may have to provide at the 

end of the table. The footnotes are provided just below the table and labeled as the 

source. The source generally are provided when the table has been taken from 

some other source. They are also provided for explaining some point in the table. 



Sometimes there is some part of the table that is taken from a source so it should 

also be mentioned. 

 Types of tables 

 Tables are the most simple means to display data, they can be categorized into the 

following; 

 Univariate 

 Bivariate 

 Polyvariate 

 These categories are based on the numbers of variables that need to be tabulated 

in the table. A univariate table has one variable to be tabulated; a bivariate table, 

as the name suggests, has two variables to be tabulated and a polyvariate table has 

more than two variables to be tabulated. 

 Graphs to display data 

 The purpose of displaying data is to make the communications easier. Graphs 

should be used in displaying data when they can add to the visual beauty of the 

data. The researcher should decide whether there is a need for table only or he 

should also present data in the form of a suitable graph. 

 Types of graphs 

 You can use a suitable graph type depending on the type of data and the variables 

involved in the data. 

 The histogram 

 The histogram is a graph that is highly used for displaying data. A histogram 

consists of rectangles that are drawn next to each other on the graph. The 

rectangles have no space in between them. A histogram can be drawn for a single 

variable as well as for two or more than two variables. The height of the bars in 

the histogram represent the frequency of each variable. It can be drawn for both 

categorical and continuous variables. 

 The bar chart 

 The bar chart is similar to a histogram except in that it is drawn only for categorical 

variables. Since it is used for categorical variables, therefore, it is drawn with space 

between the rectangles. 

 The frequency polygon 

 A frequency polygon is also very much like a histogram. A frequency polygon 

consists of frequency rectangles drawn next to each other but the values taken to 

draw the rectangles is the midpoint of the values. The height of the rectangles 

describes the frequency of each interval. A line is drawn that touches the 

midpoints at the highest frequency level on Y-axis and it touches the X-axis on each 

extreme end. 



 The cumulative frequency polygon 

 The cumulative frequency polygon is also a frequency polygon, it is drawn using 

the cumulative frequencies on the Y-axis. The values on the X-axis are taken by 

using the endpoints of the interval. The endpoints of the interval are joined to each 

other the reason being that the cumulative frequency is always based on the upper 

limit of an interval. 

 The stem and leaf display 

 The stem and leaf display is another easy way to display data. The stem and leaf 

display if rotated to 90 degrees become a histogram. 

 The pie chart 

 The pie chart is a very different way to display data. The pie chart is a circle, as a 

circle has 360 degrees so it is taken in percentage and the whole pie or circle 

represent the whole population. The pie or circle is divided into slices or sections, 

each section represents the magnitude of the category or the sub-category. 

 The trend curve 

 The trend curve is also called as the line diagram. It is drawn by plotting the 

midpoints on the X-axis and the frequencies commensurate with each interval on 

the Y-axis. The trend curve is drawn only for a set of data that has been measured 

on the continuous, interval or ratio scale. A trend diagram or the line diagram is 

most suitable for plotting values that show changes over a period of time. 

 The area chart 

 The area chart is a variation of the trend curve. In area chart, the sub-categories of 

a variable can be displayed. The categories in the chart are displayed by shading 

them with different colors or patterns. For example, if there are both males and 

females category in the dataset both can be highlighted in this chart. 

 The scattergram 

 A scattergram is a very simple way to plot the data on a chart. The scattergram is 

used for data where the change in one variable affects the change in the other 

variable. The frequency against each interval is plotted with the help of dots. 

 



RM4151- Research Methodology and IPR 

UNIT III 

DATA ANALYSIS AND REPORTING  

Overview of Multivariate analysis, Hypotheses testing and Measures of Association.  

Presenting Insights and findings using written reports and oral presentation. 

 

Introduction: 

There are three categories of analysis to be aware of: 

 Univariate analysis, which looks at just one variable 

 Bivariate analysis, which analyses two variables 

 Multivariate analysis, which looks at more than two variables 

 

1. Univariate data – 

This type of data consists of only one variable. The analysis of Univariate data 

is thus the simplest form of analysis since the information deals with only one 

quantity that changes. It does not deal with causes or relationships and the 

main purpose of the analysis is to describe the data and find patterns that 

exist within it. The example of a Univariate data can be height. 

2. Bivariate data – 

This type of data involves two different variables. The analysis of this type of 

data deals with causes and relationships and the analysis are done to find out 

the relationship among the two variables. Example of bivariate data can be 

temperature and ice cream sales in summer season. 

Suppose the temperature and ice cream sales are the two variables of a 

bivariate data (figure 2). Here, the relationship is visible from the table that 

temperature and sales are directly proportional to each other and thus 

related because as the temperature increases, the sales also increase. Thus 

bivariate data analysis involves comparisons, relationships, causes and 

explanations. These variables are often plotted on X and Y axis on the graph 

for better understanding of data and one of these variables is independent 

while the other is dependent. 

 

3. Multivariate data 

When the data involves three or more variables, it is categorized under 

multivariate. Example of this type of data is suppose an advertiser wants to 

compare the popularity of four advertisements on a website, then their click 

rates could be measured for both men and women and relationships between 

Variables can then be examined.  



 

It is similar to bivariate but contains more than one dependent variable. The 

ways to perform analysis on this data depends on the goals to be achieved. 

Some of the techniques are regression analysis, path analysis, factor analysis 

and multivariate analysis of variance (MANOVA). 

 

 

Overview of Multivariate analysis 

Multivariate means involving multiple dependent variables resulting in one 

outcome. This explains that the majority of the problems in the real world are 

Multivariate. For example, we cannot predict the weather of any year based on the 

season. There are multiple factors like pollution, humidity, precipitation, etc.  

 

Multivariate analysis (MVA) is a Statistical procedure for analysis of data involving 

more than one type of measurement or observation. It may also mean solving 

problems where more than one dependent variable is analysed simultaneously with 

other variables. 

 

1. What is multivariate analysis? 

In data analytics, we look at different variables (or factors) and how they might impact 

certain situations or outcomes. For example, in marketing, you might look at how the 

variable “money spent on advertising” impacts the variable “number of sales.” In the 

healthcare sector, you might want to explore whether there’s a correlation between 

“weekly hours of exercise” and “cholesterol level.” This helps us to understand why 

certain outcomes occur, which in turn allows us to make informed predictions and 

decisions for the future. 

 

Advantages and Disadvantages of Multivariate Analysis 

Advantages 

 The main advantage of multivariate analysis is that since it considers more 

than one factor of independent variables that influence the variability of 

dependent variables, the conclusion drawn is more accurate. 

 The conclusions are more realistic and nearer to the real-life situation. 

 

Disadvantages 

 The main disadvantage of MVA includes that it requires rather complex 

computations to arrive at a satisfactory conclusion. 



 Many observations for a large number of variables need to be collected and 

tabulated; it is a rather time-consuming process. 

 

Classification Chart of Multivariate Techniques 

Selection of the appropriate multivariate technique depends upon- 

a) Are the variables divided into independent and dependent classification?  

b) If yes, how many variables are treated as dependents in a single analysis?   

c) How are the variables, both dependent and independent measured? 

 

Multivariate analysis technique can be classified into two broad categories viz., this 

classification depends upon the question: are the involved variables dependent on 

each other or not?  

If the answer is yes: We have Dependence methods. 

If the answer is no: We have Interdependence methods.  

 

Dependence technique:  Dependence Techniques are types of multivariate analysis 

techniques that are used when one or more of the variables can be identified as 

dependent variables and the remaining variables can be identified as independent. 

Multiple Regression 

Multiple Regression Analysis– Multiple regression is an extension of simple linear 

regression. It is used when we want to predict the value of a variable based on the 

value of two or more other variables. The variable we want to predict is called the 

dependent variable (or sometimes, the outcome, target, or criterion variable). 

Multiple regressions use multiple “x” variables for each independent variable: (x1)1, 

(x2)1, (x3)1, Y1) 

 

 

 

Conjoint analysis   

‘Conjoint analysis‘ is a survey-based statistical technique used in market research 

that helps determine how people value different attributes (feature, function, 



benefits) that make up an individual product or service. The objective of conjoint 

analysis is to determine the choices or decisions of the end-user, which drives the 

policy/product/service. Today it is used in many fields including marketing, product 

management, operations research, etc. 

 

It is used frequently in testing consumer response to new products, in acceptance of 

advertisements and in-service design. Conjoint analysis techniques may also be 

referred to as multi-attribute compositional modelling, discrete choice modelling, or 

stated preference research, and is part of a broader set of trade-off analysis tools 

used for systematic analysis of decisions.  

 

There are multiple conjoint techniques, few of them are CBC (Choice-based conjoint) 

or ACBC (Adaptive CBC). 

 

Multiple Discriminant Analysis 

 

The objective of discriminant analysis is to determine group membership of samples 

from a group of predictors by finding linear combinations of the variables which 

maximize the differences between the variables being studied, to establish a model 

to sort objects into their appropriate populations with minimal error.  

 

Discriminant analysis derives an equation as a linear combination of the 

independent variables that will discriminate best between the groups in the 

dependent variable. This linear combination is known as the discriminant function.  

 

The weights assigned to each independent variable are corrected for the 

interrelationships among all the variables. The weights are referred to as 

discriminant coefficients. 

 

The discriminant equation:  

F = β0 + β1X1 + β2X2 + … + βpXp + ε  

where, F is a latent variable formed by the linear combination of the dependent 

variable, X1, X2,… XP is the p independent variable, ε is the error term and β0, β1, 

β2,…, βp is the discriminant coefficients. 

 

A linear probability model 

A linear probability model (LPM) is a regression model where the outcome variable 

is binary, and one or more explanatory variables are used to predict the outcome.  



 

Explanatory variables can themselves be binary or be continuous. If the 

classification involves a binary dependent variable and the independent variables 

include non-metric ones, it is better to apply linear probability models. 

 

Binary outcomes are everywhere: whether a person died or not, broke a hip has 

hypertension or diabetes, etc. 

 

We typically want to understand what the probability of the binary outcome is given 

explanatory variables. 

 

We could actually use our linear model to do so; it’s very simple to understand why.  

 

If Y is an indicator or dummy variable, then E[Y |X] is the proportion of 1s given X, 

which we interpret as a probability of Y given X. 

 

 

We can then interpret the parameters as the change in the probability of Y when X 

changes by one unit or for a small change in X For example, if we model  , we could 

interpret β1 as the change in the probability of death for an additional year of age  

 

Multivariate Analysis of Variance and Covariance 

Multivariate analysis of variance (MANOVA) is an extension of a common analysis of 

variance (ANOVA). In ANOVA, differences among various group means on a single-

response variable are studied. In MANOVA, the number of response variables is 

increased to two or more. The hypothesis concerns a comparison of vectors of group 

means.  A MANOVA has one or more factors (each with two or more levels) and two 

or more dependent variables. The calculations are extensions of the general linear 

model approach used for ANOVA. 

 

Canonical Correlation Analysis 

Canonical correlation analysis is the study of the linear relations between two sets of 

variables. It is the multivariate extension of correlation analysis. 

CCA is used for two typical purposes:- 

 Data Reduction 

 Data Interpretation 

You could compute all correlations between variables from the one set (p) to the 

variables in the second set (q), however interpretation is difficult when pq is large. 



 

Canonical Correlation Analysis allows us to summarize the relationships into a lesser 

number of statistics while preserving the main facets of the relationships. In a way, 

the motivation for canonical correlation is very similar to principal component 

analysis. 

 

Structural Equation Modelling 

Structural equation modelling is a multivariate statistical analysis technique that is 

used to analyse structural relationships. It is an extremely broad and flexible 

framework for data analysis, perhaps better thought of as a family of related 

methods rather than as a single technique.  

 

SEM in a single analysis can assess the assumed causation among a set of dependent 

and independent constructs i.e. validation of the structural model and the loadings of 

observed items (measurements) on their expected latent variables (constructs) i.e. 

validation of the measurement model. The combined analysis of the measurement 

and the structural model enables the measurement errors of the observed variables 

to be analysed as an integral part of the model, and factor analysis combined in one 

operation with the hypotheses testing. 

 

Interdependence Technique 

Interdependence techniques are a type of relationship that variables cannot be 

classified as either dependent or independent.  

 

It aims to unravel relationships between variables and/or subjects without explicitly 

assuming specific distributions for the variables. The idea is to describe the patterns 

in the data without making (very) strong assumptions about the variables.   

 

 

Factor Analysis  

Factor analysis is a way to condense the data in many variables into just a few 

variables. For this reason, it is also sometimes called “dimension reduction”. It 



makes the grouping of variables with high correlation. Factor analysis includes 

techniques such as principal component analysis and common factor analysis. 

 

This type of technique is used as a pre-processing step to transform the data before 

using other models. When the data has too many variables, the performance of 

multivariate techniques is not at the optimum level, as patterns are more difficult to 

find. By using factor analysis, the patterns become less diluted and easier to analyse. 

 

Cluster analysis 

Cluster analysis is a class of techniques that are used to classify objects or cases into 

relative groups called clusters. In cluster analysis, there is no prior information 

about the group or cluster membership for any of the objects. 

 While doing cluster analysis, we first partition the set of data into groups 

based on data similarity and then assign the labels to the groups. 

 The main advantage of clustering over classification is that it is adaptable 

to changes and helps single out useful features that distinguish different 

groups. 

 

Cluster Analysis used in outlier detection applications such as detection of credit 

card fraud. As a data mining function, cluster analysis serves as a tool to gain insight 

into the distribution of data to observe the characteristics of each cluster. 

 

Multidimensional Scaling 

Multidimensional scaling (MDS) is a technique that creates a map displaying the 

relative positions of several objects, given only a table of the distances between 

them. The map may consist of one, two, three, or even more dimensions. The 

program calculates either the metric or the non-metric solution. The table of 

distances is known as the proximity matrix. It arises either directly from 

experiments or indirectly as a correlation matrix.  

 

Correspondence analysis  

Correspondence analysis is a method for visualizing the rows and columns of a table 

of non-negative data as points in a map, with a specific spatial interpretation. Data 

are usually counted in a cross-tabulation, although the method has been extended 

too many other types of data using appropriate data transformations. For cross-

tabulations, the method can be considered to explain the association between the 

rows and columns of the table as measured by the Pearson chi-square statistic. The 

method has several similarities to principal component analysis, in that it situates 



the rows or the columns in a high-dimensional space and then finds a best-fitting 

subspace, usually a plane, in which to approximate the points.  

 

A correspondence table is any rectangular two-way array of non-negative quantities 

that indicates the strength of association between the row entry and the column 

entry of the table. The most common example of a correspondence table is a 

contingency table, in which row and column entries refer to the categories of two 

categorical variables, and the quantities in the cells of the table are frequencies.  

 

The Objective of multivariate analysis 

(1) Data reduction or structural simplification: This helps data to get simplified 

as possible without sacrificing valuable information. This will make interpretation 

easier. 

(2) Sorting and grouping: When we have multiple variables, Groups of “similar” 

objects or variables are created, based upon measured characteristics.   

(3) Investigation of dependence among variables: The nature of the relationships 

among variables is of interest. Are all the variables mutually independent or are one 

or more variables dependent on the others?  

(4) Prediction Relationships between variables: must be determined for the 

purpose of predicting the values of one or more variables based on observations on 

the other variables. 

(5) Hypothesis construction and testing . Specific statistical hypotheses, 

formulated in terms of the parameters of multivariate populations, are tested. This 

may be done to validate assumptions or to reinforce prior convictions.  

 

Dependence methods 

Dependence methods are used when one or some of the variables are dependent on 

others. Dependence looks at cause and effect; in other words, can the values of two or 

more independent variables be used to explain, describe, or predict the value of 

another, dependent variable? To give a simple example, the dependent variable of 

“weight” might be predicted by independent variables such as “height” and “age.” 

 

In machine learning, dependence techniques are used to build predictive models. The 

analyst enters input data into the model, specifying which variables are independent 

and which ones are dependent—in other words, which variables they want the model to 

predict, and which variables they want the model to use to make those predictions. 

 

Interdependence methods 



Interdependence methods are used to understand the structural makeup and 

underlying patterns within a dataset. In this case, no variables are dependent on others, 

so you’re not looking for causal relationships. Rather, interdependence methods seek to 

give meaning to a set of variables or to group them together in meaningful ways. 

 

Hypotheses testing and Measures of Association: 

 

What Is Hypothesis Testing? 

Hypothesis testing is an act in statistics whereby an analyst tests an assumption 

regarding a population parameter. The methodology employed by the analyst depends 

on the nature of the data used and the reason for the analysis. 

 

Hypothesis testing is used to assess the plausibility of a hypothesis by using sample 

data. Such data may come from a larger population, or from a data-generating process. 

The word "population" will be used for both of these cases in the following 

descriptions. 

 

How Hypothesis Testing Works 

In hypothesis testing, an analyst tests a statistical sample, with the goal of providing 

evidence on the plausibility of the null hypothesis. 

 

Statistical analysts test a hypothesis by measuring and examining a random sample of 

the population being analysed. All analysts use a random population sample to test two 

different hypotheses: the null hypothesis and the alternative hypothesis. 

 

The null hypothesis is usually a hypothesis of equality between population parameters; 

e.g., a null hypothesis may state that the population mean return is equal to zero. The 

alternative hypothesis is effectively the opposite of a null hypothesis (e.g., the 

population mean return is not equal to zero). Thus, they are mutually exclusive, and 

only one can be true. However, one of the two hypotheses will always be true. 

 

4 Steps of Hypothesis Testing 

All hypotheses are tested using a four-step process: 

1. The first step is for the analyst to state the two hypotheses so that only one can 

be right. 

2. The next step is to formulate an analysis plan, which outlines how the data will 

be evaluated. 

3. The third step is to carry out the plan and physically analyse the sample data. 



4. The fourth and final step is to analyse the results and either reject the null 

hypothesis, or state that the null hypothesis is plausible, given the data. 

 

Real-World Example of Hypothesis Testing 

If, for example, a person wants to test that a penny has exactly a 50% chance of landing 

on heads, the null hypothesis would be that 50% is correct, and the alternative 

hypothesis would be that 50% is not correct. 

 

Mathematically, the null hypothesis would be represented as Ho: P = 0.5. The 

alternative hypothesis would be denoted as "Ha" and be identical to the null 

hypothesis, except with the equal sign struck-through, meaning that it does not equal 

50%. 

 

A random sample of 100 coin flips is taken, and the null hypothesis is then tested. If it is 

found that the 100 coin flips were distributed as 40 heads and 60 tails, the analyst 

would assume that a penny does not have a 50% chance of landing on heads and would 

reject the null hypothesis and accept the alternative hypothesis. 

 

If, on the other hand, there were 48 heads and 52 tails, then it is plausible that the coin 

could be fair and still produce such a result. In cases such as this where the null 

hypothesis is "accepted," the analyst states that the difference between the expected 

results (50 heads and 50 tails) and the observed results (48 heads and 52 tails) is 

"explainable by chance alone." 

 

Hypothesis Testing _ (Alternate Content) 

Hypothesis testing is the use of statistics to determine the probability that a given 

hypothesis is true. The usual process of hypothesis testing consists of four steps. 

1. Formulate the null hypothesis (H NOT) (commonly, that the observations are the 

result of pure chance) and the alternative hypothesis Ha (commonly, that the 

observations show a real effect combined with a component of chance variation). 

2. Identify a test statistic that can be used to assess the truth of the null hypothesis. 

3. Compute the P-value, which is the probability that a test statistic at least as significant 

as the one observed would be obtained assuming that the null hypothesis were true. 

The smaller the P-value, the stronger the evidence against the null hypothesis. 

4. Compare the P-value to an acceptable significance value alpha (sometimes called 

an alpha value). If P<=alpha, that the observed effect is statistically significant, the null 

hypothesis is ruled out, and the alternative hypothesis is valid. 
 

 

https://mathworld.wolfram.com/NullHypothesis.html
https://mathworld.wolfram.com/AlternativeHypothesis.html
https://mathworld.wolfram.com/TestStatistic.html
https://mathworld.wolfram.com/NullHypothesis.html
https://mathworld.wolfram.com/P-Value.html
https://mathworld.wolfram.com/NullHypothesis.html
https://mathworld.wolfram.com/AlphaValue.html


 

Measures of Association: 

 

Measure of association, in statistics, any of various factors or coefficients used 

to quantify a relationship between two or more variables. Measures of association are 

used in various fields of research but are especially common in the areas 

of epidemiology and psychology, where they frequently are used to quantify 

relationships between exposures and diseases or behaviours. 

 

A measure of association may be determined by any of several different analyses, 

including correlation analysis and regression analysis.  

 

(Although the terms correlation and association are often used 

interchangeably, correlation in a stricter sense refers to linear correlation, 

and association refers to any relationship between variables.) The method used to 

determine the strength of an association depends on the characteristics of the data for 

each variable. Data may be measured on an interval/ratio scale, an ordinal/rank scale, 

or a nominal/categorical scale. These three characteristics can be thought of as 

continuous, integer, and qualitative categories, respectively 

 

Methods of analysis 

Pearson’s correlation coefficient 

A typical example for quantifying the association between two variables measured on 

an interval/ratio scale is the analysis of relationship between a person’s height and 

weight. Each of these two characteristic variables is measured on a continuous scale.  

 

The appropriate measure of association for this situation is Pearson’s correlation 

coefficient, r (rho), which measures the strength of the linear relationship between two 

variables on a continuous scale. The coefficient r takes on the values of −1 through +1. 

Values of −1 or +1 indicate a perfect linear relationship between the two variables, 

whereas a value of 0 indicates no linear relationship. (Negative values simply indicate 

the direction of the association, whereby as one variable increases, the other decreases.)  

 

Correlation coefficients that differ from 0 but are not −1 or +1 indicate a linear 

relationship, although not a perfect linear relationship. In practice, ρ (the population 

correlation coefficient) is estimated by r, which is the correlation coefficient derived 

from sample data. 

 



Spearman rank-order correlation coefficient 

The Spearman rank-order correlation coefficient (Spearman rho) is designed to 

measure the strength of a monotonic (in a constant direction) association between two 

variables measured on an ordinal or ranked scale. Data that result from ranking and 

data collected on a scale that is not truly interval in nature (e.g., data obtained 

from Likert-scale administration) are subject to Spearman correlation analysis. In 

addition, any interval data may be transformed to ranks and analysed with the 

Spearman rho, although this results in a loss of information. Nonetheless, this approach 

may be used, for example, if one variable of interest is measured on an interval scale 

and the other is measured on an ordinal scale. Similar to Pearson’s correlation 

coefficient, Spearman rho may be tested for its significance. A similar measure of 

strength of association is the Kendall tau, which also may be applied to measure the 

strength of a monotonic association between two variables measured on an ordinal or 

rank scale. 

 

As an example of when Spearman rho would be appropriate, consider the case where 

there are seven substantial health threats to a community. Health officials wish to 

determine a hierarchy of threats in order to most efficiently deploy their resources. 

They ask two credible epidemiologists to rank the seven threats from 1 to 7, where 1 is 

the most significant threat. The Spearman rho or Kendall tau may be calculated to 

measure the degree of association between the epidemiologists’ rankings, thereby 

indicating the collective strength of a potential action plan. If there is a significant 

association between the two sets of ranks, health officials may feel more confident in 

their strategy than if a significant association is not evident. 

 

Chi-square test 

The chi-square test for association (contingency) is a standard measure for association 

between two categorical variables. The chi-square test, unlike Pearson’s correlation 

coefficient or Spearman rho, is a measure of the significance of the association rather 

than a measure of the strength of the association. 

 

A simple and generic example follows. If scientists were studying the relationship 

between gender and political party, then they could count people from a random sample 

belonging to the various combinations: female-Democrat, female-Republican, male-

Democrat, and male-Republican. The scientists could then perform a chi-square test to 

determine whether there was a significant disproportionate membership among those 

groups, indicating an association between gender and political party. 

 



Presenting Insights and findings using written reports and oral presentation: 

 

Oral presentation: 

Two words that are capable of striking fear into the hearts of even the most confident 

student. But should they? Though not all of us can ever hope to reach the heady heights 

of oratory genius achieved by the likes of Barack Obama or Martin Luther King Jr, there 

are steps we can take to help us to present our point of view strongly. 

  

Step 1: Research 

Find out as much as you can about your chosen topic. The key skills for presenting 

argument in the VCE English Study Design clearly state that you need to ‘conduct 

research to support the development of arguments on particular issues and 

acknowledge sources accurately and appropriately where relevant’. You are expected to 

research your chosen topic so that you have a deep and nuanced understanding of the 

issues and arguments. Read from multiple sources that present various points of view, 

and take notes on the arguments used. 

  

Step 2: Plan your overall approach 

Great speeches very rarely just happen; they are carefully crafted pieces of writing. Use 

your knowledge of argument and persuasive language as a basis for the development of 

your oral presentation. Remember that you are required to provide a written statement 

of intention to accompany your presentation. This statement of intention must outline 

the decisions you have made in the planning process, and explain how these 

demonstrate understanding of argument and persuasive language. 

 

So, before you start writing, take the time to think carefully about the following aspects 

of your presentation. 

 

Your contention 

Where do you stand on the issue? Why? Express this in a clear and direct sentence. 

Avoid statements such as ‘Greyhound racing is bad’. This a vague and general opinion, 

not a contention. A contention on this issue would be something like ‘The cruel and 

abusive practice of greyhound racing should be banned immediately’. 

 

Your context and audience 

Who are you addressing? By that, I don’t mean your teacher or your classmates. Rather, 

who is your imagined audience for the speech? This is important to keep in mind, as it 

will inform the language choices you make. Furthermore, consider in what context you 



would be addressing your audience. Is your speech designed to be delivered on the 

steps of parliament at a rally or to a group of students at a graduation dinner? Decide 

this before you start writing. And don’t be afraid to adopt a persona – this will allow you 

broader scope in selecting a particular context and audience. 

Once you have decided on your contention and on your context and audience, it is time 

to consider some of the finer details of your presentation. 

 

Your purpose 

What do you want your imagined audience to think, feel or do? Do you wish to inform or 

educate them? To create alarm? To effect change? Your purpose should be closely 

related to your contention. 

 

Your tone 

What feelings are you seeking to communicate and to evoke in the audience? What 

mood are you trying to generate? Will you be using humour to relax your audience? Will 

you be hostile? Sympathetic? Will your tone change at any point and, if so, why? 

All of the above are important factors to consider, as they will affect your language 

choices and the persuasive language techniques you employ. 

  

Step 3: Plan your arguments 

Now you need to decide on your supporting arguments. For each argument, ask  

 

Yourself: 

What persuasive language techniques will I use? 

What evidence will I present? 

 

Try to vary your chosen techniques, and remember Aristotle’s principles of rhetoric –

 logos (appeal to logic and reason), ethos (character of the speaker) 

and pathos (emotional influence of the speaker). A strong argument will address all 

three elements in varying degrees. 

  

Step 4: Write the introduction 

Good speeches start strongly. You need to grab the audience’s attention and make your 

point of view clear from the outset. The way you begin should be consistent with your 

audience and purpose. Strategies that you might consider are listed below. 

 

Anecdote – this is a great way to highlight a personal connection to the issue or to strike 

a sympathetic tone. 



Statistics – if your purpose is to shock your audience or to promote change, this is a 

great way to ‘hit them hard’ right from the outset. 

 

Inclusive language – if you want to create a shared sense of purpose, make it clear to 

your audience that they are part of this issue, and that how they feel matters. 

 

Once you have your audience’s attention, introduce yourself (or your persona), clarify 

the issue, state your contention and signpost your main arguments. 

  

Step 5: Write the body 

This is where all you’re planning from step 3 pays off! 

 

For each body paragraph, ensure that you create strong topic sentences that clearly 

highlight your main arguments, and then develop each argument using your carefully 

selected language and evidence. 

 

There are a few things that you should keep in mind as you write: 

Cohesion is king! Keep your line of argument consistent and use connectives 

throughout. 

 

Analyse the evidence! Don’t just present a raft of statistics or evidence and expect them 

to make the argument for you. Analyse their importance in relation to the debate. 

Include some rebuttal! An issue has two sides – you need to rebut some or all arguments 

from the opposing point of view. 

  

Step 6: Write the conclusion 

Aim to finish strongly. Reiterate your contention and then tell the audience what they 

should think, feel or do. (This should directly relate to the purpose you decided on in the 

planning stage). 

 

To ensure that you finish on a powerful note, consider using an appeal, a rhetorical 

question, or a call to action. 

  

Step 7: Proofread and practise 

Read your speech to friends or family and get their feedback. Did the line of argument 

make sense to them? Did you persuade them? Did any parts of your speech lose their 

attention? Take note of these responses and edit your speech as required. 



 

14 

 

3. T.H. Cormen, C.E.Leiserson, R.L. Rivest and C.Stein, "Introduction to Algorithms", Prentice 

Hall of India, 3rd Edition, 2012. 

4. Mark Allen Weiss, “Data Structures and Algorithms in C++”, Pearson Education, 

3rd  Edition, 2009. 

5. E. Horowitz, S. Sahni and S. Rajasekaran, “Fundamentals of Computer Algorithms”, 

University Press, 2nd Edition, 2008. 

6. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, “Data Structures and Algorithms”, 

Pearson Education, Reprint 2006. 

 

CO-PO Mapping 

CO POs 

PO1 PO2 PO3 PO4 PO5 PO6 

1 2 1 3 2 1 2 

2 2 1 3 2 2 2 

3 2 1 3 2 2 2 

4 3 1 3 2 2 2 

5 3 1 3 2 2 2 

Avg 2.5 1 3 2 1.8 2 

 

 

MC4102                     OBJECT ORIENTED SOFTWARE ENGINEERING                       L  T   P  C 

                                                                                                                                            3   0   0  3  

                                                                                                                              

COURSE OBJECTIVES: 

 To understand the phases in object oriented software development 

 To gain fundamental concepts of requirements engineering and analysis. 

 To know about the different approach for object oriented design and its methods 

 To learn about how to perform object oriented testing and how to maintain software 

 To provide various quality metrics and to ensure risk management.  

 

 

UNIT I           SOFTWARE DEVELOPMENT AND PROCESS MODELS                                        9 

Introduction to Software Development – Challenges – An Engineering Perspective – Object 

Orientation – Software Development Process – Iterative Development Process – Process Models 

– Life Cycle Models – Unified Process – Iterative and Incremental – Agile Processes. 

 

 

UNIT II          MODELING OO SYSTEMS                                                                                        9 

 Object Oriented Analysis (OOA / Coad-Yourdon), Object Oriented Design (OOD/Booch), 

Hierarchical Object Oriented Design (HOOD), Object Modeling Technique (OMT) – Requirement 

Elicitation – Use Cases – SRS Document – OOA - Identification of Classes and Relationships, 

Identifying State and Behavior – OOD - Interaction Diagrams – Sequence Diagram – 

Collaboration Diagrams - Unified Modeling Language and Tools. 

 

 

UNIT III          DESIGN PATTERNS                                                                                                 9 

Design Principles – Design Patterns – GRASP – GoF – Dynamic Object Modeling – Static Object  



 

15 

 

Modeling. 

 

UNIT IV           SYSTEM TESTING                                                                                                   9 

Software testing: Software Verification Techniques – Object Oriented Checklist :-  Functional 

Testing – Structural Testing – Class Testing – Mutation Testing – Levels of Testing – Static and 

Dynamic Testing Tools -  Software Maintenance – Categories – Challenges of Software 

Maintenance – Maintenance of Object Oriented Software – Regression Testing  

 

 

UNIT V           SOFTWARE QUALITY AND METRICS                                                                    9 

Need of  Object Oriented Software Estimation – Lorenz and Kidd Estimation – Use Case Points 

Method – Class Point Method – Object Oriented Function Point – Risk Management – Software 

Quality Models – Analyzing the Metric Data – Metrics for Measuring Size and Structure – 

Measuring Software Quality -  Object Oriented Metrics 

 

 

SUGGESTED ACTIVITIES:  

1. Discuss the different phases in any domain like Health Monitoring System using extreme 

programming 

2. Describe Business Requirement Specification (BRS) and SRS (Software Requirement 

Specification) for any Project like Automatic Intelligent Plant Watering System .using any 

one of requirement analysis tool 

3. Identify the classes , relationship between classes and draw standard UML diagrams using 

any one UML modeling tool  (eg: ArgoUML that supports UML 1.4 and higher)  

4. for a system  (eg:  Conference Management System, student management system)  

5. Test the above UML for all the scenarios identified using Selenium /JUnit / Apache JMeter 

6. Perform COCOMO estimation for Book Management System to find effort and development 

time considering all necessary cost estimation factors. (Use GanttPRO Software for 

estimation)  

 

 

COURSE OUTCOMES: 

On completion of the course the student would be able to : 

CO1: Design object oriented software using appropriate process models. 

CO2: Differentiate software processes under waterfall and agile methodology. 

CO3: Design and Develop UML diagrams for software projects. 

CO4: Apply Design Patterns for a software process. 

CO5: Categorize testing methods and compare different testing tools for software processes. 

CO6: Analyze object oriented metrics and quality for software engineering processes.  

 

 

TOTAL: 45 PERIODS  

REFERENCES:  

1. Yogesh Singh,  RuchikaMalhotra, “ Object – Oriented Software Engineering”,  PHI Learning 

Private Limited ,First edition,2012 
 

2. Ivar Jacobson. Magnus Christerson, PatrikJonsson, Gunnar Overgaard, “Object Oriented 

Software Engineering, A Use Case Driven Approach”, Pearson Education, Seventh 

Impression, 2009 

 

3. Craig Larman, “Applying UML and Patterns, an Introduction to Object-Oriented Analysis and 

Design and Iterative Development”, Pearson Education, Third Edition, 2008.  
 

4. Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim Conallen,  



UNIT V SOFTWARE QUALITY AND METRICS 9  
Need of Object Oriented Software Estimation – Lorenz and Kidd Estimation – Use Case 
Points Method – Class Point Method – Object Oriented Function Point – Risk Management – 
Software Quality Models – Analyzing the Metric Data – Metrics for Measuring Size and 
Structure – Measuring Software Quality - Object Oriented Metrics 

 

1.1 A brief history of the metrics  
Software metrics lies on the ancient discipline of measurement mainly developed by scientists 

(physicians). On this basis, some take up measurement principles in order to measure software 

activities. 

So metrics origin goes back to the sixties with the Lines of Code (LOC)  
metric used to measure programmer’s productivity and program quality (e.g. number of defects per 

KLOC1). The main aim was to provide information to support quantitative managerial decision-

making during the software lifecycle  

[20, p.357].  
1.2 Defifinitions  
There’s two main concepts to defifine at this point : the 
measurement activity  
and the software metrics.  
1.2.1 Measurement activity  
Norman Fenton gives the two following defifinitions of the 
measurement activity  
[22, p.28]:  
Formally, we defifine measurement as a mapping from the empirical  
world to the formal, relational world. Consequently, a measure is  
the number or symbol assigned to an entity by this mapping in order  
to characterize an attribute.  
He gives this second defifinition introducing the numerical aspect 
[22, p.5]:  
Measurement is the process by which numbers or symbols are as 
signed to attributes of entities in the real world in such a way as to  
describe them according to clearly defifined rules. 
 
1.2.2 Software metrics  
The fifirst defifinition of software metrics is proposed by Norman 
Fenton [20,  
p.358]:  
(...)software metrics is a collective term used to describe the very  



wide range of activities concerned with measurement in software en 
gineering. These activities range from producing numbers that char 
acterize properties of software code (these are the classic software  
’metrics’) through to models that help predict software resource re 
quirement and software quality. The subject also includes the quan 
titative aspects of quality control and assurance - and this covers  
activities like recording and monitoring defects during development  
and testing.  
An other defifinition of software metrics is due to Paul Goodman [25] 
:  
The continuous application of measurement-based techniques to the  
software development process and its products to supply meaningful  
and timely management information, together with the use of those  
techniques to improve that process and its products". Applied To  
Engineering & Management Processes, Products & To Supply  
Theory of Measure  
2.1 Theory  
Measurement theory has fifirst been developed as a particular 
discipline of physics.  
Physicians defifined fundamental rules in order to use correctly the 
new frame 
work of measures. Further research led to develop several theories 
of measures.  
Among them the representational theory of measurement has been 
used to build  
the software metrics [22, p.24].  
The representational theory of measurement aims at formalizing our 
intu 
ition about the way the world works. We collect a set of data, the 
measures,  
which should represent attributes of the entities observed. 
Manipulation of these  
data must preserve the relationship observed among these entities 
[22, p.24-25].  



Actually we collect measures about the real world and try to 
understand these  
measures by comparing them. By example, we observe that certain 
people are  
taller than others without measuring them. In fact, says Fenton, our 
observa 
tion reflflects a set of rules that we are imposing on the set of 
people.[22, p.25].  
So we defifine some binary relations between these entities.  
Example 1 : When we say that X is taller than Y we defifine a binary  
relation between X and Y. In this case, "taller than" is an empirical  
relation for height.  
The measurement activity is then defifined as the mapping between 
the em 
pirical and the formal world1. So a measure is a number or symbol 
assigned to  
an entity in order to characterize an attribute.  
Basic rules are simple : the real world is the domain and the 
mathematical  
world, the range. When we map an attribute to a mathematical 
system the  
following rules must be respected :  
(...)the representation condition asserts that a measurement map 
ping M must map entities into numbers and empirical relations into  
numerical relations in such a way that the empirical relations pre 
serve and are preserved by the numerical relations.[22, p.31] 
 



 
 
To avoid traps (compare measures from entities which are not 
comparable)  
several models have been introduced2. A model is an abstraction of 
reality, al 
lowing us to strip details away and view an entity or concept from a 
particular  
perspective. [22, p.36-37] Several models are likely to interest 
software metrics  
: cost-estimation model, quality models, capability-maturity model,.... 
The use  
for such models avoid to focus only on the formal and mathematical 
systems  
and neglect the empirical one. A model will show fundamental 
characteris 
tics and how they are articulate. This will allow to defifine a metric 
for each  
characteristic.[22, p.38]  
The model chosen, entities and attributes defifined, measures can be 
defifined  
too. But when there are complex relationships among attributes, or 
when an  



attributes must be measured by combining several of its aspects, 
then we need  
a model for how to combine the related measures. For this reason, 
direct and  
indirect measurements are distinguished.  
2.1.1 Direct measurement  
Direct measurement of an entity attribute involves no other attribute 
or entity.  
For example, we can measure the length of a physical object without 
any other  
object. Measures below are direct measures used in software 
engineering : 
• Length of source code (LOC)  
• Duration of testing process (Hours)  
• Number of defects discovered (counting defects)  
• Time a programmer spent on a project (Months)  
2.1.2 Indirect measurement  
Indirect measurement are measures of an attribute obtained by 
comparing dif 
ferent measurements. For example, Number of defects divided by 
module size  
gives the Module defect density.[22, p.40]  
2.2 Measurement scales  
Previous section shows how direct measurement assigns a 
representation or map 
ping from observed relation system to numerical relation system. 
These kind  
of measures are done in order to extract relationship between data 
and to draw  
conclusion about them. However all the mappings are not the same. 
Diffffer 
ences between them restrict the possible kind of comparison and 
analysis. To  
avoid unappropriate analysis, measurement scale concept has been 
intro 



duced as a principle by scientists.[22, 45-47] Five major 
measurement scales are  
identifified[37][22] :  
• Nominal  
• Ordinal  
• Interval  
• Ratio  
• Absolute  
A nominal scale puts each entity into a particular category, based on 
the  
value of the attributes. It’s the same process when we identify a 
programming  
language. By reading the code you can recognize it and classify it. 
This scale  
has two major characteristics :  
•  
The empirical relation system only consists of difffferent classes ; 
there is  
no notion of ordering among the classes.  
• Any distinct numbering or symbolic representation of the classes is 
an  
acceptable measure. But there isn’t any notion of magnitude 
associated  
with the number or symbol.  
Example : For instance, we try to classify the set of software faults  
in the code. We choose a measurement scale where faults are 
entities  
and their location are attributes. So fault location could be in three  
difffferent sets : specifification, design or code. Then we can defifine 
a  
mapping M that assign the difffferent classes to a particular number.  
45 if x is a specifification fault, 2 if x is a design fault and 37 if x is a  
code fault. The value is not important here. 
An ordinal scale ranks items in an order, such as when we assign 
failures a  



progressive severity like minor, major, and catastrophic. This scale 
has three  
characteristics :  
• Empirical relation system consists of ordered classes with respect 
to the  
attribute.  
• Any mapping that preserves the ordering is acceptable.  
• Numbers represent only ranks, so addition, and other 
mathematical oper 
ations have no sense.  
Example : You want to classify the difffferent modules of your soft 
ware in three classes which denote the complexity (trivial, simple,  
complex). Then you choose a mapping M like in the nominal scale :  
1 if x is trivial, 2 if x is simple and 3 if x is complex. The difffference  
with the previous scale lies in the fact that the measurement map 
ping must preserve the complexity order. 3 is bigger than 1 preserve  
the relation more complex.  
An interval scale defifines a distance from one point to another, so 
that there  
are equal intervals between consecutive numbers. This property 
permits compu 
tations not available with the ordinal scale, such as calculating the 
mean value.  
However, there is no absolute zero point in an interval scale, and 
thus ratios do  
not make sense. Care is thus needed when you make comparisons. 
The three  
main characteristics are :  
• Order are preserved.  
• Difffferences are preserved but not ratios.  
• Addition and substraction are acceptable but not multiplication 
and divi 
sion.  
Example : Take the temperature measurement on a Celsius or Fahren 
heit where each degree is a class related to heat. We say that the  



temperature in a place X is 20 degrees Celsius and, at the same time,  
30 degrees Celsius in place Y. If the temperature move, in X, from  
20 to 21 the heat will increase exactly in the same way if it change  
from 30 to 31 in place Y. So the relationship is preserved.  
The scale with more information and flflexibility is the ratio scale, 
which incor 
porates an absolute zero, preserves ratios, and permits the most 
sophisticated  
analysis. Measures such as lines of codes or numbers of defects are 
ratio mea 
sures. It is for this scale that we can say that A is twice the size of B. 
There  
are four characteristics :  
• Ordering, size of the intervals between entities and ratios are 
preserved.  
• There is a zero element (represents total lack of attribute).  
• Measurement mapping start at zero and increases at equal 
intervals (units). 
• All arithmetic can be applied to the classes in the range of the 
mapping.  
Example : You use a ratio scale when you measure the physical size  
of entities. The scale start at zero which represent the total lack of  
size (theoretical - no existence). You can measure size in centimeters,  
meters,...  
The absolute scale of measurement is the more restrictive scale. For 
any  
two measures, M and M’, there is only one admissible 
transformation : the  
identity transformation. So there’s only one way in which the 
measurement can  
be made, so M and M’ must be equal. The absolute scale respects 
the four  
following properties :  
• the entity set. The measurement is made simply by counting the 
number of elements in  



• entity". The Attribute always takes the form "number of 
occurrences of x in the  
• There’s only one measurement mapping, namely the actual count.  
• All arithmetic analysis of the resulting count is meaningful.  
Example : Lines Of Codes (LOC) is an absolute scale measure 
ment of the attribute "number of lines of codes" of a program. But  
"number of centimeters" is not an absolute scale measurement of an  
person’s size because you can also use inches, meters,...  
2.3 Validation  
Validation of the measures is necessary to do before analysis. It aims 
prove that  
metrics used are actually measuring what they claim they do. 
Pflfleeger[37] say  
that a measure is valid if it satisfifies the representation condition : if 
it captures  
in the mathematical world the behavior we perceive in the empirical 
world. For  
example, we must show that if H is a measure of height, and if A is 
taller  
than B, then H(A) is larger than H(b). But such a proof must, by 
nature, be  
empirical and is diffiffifficult to demonstrate. So, we must consider 
wether we are  
using direct measure (size) or an indirect measure (number of 
decision points as  
measure of size) and which entity and attribute are being 
addressed.Currently  
there isn’t any accepted standard for validating a measure [22, 
p.106-108].  
Software measures  
3.1 Classes and attributes  
In the previous section measurement basis and rules have been 
presented. The  
fifirst activity to achieve in measurement is the entity and attribute 
identifification.  



In software there are three classes :  
• Processes : collection of software-related activities.  
• Products : artifacts, deliverables and documents resulting from 
processes  
• Resources : entities required by a process activity.  
In each class of entity, we distinguish between internal and external 
at 
tributes :  
• Internal attributes  
of a product, process or resource are those that can be  
measured purely in terms of the product, process or resource itself. In 
other  
words, an internal attribute can be measured by examining the 
product,  
process or resource on its own, separate from its behavior.[22, p.74]  
• External attributes  
of a product, process or resources are those that can be  
measured only with respect to how the product, process or resource 
relates  
to its environment. Here, the behavior of the process, product or 
resource  
is important, rather than the entity itself.[22, p.74]  
3.2 Processes  
Processes are measured to inform on duration, cost, effffectiveness 
and effiffifficiency  
of software development activities. There is several internal process 
attributes  
which can be measured directly :  
• the duration of the process or activity  
• the effffort associated with process or activity  
• tivity the number of incidents of a specifified type arising during 
process or ac-  
 
Example 1 of measure for a process [22, p.77]:  
(...)we may be reviewing our requirements to ensure their quality  



before turning them over to the designers. To measure the effffective 
ness of the review process, we can measure the number of require 
ments errors found during specifification. Likewise, we can measure  
the number of faults found during integration testing to determine  
how well we are doing. And the number of personnel working on  
the project between May 1 and September 30 can give us insight into  
resources needed for the development process.  
Example 2 of measures from AT&T [22, p.77] :  
AT&T developers wanted to know the effffectiveness of their 
software  
inspections. In particular, managers needed to evaluate the cost of  
the inspections against the benefifits received. To do this, they mea 
sured the average amount of effffort expended per thousand lines of  
code reviewed. As we will see later in this chapter, this information,  
combined with measures of the number of faults discovered during 
the  
inspections, allowed the managers to perform a cost-benefifit 
analysis.  
3.3 Products  
Products can be also measured. By products we mean not only items 
delivered  
to customer. All the artifacts, documents and prototypes produced 
during the  
process are considered as products. All these process outputs can be 
measured  
in term of quality, size,... For all of them we distinguish both external 
and  
internal attributes.  
3.3.1 External attributes  
External product attributes depend on product behavior and 
environment that  
inflfluence the measure. Example of external attributes are : 
usability, integrity,  
effiffifficiency, testability, reusability, portability, operability[22, 
p.78].  



3.3.2 Internal attributes  
Internal products attributes are easy to measure in terms of size, 
length, func 
tionality, correctness.[22, p.78] Code clarity is an example of internal 
attribute  
according to defifined rules like "avoid GOTO".  
3.4 Resources  
Last measurable entities are the resources like personnel, materials 
and methods.[22,  
p.82] Measuring resources help managers to understand and control 
the process.  
Programmer’s productivity is often measured in terms of lines of 
code. 
Measures and Models  
As explained in chapter 2 models must be used with metrics to avoid 
metrics  
misuse. A Model is an abstraction of reality, allowing us to strip away 
detail  
and view an entity or concept from a particular perspective[22, p.36]. 
Models  
can take the form of equations, mapping or diagrams. It allow to 
understand  
relationship between the component parts related one to another in 
the model.  
Fenton gives an example of this kind of relation highlighted in a 
model :  
To measure length of programs using lines of code, we need a model  
of a program. The model would specify how a program diffffers from  
a subroutine, wether or not to treat separate statements on the same  
line as distinct lines of code, wether or not to count comment lines,  
wether or not to count data declarations, and so on. The model  
would also tell us what to do when we have programs written in  
a combination of difffferent languages. It might distinguish delivered  
operational programs from those under development, and it would 
tell  



us how to handle situations where difffferent versions run on 
difffferent  
platforms.[22, p.37]  
A model gives the domain and range of the measure mapping and it 
describes  
the entity and attribute being measured, the set of possible resulting 
measures,  
and the relationship among several measures.  
Another characteristic of models is that they distinguish the 
prediction from  
the assessment (measure to estimate future characteristics from 
previous ones  
or the determination of the current condition of a process, product 
or resource).  
4.2 Goal-Question-Metric paradigm  
4.2.1 Origins  
The Goal Question Metrics approach (GQM) has been suggested by 
Basili and  
his colleagues in 1984.[5][4] They proposed an original approach to 
selecting and  
implementing metrics. The GQM principle consists fifirst in 
expressing overall  
goals of the organization. On this basis, questions whose answer to 
these g 
are derived. Finally each question is analyzed in terms of what 
measurement is  
needed to answer each question.  
4.2.2 The paradigm  
GQM provides a measurement framework involving three steps :  
1. List the major goals of the development or maintenance projects.  
2. Derive from each goal the questions that must be answered to to 
determine  
if the goals are being met.  
3. Decide what must be measured to answer the questions 
adequately.  



The following fifigures illustrate how metrics are generated : 
 

 
Fenton gives an example [22, p. 84]:  
Suppose your overall goal is to evaluate the effffectiveness of using a  
coding standard (...). That is, you want to know if code produced  
by following the standard is superior in some way to code produced  
without it. To decide if the standard is effffective, you must ask sev 
eral key questions. fifirst, it is important to know who is using the  
standard, so that you can compare the productivity of the coders who  
use the standard with the productivity of those who do not. Like 
wise, you probably want to compare the quality of the code produced  
with the standard with the quality of non-standard code. Once these  
questions are identifified, you must analyse each question to deter 
mine what mst be measured in order to answer the question. For  
example, to understand who is using the standard, it is necessary to 
 
know what proportion of coders is using the standard. However, it is  
also important to have an experience profifile of the coders, 
explaining  
how long they have worked with the standard, the environment, the  
language, and other factors that will help to evaluate the effffective 
ness of the standard. The productivity question requires a defifinition  
of productivity, which is usually some measure of effffort divided by  
some measure of product size. (...) the metric can be in terms of  
lines of code, function points, or any other metrics that will be useful  



to you. Similary, quality may be measured in terms of the number  
of errors found in the code, plus any other quality measures that you  
would like to use. In this way, you generate only those measures  
that are related to the goal. Notice that, in many cases, several mea 
surements may be needed to answer a single question. likewise, a  
single measurement may apply to more than one question; the goal  
provides the purpose for collecting the data, and the questions tell  
you and your project how to use the data.  
4.3 Other models : quality models  
Quality models aims at capturing the composite characteristics and 
their rela 
tionship in order to measure quality. Among them, the McCall 
[32]and Boehm  
[9]software quality model propose a decompositional approach.  
Since 1992 ISO [28] proposes the Software Product Evaluation : 
Quality  
Characteristics and Guidelines for their use also know as ISO9126. 
Goals of the Function Points  
In 1979, Allan J. Albrecht proposed the fifirst function point’s model 
and analysis  
method called Function Point Analysis[1].1  
This method’s goals were to measure achievement and refifine 
valuation. Al 
brecht proposes the three following defifinitions for the function 
points :  
•  
Function points are a measurement of the software product based 
on the  
user’s function information treatment.  
•  
Function points measure software by counting number of 
functionality of  
the information’s treatment associated with external and control 
data,  
output and fifiles types.  



•  
This particular treatment is adjusted for the global function of 
information  
treatment by applying an adjustment based on the software 
characteris 
tics.  
So function points are essentially based on the software’s number of 
func 
tionality proposed to the user. The goal was to obtain a technique to 
measure  
productivity among difffferent IBM’s projects from 1974 to 1978. 
These projects  
had been developed with difffferent programming languages and 
tools. So the  
objective was to provide a fifitted method to measure services 
provided to the  
users.  
5.2 History and evolution of function points  
Albrecht began his research on this topic in the 70’s. In the same 
time, Tom  
DeMarco has also leading research on the same topic. His results are 
quite  
the same in the concepts but not on the form. DeMarco’s function 
points  
have been recently used as basis for new research like : FFP (Full 
Function  
Points), COSMIC-FFP (Common Software Measurement International 
Con 
sortium - Full Function Points)[16]. 
 
ion points called Mark II function points.[45]  
In 1984 IBM proposed a major review of the function points counting 
rules.  
They added a evaluation procedure to assess complexity. This 
method became  



the basic one to count function points taken by the IFPUG 
(International Func 
tion Points User Group2). The function point’s success and expansion 
and the  
IFPUG creation contributed to the normalization of the function 
points mea 
surement method.  
5.3 Reliability of the function point’s method  
Navlaka proposes two fundamental rules that must be respected by 
measurement  
method [34]:  
• be obtained. Correctness : from the same data and rules, the same 
results must always  
•  
Repetitiveness : it doesn’t matter the person who makes the 
measurement,  
results must always be exactly the same at difffferent time.  
According industrial experiments the observed accuracy is more or 
less 95%. 
Object Oriented  
Measurement  
6.1 Introduction  
This section present several concepts on Object Oriented metrics. 
The impor 
tance of the current research lead on this subject conduct us to 
devote it a  
particular chapter.  
6.2 Size measures  
Object-Oriented systems generally grow in size between 
requirements analysis  
and the testing phase. So difffferent research have been done on this 
topics.  
Pflfleeger used objects and methods as a basic size measurements 
which is more  



accurate than COCOMO according to commercial applications [38, 
p.294].  
An other method has been developed by Lorenz and Kidd [31]. They 
defifined  
nine aspects of size that reflflect how the class characteristics affffect 
the product.  
They propose the following aspects :  
Number of scenario scripts (NSS) : It’s the number of scenario scripts 
counted  
in the use cases. This measure is correlated with application size and 
the  
number of tests. NSS mainly allow to predict development and 
testing  
efffforts.  
Number of key classes : This measure evaluate the high-design 
effffort.  
Number of support classes : This measures evaluates the low-level 
design.  
Average number of support classes per key class : This measure 
gives an  
idea of the system’s structure.  
Number of subsystems : This one provide more information on the 
system’s  
structure.  
Class size : This measure include the number of operations and 
attributes. 
Number of operations overridden by a class : Allow to evaluate 
inheri 
tance effffects.  
Number of operations added by a subclass : Measures also the 
inheritance  
effffects.  
Specialization index  
6.3 Design measures  



Chidamber and Kemerer have also provide a suite of metrics for 
object-oriented  
developments [15]. They focuse their work more on design than on 
size so  
they complement the Lorenz and Kidd’s method. They focuse on the 
coupling  
between objects, the response of a class and the lack of cohesion in 
methods[38,  
p.297].  
They calculate weighted methods per class in order to measure 
complexity.  
They also defifine a class’s depth of inheritance (It’s the maximum 
length of the  
path in the hierarchy from the class to the root of the inheritance 
tree). So more  
deeper is a class in the hierarchy, more methods are inherited by this 
class.  
Similarly, the number of children is the number of immediate 
subclasses  
subordinated to the given class. 
Collect, store, analyze and  
comment metrics  
7.1 The data  
7.1.1 Data properties  
Before analyzing the data collection process there are several points 
to clarify.  
Data that will be collected must satisfy several essential properties 
[22]:  
Correctness The data were collected according to the exact rules of 
defifinition  
of the metrics. For example, if comments are not supposed to be 
included  
in the lines of codes count, then a check for correctness assures that 
no  
comments were counted.  



Accuracy This property refers to the difffferences between the data 
and the  
actual value. For example, time measurement will be less accurate 
on an  
analog clock than on a digital one.  
Precision It deals with the number of decimal places needed to 
express the  
data.  
Consistent In fact data must be consistent from one measuring 
device or per 
son to another, without large difffferences in value.  
Time-Stamped We must know exactly when data has been collected 
in order  
to allow comparison.  
Replicated Last fundamental property hat assumes that the data 
defifinition  
must be very accurate to allow other person to replicate the same 
mea 
surement.  
7.2 Data collection  
There are two ways to collect data : the manual and the automatic. 
Manual  
collection often conduct to bias, error, omission and delay. The 
automatic data  
collection is preferable but often more diffiffifficult to implement. 
Fenton gives the  
following guidelines to collect data : 
• keep procedures simple;  
• avoid unnecessary recording;  
• train staffff in the need to record data and in the procedures to  
be used;  
•  
provide the results of data capture and analysis to the original  
providers promptly and in a useful form that will assist them  
in their work;  



• validate all data collected at a central point.  
Data collection forms are interesting because they provide a frame 
to collect  
data. But this form must be self-explanatory. 1  
The GQM method previously  
explained also provides methodology to collect data.  
The data collection must be planned as ordinary project which is 
linked to  
other projects to measure.  
The collected data could be stored in database to allow further 
manipulations[22].  
7.3 Analyze and comments  
Data analysis and comment implies statistic methods and tools. They 
must be  
used in an appropriate way. According to Fenton Data sets of 
software attributes  
values must be analyzed with care, because software measures are 
not usually  
normally distributed[22, p.235] There are difffferent techniques that 
address a  
wide variety of situations. Fenton gives the following advice :  
•  
describe a set of attribute values using box plot statistics (based  
on median and quartiles) rather than on mean and variances;  
•  
inspect a scatter plot visually when investigating the relation 
ship between two variables;  
•  
use robust correlation coeffiffifficients to confifirm whether or not a  
relationship exists between two attributes;  
•  
use robust regression in the presence of atypical values to iden 
tify a linear relationship between two attributes, or remove the  
atypical values before analysis;  



• dant variable; always check the residuals by plotting them against 
the depen-  
•  
use Tukey’s ladder to assist in the selection of transformations  
when faced with non-linear relationships;  
• use principal component analysis to investigate the dimension 
ality of data sets with large numbers of correlated attributes.  
In fact, the most important point, underlined by Fenton is the 
correlation  
between the choice of the analysis technique and the goals of the 
investigation.  
In this way you can support or refute the hypothesis you are testing. 
 



 

 

 

UNIT - 2 

 

A Brief History 

The object-oriented paradigm took its shape from the initial concept of a new programming approach, while the 
interest in design and analysis methods came much later. 

 The first object–oriented language was Simula (Simulation of real systems) that was developed in 1960 
by researchers at the Norwegian Computing Center. 

 In 1970, Alan Kay and his research group at Xerox PARK created a personal computer named 
Dynabook and the first pure object-oriented programming language (OOPL) - Smalltalk, for 
programming the Dynabook. 

 In the 1980s, Grady Booch published a paper titled Object Oriented Design that mainly presented a 
design for the programming language, Ada. In the ensuing editions, he extended his ideas to a 
complete object–oriented design method. 

 In the 1990s, Coad incorporated behavioral ideas to object-oriented methods. 

The other significant innovations were Object Modelling Techniques (OMT) by James Rumbaugh and Object-
Oriented Software Engineering (OOSE) by Ivar Jacobson. 

Object-Oriented Analysis 

Object–Oriented Analysis (OOA) is the procedure of identifying software engineering requirements and 
developing software specifications in terms of a software system’s object model, which comprises of interacting 
objects. 

The main difference between object-oriented analysis and other forms of analysis is that in object-oriented 
approach, requirements are organized around objects, which integrate both data and functions. They are 
modelled after real-world objects that the system interacts with. In traditional analysis methodologies, the two 
aspects - functions and data - are considered separately. 

Grady Booch has defined OOA as, “Object-oriented analysis is a method of analysis that examines 
requirements from the perspective of the classes and objects found in the vocabulary of the problem domain”. 

The primary tasks in object-oriented analysis (OOA) are − 

 Identifying objects 

 Organizing the objects by creating object model diagram 

 Defining the internals of the objects, or object attributes 

 Defining the behavior of the objects, i.e., object actions 

 Describing how the objects interact 

The common models used in OOA are use cases and object models. 

Object-Oriented Design 

Object–Oriented Design (OOD) involves implementation of the conceptual model produced during object-
oriented analysis. In OOD, concepts in the analysis model, which are technology−independent, are mapped 
onto implementing classes, constraints are identified and interfaces are designed, resulting in a model for the 



 

 

solution domain, i.e., a detailed description of how the system is to be built on concrete technologies. 

The implementation details generally include − 

 Restructuring the class data (if necessary), 

 Implementation of methods, i.e., internal data structures and algorithms, 

 Implementation of control, and 

 Implementation of associations. 

Grady Booch has defined object-oriented design as “a method of design encompassing the process of object-
oriented decomposition and a notation for depicting both logical and physical as well as static and dynamic 
models of the system under design”. 

Object-Oriented Programming 

Object-oriented programming (OOP) is a programming paradigm based upon objects (having both data and 
methods) that aims to incorporate the advantages of modularity and reusability. Objects, which are usually 
instances of classes, are used to interact with one another to design applications and computer programs. 

The important features of object–oriented programming are − 

 Bottom–up approach in program design 

 Programs organized around objects, grouped in classes 

 Focus on data with methods to operate upon object’s data 

 Interaction between objects through functions 

 Reusability of design through creation of new classes by adding features to existing classes 

Some examples of object-oriented programming languages are C++, Java, Smalltalk, Delphi, C#, Perl, Python, 
Ruby, and PHP. 

Grady Booch has defined object–oriented programming as “a method of implementation in which programs are 
organized as cooperative collections of objects, each of which represents an instance of some class, and 
whose classes are all members of a hierarchy of classes united via inheritance relationships”. 

The object model visualizes the elements in a software application in terms of objects. In this chapter, we will 
look into the basic concepts and terminologies of object–oriented systems. 

Objects and Classes 

The concepts of objects and classes are intrinsically linked with each other and form the foundation of object–
oriented paradigm. 

Object 

An object is a real-world element in an object–oriented environment that may have a physical or a conceptual 
existence. Each object has − 

 Identity that distinguishes it from other objects in the system. 

 State that determines the characteristic properties of an object as well as the values of the properties 
that the object holds. 

 Behavior that represents externally visible activities performed by an object in terms of changes in its 
state. 

Objects can be modelled according to the needs of the application. An object may have a physical existence, 



 

 

like a customer, a car, etc.; or an intangible conceptual existence, like a project, a process, etc. 

Class 

A class represents a collection of objects having same characteristic properties that exhibit common behavior. It 
gives the blueprint or description of the objects that can be created from it. Creation of an object as a member 
of a class is called instantiation. Thus, object is an instance of a class. 

The constituents of a class are − 

 A set of attributes for the objects that are to be instantiated from the class. Generally, different objects of 
a class have some difference in the values of the attributes. Attributes are often referred as class data. 

 A set of operations that portray the behavior of the objects of the class. Operations are also referred as 
functions or methods. 

Example 

Let us consider a simple class, Circle, that represents the geometrical figure circle in a two–dimensional space. 
The attributes of this class can be identified as follows − 

 x–coord, to denote x–coordinate of the center 

 y–coord, to denote y–coordinate of the center 

 a, to denote the radius of the circle 

Some of its operations can be defined as follows − 

 findArea(), method to calculate area 

 findCircumference(), method to calculate circumference 

 scale(), method to increase or decrease the radius 

During instantiation, values are assigned for at least some of the attributes. If we create an object my_circle, we 
can assign values like x-coord : 2, y-coord : 3, and a : 4 to depict its state. Now, if the operation scale() is 
performed on my_circle with a scaling factor of 2, the value of the variable a will become 8. This operation 
brings a change in the state of my_circle, i.e., the object has exhibited certain behavior. 

Encapsulation and Data Hiding 

Encapsulation 

Encapsulation is the process of binding both attributes and methods together within a class. Through 
encapsulation, the internal details of a class can be hidden from outside. It permits the elements of the class to 
be accessed from outside only through the interface provided by the class. 

Data Hiding 

Typically, a class is designed such that its data (attributes) can be accessed only by its class methods and 
insulated from direct outside access. This process of insulating an object’s data is called data hiding or 
information hiding. 

Example 

In the class Circle, data hiding can be incorporated by making attributes invisible from outside the class and 
adding two more methods to the class for accessing class data, namely − 

 setValues(), method to assign values to x-coord, y-coord, and a 



 

 

 getValues(), method to retrieve values of x-coord, y-coord, and a 

Here the private data of the object my_circle cannot be accessed directly by any method that is not 
encapsulated within the class Circle. It should instead be accessed through the methods setValues() and 
getValues(). 

Message Passing 

Any application requires a number of objects interacting in a harmonious manner. Objects in a system may 
communicate with each other using message passing. Suppose a system has two objects: obj1 and obj2. The 
object obj1 sends a message to object obj2, if obj1 wants obj2 to execute one of its methods. 

The features of message passing are − 

 Message passing between two objects is generally unidirectional. 

 Message passing enables all interactions between objects. 

 Message passing essentially involves invoking class methods. 

 Objects in different processes can be involved in message passing. 

Inheritance 

Inheritance is the mechanism that permits new classes to be created out of existing classes by extending and 
refining its capabilities. The existing classes are called the base classes/parent classes/super-classes, and the 
new classes are called the derived classes/child classes/subclasses. The subclass can inherit or derive the 
attributes and methods of the super-class(es) provided that the super-class allows so. Besides, the subclass 
may add its own attributes and methods and may modify any of the super-class methods. Inheritance defines 
an “is – a” relationship. 

Example 

From a class Mammal, a number of classes can be derived such as Human, Cat, Dog, Cow, etc. Humans, cats, 
dogs, and cows all have the distinct characteristics of mammals. In addition, each has its own particular 
characteristics. It can be said that a cow “is – a” mammal. 

Types of Inheritance 

 Single Inheritance − A subclass derives from a single super-class. 

 Multiple Inheritance − A subclass derives from more than one super-classes. 

 Multilevel Inheritance − A subclass derives from a super-class which in turn is derived from another 
class and so on. 

 Hierarchical Inheritance − A class has a number of subclasses each of which may have subsequent 
subclasses, continuing for a number of levels, so as to form a tree structure. 

 Hybrid Inheritance − A combination of multiple and multilevel inheritance so as to form a lattice 
structure. 

The following figure depicts the examples of different types of inheritance. 



 

 

 

Polymorphism 

Polymorphism is originally a Greek word that means the ability to take multiple forms. In object-oriented 
paradigm, polymorphism implies using operations in different ways, depending upon the instance they are 
operating upon. Polymorphism allows objects with different internal structures to have a common external 
interface. Polymorphism is particularly effective while implementing inheritance. 

Example 

Let us consider two classes, Circle and Square, each with a method findArea(). Though the name and purpose 
of the methods in the classes are same, the internal implementation, i.e., the procedure of calculating area is 
different for each class. When an object of class Circle invokes its findArea() method, the operation finds the 
area of the circle without any conflict with the findArea() method of the Square class. 

Generalization and Specialization 

Generalization and specialization represent a hierarchy of relationships between classes, where subclasses 
inherit from super-classes. 

Generalization 

In the generalization process, the common characteristics of classes are combined to form a class in a higher 
level of hierarchy, i.e., subclasses are combined to form a generalized super-class. It represents an “is – a – 



 

 

kind – of” relationship. For example, “car is a kind of land vehicle”, or “ship is a kind of water vehicle”. 

Specialization 

Specialization is the reverse process of generalization. Here, the distinguishing features of groups of objects 
are used to form specialized classes from existing classes. It can be said that the subclasses are the 
specialized versions of the super-class. 

The following figure shows an example of generalization and specialization. 

 

Links and Association 

Link 

A link represents a connection through which an object collaborates with other objects. Rumbaugh has defined 
it as “a physical or conceptual connection between objects”. Through a link, one object may invoke the methods 
or navigate through another object. A link depicts the relationship between two or more objects. 

Association 

Association is a group of links having common structure and common behavior. Association depicts the 
relationship between objects of one or more classes. A link can be defined as an instance of an association. 

Degree of an Association 

Degree of an association denotes the number of classes involved in a connection. Degree may be unary, 
binary, or ternary. 

 A unary relationship connects objects of the same class. 

 A binary relationship connects objects of two classes. 

 A ternary relationship connects objects of three or more classes. 

Cardinality Ratios of Associations 

Cardinality of a binary association denotes the number of instances participating in an association. There are 
three types of cardinality ratios, namely − 

 One–to–One − A single object of class A is associated with a single object of class B. 

 One–to–Many − A single object of class A is associated with many objects of class B. 

 Many–to–Many − An object of class A may be associated with many objects of class B and conversely 
an object of class B may be associated with many objects of class A. 



 

 

Aggregation or Composition 

Aggregation or composition is a relationship among classes by which a class can be made up of any 
combination of objects of other classes. It allows objects to be placed directly within the body of other classes. 
Aggregation is referred as a “part–of” or “has–a” relationship, with the ability to navigate from the whole to its 
parts. An aggregate object is an object that is composed of one or more other objects. 

Example 

In the relationship, “a car has–a motor”, car is the whole object or the aggregate, and the motor is a “part–of” 
the car. Aggregation may denote − 

 Physical containment − Example, a computer is composed of monitor, CPU, mouse, keyboard, and so 
on. 

 Conceptual containment − Example, shareholder has–a share. 

Benefits of Object Model 

Now that we have gone through the core concepts pertaining to object orientation, it would be worthwhile to 
note the advantages that this model has to offer. 

The benefits of using the object model are − 

 It helps in faster development of software. 

 It is easy to maintain. Suppose a module develops an error, then a programmer can fix that particular 
module, while the other parts of the software are still up and running. 

 It supports relatively hassle-free upgrades. 

 It enables reuse of objects, designs, and functions. 

 It reduces development risks, particularly in integration of complex systems. 

We know that the Object-Oriented Modelling (OOM) technique visualizes things in an application by using 
models organized around objects. Any software development approach goes through the following stages − 

 Analysis, 

 Design, and 

 Implementation. 

In object-oriented software engineering, the software developer identifies and organizes the application in terms 
of object-oriented concepts, prior to their final representation in any specific programming language or software 
tools. 

Phases in Object-Oriented Software Development 

The major phases of software development using object–oriented methodology are object-oriented analysis, 
object-oriented design, and object-oriented implementation. 

Object–Oriented Analysis 

In this stage, the problem is formulated, user requirements are identified, and then a model is built based upon 
real–world objects. The analysis produces models on how the desired system should function and how it must 
be developed. The models do not include any implementation details so that it can be understood and 
examined by any non–technical application expert. 



 

 

Object–Oriented Design 

Object-oriented design includes two main stages, namely, system design and object design. 

System Design 

In this stage, the complete architecture of the desired system is designed. The system is conceived as a set of 
interacting subsystems that in turn is composed of a hierarchy of interacting objects, grouped into classes. 
System design is done according to both the system analysis model and the proposed system architecture. 
Here, the emphasis is on the objects comprising the system rather than the processes in the system. 

Object Design 

In this phase, a design model is developed based on both the models developed in the system analysis phase 
and the architecture designed in the system design phase. All the classes required are identified. The designer 
decides whether − 

 new classes are to be created from scratch, 

 any existing classes can be used in their original form, or 

 new classes should be inherited from the existing classes. 

The associations between the identified classes are established and the hierarchies of classes are identified. 
Besides, the developer designs the internal details of the classes and their associations, i.e., the data structure 
for each attribute and the algorithms for the operations. 

Object–Oriented Implementation and Testing 

In this stage, the design model developed in the object design is translated into code in an appropriate 
programming language or software tool. The databases are created and the specific hardware requirements are 
ascertained. Once the code is in shape, it is tested using specialized techniques to identify and remove the 
errors in the code. 

 

ANALYSIS 

Analysis is a creative activity or an investigation of the problem and requirements. 

Eg. To develop a Banking system 

Analysis: How the system will be used? 

Who are the users? 

What are its functionalities? 

 
DESIGN 

Design is to provide a conceptual solution that satisfies the requirements of a given 

problem. 

Eg. For a Book Bank System 

Design: Bank(Bank name, No of Members, Address) 

Student(Membership No,Name,Book Name, Amount Paid) 

 
OBJECT ORIENTED ANALYSIS (OOA) 

Object Oriented Analysis is a process of identifying classes that plays an important role in 



 

 

achieving system goals and requirements. 

Eg. For a Book Bank System, Classes or Objects identified are Book-details, 

Student-details, Membership-Details. 

 
OBJECT ORIENTED DESIGN (OOD) 

Object Oriented Design is to design the classes identified during analysis phase and to provide 

the relationship that exists between them that satisfies the requirements. 

Eg. Book Bank System 

Class name Book-Bank (Book-Name, No-of-Members, Address) 

Student (Name, Membership No, Amount-Paid) 

 
OBJECT ORIENTED ANALYSIS AND DESIGN (OOAD) 

 OOAD is a Software Engineering approach that models an application by a set of 

Software Development Activities. 



 

 

 OOAD emphasis on identifying, describing and defining the software objects and shows 

how they collaborate with one another to fulfill the requirements by applying the object  

oriented paradigm and visual modeling throughout the development life cycles. 

 
UNIFIED PROCESS (UP) 

 
The Unified Process has emerged as a popular iterative software development process for 

building object oriented systems. The Unified Process (UP) combines commonly accepted best 

practices, such as an iterative lifecycle and risk-driven development, into a cohesive and well- 

documented description. The best-known and extensively documented refinement of the 

Unified Process is the Rational Unified Process (RUP). 

 
Reasons to use UP 

 UP is an iterative process 

 UP practices provide an example structure to talk about how to do, and how to learn 

OOA/D. 

Best Practices and Key Concepts in UP 

 Tackle high-risk and high-value issues in early iterations 

 Engage users continuously for evaluation, feedback, and requirements 

 Build a cohesive, core architecture in early iterations 

 Apply use cases 

 Provides visual modeling using UML 

 Practice change request and configuration management. 

 
UP PHASES 

There are 4 phases in Unified Process, 

1. Inception 

2. Elaboration 

3. Construction 

4. Transition 

INCEPTION 

Inception is the initial stage of the project. Inception is not a requirements phase but it is a 

feasibility phase where complete investigation takes place to support a decision to continue or 

stop .It deals with 

 Approximate vision 

 Business case 

 Scope 

 Vague estimates 



 

 

ELABORATION 

In Elaboration  phase the project team is expected to capture a healthy majority of the system 

requirements It deals with 

 Refined vision, 

 Iterative implementation of the core architecture, 

 Resolution of high risks, 

 Identification of most requirements and scope, 

 Realistic estimates. 

 
CONSTRUCTION 

Construction phase encompasses on iterative implementation of the remaining lower risk and 

easier elements, and preparation for deployment. 

 
TRANSITION 

Transition phase focus on releasing the final product to the customers for usability. 
 

 

Fig: Phases of UP 

 
UP DISCIPLINES 

 
 UP describes work activities such as writing a use case within disciplines a set of 

activities and related artifacts in one subject area within requirement analysis. 

 Artifact-any work such as code, web graphics, database schema, text documents, 

diagrams, models etc. 



 

 

Several UP Disciplines 

1. Business Modeling- Domain Model artifact to visualize concepts in the 

application domain. 

2. Requirements- use case model and specification artifacts to capture functional 

and non-functional requirements. 

3. Design- All aspects of design, including overall architecture, objects, databases, 

networking. 

 
 

Fig: Sample UP Disciplines 

 

UML DIAGRAMS 

UML: 

 Unified Modeling Language(UML) is a standard notation for the modeling of real-world 

objects as s first step in developing an object oriented design methodology. 

 UML is a Visual language for specifying,constructing and documenting the artifacts of a 

system. 

 The Various UML diagrams are as follows, 

i. Use Case Diagram 

ii. Class Diagram 



 

 

iii. Interaction Diagram 

 Sequence Diagram 

 Collaboration Diagram or Communication Diagram 

iv. State Diagram 

v. Activity Diagram 

vi. Package Diagram 

vii. Component Diagram 

viii. Deployment Diagram 

 
Three ways to apply UML: 

 

1. UML as sketch: 

Informal and incomplete diagrams created to explore difficult parts of the problem. 

2. UML as blueprint: 

Detailed design diagram used for better understanding of code. 

3. UML as programming language: 

Complete executable specification of a software system in UML. 

 
Three perspectives to apply UML: 

 

1. Conceptual perspective: Diagrams describe the things of real world. 

2. Specification perspective: Diagrams describe software abstractions or components with 

specifications and interfaces. 

3. Implementation perspective: Diagrams describe software implementation in a 

particular technology. 

 
USE CASE DIAGRAM 

Use case diagrams are used to describe a set of actions (use cases) that some system or systems 

should or can perform in collaboration with one or more external users of the system (actors). 

Each use case should provide some observable and valuable result to the actors or other 

stakeholders of the system. 

Purpose: 

1. Used to gather requirements of a system 

2. Used to get an outside view of a system 

3. Identify external and internal factors influencing the system 

4. Show the interaction among the requirements through actors. 

Uses: 

1. Requirement analysis and high level design 

2. Model the context of a system 

3. Reverse engineering 

4. Forward engineering 



 

 

Notations: 

S.No Name Notation Description 

1 Actor  

 

Actors are the entities that interact with the 

system. 

2 System  
System 

The use cases in the system make up the total 

requirements of the system. 

3 Use Case 
 

 

Use Case describes the actions performed by the 

user. 

4 Generalization  A generalization relationship is used to represent 

inheritance relationship between model elements 

of same type. 

5 Include <<include>> An include relationship specifies how the 

behavior for the inclusion use case is inserted 

into the behavior defined for the base use case. 

6 Extend <<extend>> An extend relationship specifies how the 

behavior of the extension use case can be 

inserted into the behavior defined for the base 

use case. 

 
Sample Example - ATM System 

 

 
 



 

 

CLASS DIAGRAM: 

Class diagram is a static diagram. It represents the static view of an application. The class 

diagram describes the attributes and operations of a class and also the constraints imposed on 

the system. The class diagrams are widely used in the modeling of object oriented systems 

because they are the only UML diagrams which can be mapped directly with object oriented 

languages. 

 
Purpose: 

1. Analysis and design of the static view of an application 

2. Describe responsibilities of a system 

3. Base for Component and Deployment Diagrams 

4. Forward and Reverse Engineering 

Uses: 

1. Describes the static view of the system 

2. Shows the collaboration among the elements of the static view 

3. Describes the functionalities performed by the system. 

4. Construction of software applications using object oriented languages. 

Notations: 

S.No Name Notation Description 

1 Class  Class is an entity 

which describes a 

group of objects 

with same 

properties & 
behavior. 

2 Generalization 

 

Generalization 

refers to a 

relationship 

between two 

classes where one 

class is a 

specialized version 

of another. 

3 Association 
 

 

Association 

represent static 

relationships 

between classes. 

Class Name 

Attribute 

Operation 

 



 

 

 

4 Aggregation 

 

Aggregation is a 

vague kind of 

association in the 

UML that loosely 

suggests whole-part 

relationships. 

5 Composition 

 

Composition is a 

strong kind of 

whole-part 

aggregation. 

6 Multiplicity 

 

 
1 to 1 

 
1 to * 

 
* to * 

* to 1 

1 to 0… 2 

Multiplicity 

specifies the 

number of 

instances of one 

class that may 

relate to a single 

instance of an 

associated class. 

 

Sample Example – ATM System 
 

 



 

 

INTERACTION DIAGRAM 

Interaction diagrams are used to visualize the interactive behavior of the system. The Interactive 

behaviour is represented in UML by two diagrams namely, 

 Sequence Diagram- It emphasizes on time sequence of messages 

 Collaboration Diagram- It emphasizes on structural organization of the objects that 

send and receive messages. 

Purpose: 

1. To capture dynamic behaviour of a system 

2. To describe the message flow in the system 

3. To describe structural organization of the objects 

4. To describe interaction among objects 

 
I. SEQUENCE DIAGRAM 

Sequence diagram describes an interaction by focusing on the sequence of messages that 

are exchanged, along with their corresponding occurrence specifications on the lifelines. 

 
Uses: 

1. To model flow of control by time sequence 

2. To model flow of control by structural organizations 

3. Forward engineering 

4. Reverse engineering 

 
Notations: 

S.No Name Notation Description 

1 Lifeline   
 

 Lifeline represents the duration 

during which an object is alive 

and interacting with other 

objects in the system. 

 

2 Message  
 

To send message from one 

object to another. 

3 Object   
 

 It represents the existence of 

an object of a particular time. 
 

4 Self message  

 

Self message is a message by 

the object to itself. 



 

 

Sample Example – ATM System 
 
 

 

II. COLLABORATION DIAGRAM 

Collaboration or Communication diagram is also used to model the dynamic behaviour of 

the system. It emphasizes on structural organization of the objects that send and receive 

messages. 

Uses: 

1. Used to show the messages that flow from one object to another within the system and 

the order in which they happen. 

2. Used to track the source of the message from where it has been sent 

3. Used to provide relationships and interactions among software objects 

Notations: 

 S.No Name Notation Description 

1 Link  
 A Link is a connection 

path between two objects 

2 Message 
1:msg 

Communication between 

objects takes place 

through messages. A 

sequence number is added 

to show the sequential 

order of messages. 

 Object 1 2:msg Object 2  

3:msg 

 

 

 



 

 

 



 

 

 

3 Message 

Number 

Sequencing 

msg 1 
Object 1 

1:msg 2 
Object 2 

 
1.1:msg 3 

 

Object 3 

Numbers included along 

with the messages 

indicate the order of the 

message in an interaction. 

 

Sample Example – ATM System 
 

 

 

STATE DIAGRAM 

 A State diagram is used to describe the behaviour of the systems. State diagrams require 

that the system described is composed of a finite number of states. 

 State diagrams are used to give an abstract description of the behaviour of a system. This 

behaviour is analysed and represented in series of events, that could occur in one or more 

possible states. 



 

 

Purpose: 

1. It describes dynamic behavior of the objects of the system. 

2. It specifies the possible states, what transitions are allowed between states. 

3. It is used to describe the dependence of the functionality on the state of the 

system 

4. The state model describes those aspects of objects concerned with time and the 

sequencing of operations events. 

Uses: 

1. To model the object states of a system. 

2. To model the reactive system. Reactive system consists of reactive objects. 

3. To identify the events responsible for state changes. 

4. Forward and reverse engineering. 

Notations: 

S.No Name Notation Description 

1 Initial State 
 

It shows the starting state of 

object. 

2 Final State 
 

It shows the terminating state 

of object. 

3  
State 

 

 

Represents the state of object 

at an instant of time 

4 Transition  
 A transition is a directed 

relationship between a source 

state and a target state. 

 
Sample Example – ATM System 

 



 

 

ACTIVITY DIAGRAM 

An Activity diagram is basically a flowchart to represent the flow from one activity to another 

activity. Activity diagrams are typically used for business process modeling, for modeling the 

logic captured by a single use case or usage scenario or for modeling the detailed logic of a 

business rule. 

 
Purpose: 

1. Draw the activity flow of a system 

2. Describe the sequence from one activity to another 

3. Describe the parallel, branched and concurrent flow of the system. 

 
How to apply Activity Diagrams? 

1. Activity diagrams show the flow of activities through the system. 

2. Diagrams are read from top to bottom and have branches and forks to describe conditions 

and parallel activities. 

3. A fork is used when multiple activities are occurring at the same time 

4. The branch describes what activities will take place base on set of conditions 

5. All branches at some point are followed by a merge to indicate the end of the conditional 

behavior started by that branch 

6. After the merge all of the parallel activities must be combined by a join before 

transitioning into the final activity state. 

7. Activity diagrams are applied to visualize business workflows and processes and use 

cases. 

 
Uses: 

1. Visualize business processes and workflows. 

2. Model work flow by using activities. 

3. Model business requirements. 

4. High level understanding of the system’s functionalities. 

5. Investigate business requirements at a later stage. 

 
Notations: 

S.No Name Notation Description 

1 Activity  

 

Represents an individual activity of a 

system 

2 Initial State 
 

It shows the starting state of object. 

3 Final State 
 

It shows the terminating state of object. 

4 Transition  

 Represents flow of data from one 

activity to another. 



 

 

 

5 Decision  

 

Decision node is a control node that 

accepts tokens on one or more incoming 

edges and selects outgoing edge from 

two or more outgoing flows. 

6  

 
Fork 

 

 

A fork represents a single incoming 

transition and multiple outgoing 

transitions exhibiting parallel behavior 

7  

 
Join 

 

 

A join in the activity diagram 

synchronizes the parallel behavior 

started at a fork. 

 

Sample Example – ATM System 



 

 

PACKAGE DIAGRAM 

 Package diagrams organize the elements of a system into related groups to minimize 

dependencies among them. 

 UML package diagrams are used to illustrate the logical architecture of a system, the 

layers, subsystems, packages etc. 

Package is a namespace used to group together elements that are semantically related and might 

change together. It is a general purpose mechanism to organize elements into groups to provide 

better structure for system model. 

 
Uses: 

1. Package diagrams can use packages containing use cases to illustrate the functionality of 

a software system. 

2. Package diagrams can use packages that represent the different layers of a software 

system to illustrate the layered architecture of a software system. 

 
Notations: 

S.No Name Notation Description 

1 Package  

 

A package is a group of elements 

with common theme. 

 
COMPONENT DIAGRAM 

Component diagrams are used to model physical aspects of a system (elements like executables, 

libraries, files, documents etc.).Component diagrams are used to visualize the organization and 

relationships among the components in a system. 

 
Purpose: 

1. Visualize the components of a system 

2. Construct executables by using forward and reverse engineering 

3. Describe the organization and relationships of the components. 

Uses: 

1. Model the components of a system 

2. Model database schema 

3. Model executables of an application 

4. Model system’s source code. 



 

 

Notations: 

S.No Name Notation Description 

1 Component 
 

 

A Component is a 

physical building 

block of the system 

 
Sample Example – ATM System 

 

 

DEPLOYMENT DIAGRAM 

 Deployment diagram is defined as assignment of concrete software artifacts (executable 

files) to computational nodes (processing services). 

 Deployment of software elements to the physical architecture and the communication 

(network) between physical elements. 

Purpose: 

1. Visualize the hardware topology of a system. 

2. Describe the hardware components used to deploy software components. 

3. Describe the runtime processing nodes. 

Uses: 

1. To model the hardware topology of a system. 

2. To model the embedded system. 

3. To model the hardware details for a client/server system. 

4. To model the hardware details of a distributed application. 

5. Forward and Reverse engineering. 



 

 

Notations: 
 
 

S.No Name Notation Description 

1 Node  

 

A single node in a 

deployment diagram 

represents multiple physical 

nodes, such as cluster of 

database servers. 

 
Sample Example – ATM System 

 

 



 

 

          



 

 

 



     UNIT-4 

SOFTWARE TESTING 

Testing is the process of evaluating a system or its component(s) with the intent to find whether it 
satisfies the specified requirements or not. 

Testing is executing a system in order to identify any gaps, errors, or missing requirements in contrary to 
the actual requirements. 

This tutorial will give you a basic understanding on software testing, its types, methods, levels, and other 
related terminologies. 

Why to Learn Software Testing? 

In the IT industry, large companies have a team with responsibilities to evaluate the developed software 
in context of the given requirements. Moreover, developers also conduct testing which is called Unit 
Testing. In most cases, the following professionals are involved in testing a system within their 
respective capacities − 

 Software Tester 

 Software Developer 

 Project Lead/Manager 

 End User 

Different companies have different designations for people who test the software on the basis of their 
experience and knowledge such as Software Tester, Software Quality Assurance Engineer, QA Analyst, 
etc. 

Applications of Software Testing 

 Cost Effective Development - Early testing saves both time and cost in many aspects, however 
reducing the cost without testing may result in improper design of a software application 
rendering the product useless. 

 Product Improvement - During the SDLC phases, testing is never a time-consuming process. 
However diagnosing and fixing the errors identified during proper testing is a time-consuming 
but productive activity. 

 Test Automation - Test Automation reduces the testing time, but it is not possible to start test 
automation at any time during software development. Test automaton should be started when 
the software has been manually tested and is stable to some extent. Moreover, test automation 
can never be used if requirements keep changing. 

 Quality Check - Software testing helps in determining following set of properties of any software 
such as 

o Functionality 

o Reliability 

o Usability 

o Efficiency 

o Maintainability 



o Portability 

Audience 

This tutorial is designed for software testing professionals who would like to understand the Testing 
Framework in detail along with its types, methods, and levels. This tutorial provides enough ingredients 
to start with the software testing process from where you can take yourself to higher levels of expertise. 

Prerequisites 

Before proceeding with this tutorial, you should have a basic understanding of the software development 
life cycle (SDLC). In addition, you should have a basic understanding of software programming using 
any programming language. 

What is Testing? 

Testing is the process of evaluating a system or its component(s) with the intent to find whether it 
satisfies the specified requirements or not. In simple words, testing is executing a system in order to 
identify any gaps, errors, or missing requirements in contrary to the actual requirements. 

According to ANSI/IEEE 1059 standard, Testing can be defined as - A process of analyzing a software 
item to detect the differences between existing and required conditions (that is defects/errors/bugs) and 
to evaluate the features of the software item. 

Who does Testing? 

It depends on the process and the associated stakeholders of the project(s). In the IT industry, large 
companies have a team with responsibilities to evaluate the developed software in context of the given 
requirements. Moreover, developers also conduct testing which is called Unit Testing. In most cases, 
the following professionals are involved in testing a system within their respective capacities − 

 Software Tester 

 Software Developer 

 Project Lead/Manager 

 End User 

Different companies have different designations for people who test the software on the basis of their 
experience and knowledge such as Software Tester, Software Quality Assurance Engineer, QA Analyst, 
etc. 

It is not possible to test the software at any time during its cycle. The next two sections state when 
testing should be started and when to end it during the SDLC. 

When to Start Testing? 

An early start to testing reduces the cost and time to rework and produce error-free software that is 
delivered to the client. However in Software Development Life Cycle (SDLC), testing can be started from 
the Requirements Gathering phase and continued till the deployment of the software. 

It also depends on the development model that is being used. For example, in the Waterfall model, 
formal testing is conducted in the testing phase; but in the incremental model, testing is performed at the 
end of every increment/iteration and the whole application is tested at the end. 



Testing is done in different forms at every phase of SDLC − 

 During the requirement gathering phase, the analysis and verification of requirements are also 
considered as testing. 

 Reviewing the design in the design phase with the intent to improve the design is also 
considered as testing. 

 Testing performed by a developer on completion of the code is also categorized as testing. 

When to Stop Testing? 

It is difficult to determine when to stop testing, as testing is a never-ending process and no one can claim 
that a software is 100% tested. The following aspects are to be considered for stopping the testing 
process − 

 Testing Deadlines 

 Completion of test case execution 

 Completion of functional and code coverage to a certain point 

 Bug rate falls below a certain level and no high-priority bugs are identified 

 Management decision 

Verification & Validation 

These two terms are very confusing for most people, who use them interchangeably. The following table 
highlights the differences between verification and validation. 

Sr.No. Verification Validation 

1 Verification addresses the concern: "Are 
you building it right?" 

Validation addresses the concern: 
"Are you building the right thing?" 

2 Ensures that the software system meets 
all the functionality. 

Ensures that the functionalities meet 
the intended behavior. 

3 Verification takes place first and includes 
the checking for documentation, code, etc. 

Validation occurs after verification 
and mainly involves the checking of 
the overall product. 

4 Done by developers. Done by testers. 

5 It has static activities, as it includes 
collecting reviews, walkthroughs, and 
inspections to verify a software. 

It has dynamic activities, as it 
includes executing the software 
against the requirements. 



6 It is an objective process and no subjective 
decision should be needed to verify a 
software. 

It is a subjective process and 
involves subjective decisions on how 
well a software works. 

 

Many organizations around the globe develop and implement different standards to improve the quality 
needs of their software. This chapter briefly describes some of the widely used standards related to 
Quality Assurance and Testing. 

ISO/IEC 9126 

This standard deals with the following aspects to determine the quality of a software application − 

 Quality model 

 External metrics 

 Internal metrics 

 Quality in use metrics 

This standard presents some set of quality attributes for any software such as − 

 Functionality 

 Reliability 

 Usability 

 Efficiency 

 Maintainability 

 Portability 

The above-mentioned quality attributes are further divided into sub-factors, which you can study when 
you study the standard in detail. 

ISO/IEC 9241-11 

Part 11 of this standard deals with the extent to which a product can be used by specified users to 
achieve specified goals with Effectiveness, Efficiency and Satisfaction in a specified context of use. 

This standard proposed a framework that describes the usability components and the relationship 
between them. In this standard, the usability is considered in terms of user performance and satisfaction. 
According to ISO 9241-11, usability depends on context of use and the level of usability will change as 
the context changes. 

ISO/IEC 25000:2005 

ISO/IEC 25000:2005 is commonly known as the standard that provides the guidelines for Software 
Quality Requirements and Evaluation (SQuaRE). This standard helps in organizing and enhancing the 
process related to software quality requirements and their evaluations. In reality, ISO-25000 replaces the 
two old ISO standards, i.e. ISO-9126 and ISO-14598. 

SQuaRE is divided into sub-parts such as − 



 ISO 2500n − Quality Management Division 

 ISO 2501n − Quality Model Division 

 ISO 2502n − Quality Measurement Division 

 ISO 2503n − Quality Requirements Division 

 ISO 2504n − Quality Evaluation Division 

The main contents of SQuaRE are − 

 Terms and definitions 

 Reference Models 

 General guide 

 Individual division guides 

 Standard related to Requirement Engineering (i.e. specification, planning, measurement and 
evaluation process) 

ISO/IEC 12119 

This standard deals with software packages delivered to the client. It does not focus or deal with the 
clients’ production process. The main contents are related to the following items − 

 Set of requirements for software packages. 

 Instructions for testing a delivered software package against the specified requirements. 

Miscellaneous 

Some of the other standards related to QA and Testing processes are mentioned below − 

Sr.No Standard & Description 

1 
IEEE 829 

A standard for the format of documents used in different stages of software 
testing. 

2 
IEEE 1061 

A methodology for establishing quality requirements, identifying, implementing, 
analyzing, and validating the process, and product of software quality metrics. 

3 
IEEE 1059 

Guide for Software Verification and Validation Plans. 

4 
IEEE 1008 

A standard for unit testing. 



5 
IEEE 1012 

A standard for Software Verification and Validation. 

6 
IEEE 1028 

A standard for software inspections. 

7 
IEEE 1044 

A standard for the classification of software anomalies. 

8 
IEEE 1044-1 

A guide for the classification of software anomalies. 

9 
IEEE 830 

A guide for developing system requirements specifications. 

10 
IEEE 730 

A standard for software quality assurance plans. 

11 
IEEE 1061 

A standard for software quality metrics and methodology. 

12 
IEEE 12207 

A standard for software life cycle processes and life cycle data. 

13 
BS 7925-1 

A vocabulary of terms used in software testing. 

14 
BS 7925-2 

A standard for software component testing. 

This section describes the different types of testing that may be used to test a software during SDLC. 

Manual Testing 

Manual testing includes testing a software manually, i.e., without using any automated tool or any script. 
In this type, the tester takes over the role of an end-user and tests the software to identify any 
unexpected behavior or bug. There are different stages for manual testing such as unit testing, 
integration testing, system testing, and user acceptance testing. 



Testers use test plans, test cases, or test scenarios to test a software to ensure the completeness of 
testing. Manual testing also includes exploratory testing, as testers explore the software to identify errors 
in it. 

Automation Testing 

Automation testing, which is also known as Test Automation, is when the tester writes scripts and uses 
another software to test the product. This process involves automation of a manual process. Automation 
Testing is used to re-run the test scenarios that were performed manually, quickly, and repeatedly. 

 

Apart from regression testing, automation testing is also used to test the application from load, 
performance, and stress point of view. It increases the test coverage, improves accuracy, and saves 
time and money in comparison to manual testing. 

What to Automate? 

It is not possible to automate everything in a software. The areas at which a user can make transactions 
such as the login form or registration forms, any area where large number of users can access the 
software simultaneously should be automated. 

Furthermore, all GUI items, connections with databases, field validations, etc. can be efficiently tested by 
automating the manual process. 

When to Automate? 

Test Automation should be used by considering the following aspects of a software − 

 Large and critical projects 

 Projects that require testing the same areas frequently 

 Requirements not changing frequently 

 Accessing the application for load and performance with many virtual users 

 Stable software with respect to manual testing 

 Availability of time 

How to Automate? 

Automation is done by using a supportive computer language like VB scripting and an automated 
software application. There are many tools available that can be used to write automation scripts. Before 
mentioning the tools, let us identify the process that can be used to automate the testing process − 

 Identifying areas within a software for automation 

 Selection of appropriate tool for test automation 

 Writing test scripts 

 Development of test suits 

 Execution of scripts 

 Create result reports 



 Identify any potential bug or performance issues 

Software Testing Tools 

The following tools can be used for automation testing − 

 HP Quick Test Professional 

 Selenium 

 IBM Rational Functional Tester 

 SilkTest 

 TestComplete 

 Testing Anywhere 

 WinRunner 

 LoadRunner 

 Visual Studio Test Professional 

 WATIR 

 There are different methods that can be used for software testing. This chapter briefly describes 
the methods available. 

 Black-Box Testing 
 The technique of testing without having any knowledge of the interior workings of the application 

is called black-box testing. The tester is oblivious to the system architecture and does not have 
access to the source code. Typically, while performing a black-box test, a tester will interact with 
the system's user interface by providing inputs and examining outputs without knowing how and 
where the inputs are worked upon. 

 The following table lists the advantages and disadvantages of black-box testing. 

Advantages Disadvantages 

Well suited and efficient for large code segments. Limited coverage, since only a 
selected number of test scenarios is 
actually performed. 

Code access is not required. Inefficient testing, due to the fact that 
the tester only has limited knowledge 
about an application. 

Clearly separates user's perspective from the 
developer's perspective through visibly defined 
roles. 

Blind coverage, since the tester 
cannot target specific code 
segments or errorprone areas. 

Large numbers of moderately skilled testers can 
test the application with no knowledge of 
implementation, programming language, or 
operating systems. 

The test cases are difficult to design. 



 White-Box Testing 
 White-box testing is the detailed investigation of internal logic and structure of the code. White-

box testing is also called glass testing or open-box testing. In order to perform white-
box testing on an application, a tester needs to know the internal workings of the code. 

 The tester needs to have a look inside the source code and find out which unit/chunk of the code 
is behaving inappropriately. 

 The following table lists the advantages and disadvantages of white-box testing. 

Advantages Disadvantages 

As the tester has knowledge of the source 
code, it becomes very easy to find out 
which type of data can help in testing the 
application effectively. 

Due to the fact that a skilled tester is needed 
to perform white-box testing, the costs are 
increased. 

It helps in optimizing the code. Sometimes it is impossible to look into every 
nook and corner to find out hidden errors that 
may create problems, as many paths will go 
untested. 

Extra lines of code can be removed which 
can bring in hidden defects. 

It is difficult to maintain white-box testing, as 
it requires specialized tools like code 
analyzers and debugging tools. 

Due to the tester's knowledge about the 
code, maximum coverage is attained 
during test scenario writing. 

 

 Grey-Box Testing 
 Grey-box testing is a technique to test the application with having a limited knowledge of the 

internal workings of an application. In software testing, the phrase the more you know, the better 
carries a lot of weight while testing an application. 

 Mastering the domain of a system always gives the tester an edge over someone with limited 
domain knowledge. Unlike black-box testing, where the tester only tests the application's user 
interface; in grey-box testing, the tester has access to design documents and the database. 
Having this knowledge, a tester can prepare better test data and test scenarios while making a 
test plan. 

Advantages Disadvantages 

Offers combined benefits of black-box and 
white-box testing wherever possible. 

Since the access to source code is not 
available, the ability to go over the code 
and test coverage is limited. 

Grey box testers don't rely on the source 
code; instead they rely on interface definition 

The tests can be redundant if the software 



and functional specifications. designer has already run a test case. 

Based on the limited information available, a 
grey-box tester can design excellent test 
scenarios especially around communication 
protocols and data type handling. 

Testing every possible input stream is 
unrealistic because it would take an 
unreasonable amount of time; therefore, 
many program paths will go untested. 

The test is done from the point of view of the 
user and not the designer. 

 

 A Comparison of Testing Methods 
 The following table lists the points that differentiate black-box testing, grey-box testing, and 

white-box testing. 

Black-Box Testing Grey-Box Testing White-Box Testing 

The internal workings of an 
application need not be 
known. 

The tester has limited 
knowledge of the internal 
workings of the application. 

Tester has full knowledge 
of the internal workings of 
the application. 

Also known as closed-box 
testing, data-driven testing, 
or functional testing. 

Also known as translucent 
testing, as the tester has 
limited knowledge of the 
insides of the application. 

Also known as clear-box 
testing, structural testing, 
or code-based testing. 

Performed by end-users and 
also by testers and 
developers. 

Performed by end-users and 
also by testers and 
developers. 

Normally done by testers 
and developers. 

Testing is based on external 
expectations - Internal 
behavior of the application is 
unknown. 

Testing is done on the basis of 
high-level database diagrams 
and data flow diagrams. 

Internal workings are fully 
known and the tester can 
design test data 
accordingly. 

It is exhaustive and the least 
time-consuming. 

Partly time-consuming and 
exhaustive. 

The most exhaustive and 
time-consuming type of 
testing. 

Not suited for algorithm 
testing. 

Not suited for algorithm 
testing. 

Suited for algorithm 
testing. 

This can only be done by Data domains and internal 
boundaries can be tested, if 

Data domains and internal 
boundaries can be better 



trial-and-error method. known. tested. 

There are different levels during the process of testing. In this chapter, a brief description is provided 
about these levels. 

Levels of testing include different methodologies that can be used while conducting software testing. The 
main levels of software testing are − 

 Functional Testing 

 Non-functional Testing 

Functional Testing 

This is a type of black-box testing that is based on the specifications of the software that is to be tested. 
The application is tested by providing input and then the results are examined that need to conform to 
the functionality it was intended for. Functional testing of a software is conducted on a complete, 
integrated system to evaluate the system's compliance with its specified requirements. 

There are five steps that are involved while testing an application for functionality. 

Steps Description 

I The determination of the functionality that the intended application is meant to 
perform. 

II The creation of test data based on the specifications of the application. 

III The output based on the test data and the specifications of the application. 

IV The writing of test scenarios and the execution of test cases. 

V The comparison of actual and expected results based on the executed test cases. 

An effective testing practice will see the above steps applied to the testing policies of every organization 
and hence it will make sure that the organization maintains the strictest of standards when it comes to 
software quality. 

Unit Testing 

This type of testing is performed by developers before the setup is handed over to the testing team to 
formally execute the test cases. Unit testing is performed by the respective developers on the individual 
units of source code assigned areas. The developers use test data that is different from the test data of 
the quality assurance team. 

The goal of unit testing is to isolate each part of the program and show that individual parts are correct in 
terms of requirements and functionality. 



Limitations of Unit Testing 

Testing cannot catch each and every bug in an application. It is impossible to evaluate every execution 
path in every software application. The same is the case with unit testing. 

There is a limit to the number of scenarios and test data that a developer can use to verify a source 
code. After having exhausted all the options, there is no choice but to stop unit testing and merge the 
code segment with other units. 

Integration Testing 

Integration testing is defined as the testing of combined parts of an application to determine if they 
function correctly. Integration testing can be done in two ways: Bottom-up integration testing and Top-
down integration testing. 

Sr.No. Integration Testing Method 

1 
Bottom-up integration 

This testing begins with unit testing, followed by tests of progressively higher-
level combinations of units called modules or builds. 

2 
Top-down integration 

In this testing, the highest-level modules are tested first and progressively, lower-
level modules are tested thereafter. 

In a comprehensive software development environment, bottom-up testing is usually done first, followed 
by top-down testing. The process concludes with multiple tests of the complete application, preferably in 
scenarios designed to mimic actual situations. 

System Testing 

System testing tests the system as a whole. Once all the components are integrated, the application as 
a whole is tested rigorously to see that it meets the specified Quality Standards. This type of testing is 
performed by a specialized testing team. 

System testing is important because of the following reasons − 

 System testing is the first step in the Software Development Life Cycle, where the application is 
tested as a whole. 

 The application is tested thoroughly to verify that it meets the functional and technical 
specifications. 

 The application is tested in an environment that is very close to the production environment 
where the application will be deployed. 

 System testing enables us to test, verify, and validate both the business requirements as well as 
the application architecture. 

Regression Testing 



Whenever a change in a software application is made, it is quite possible that other areas within the 
application have been affected by this change. Regression testing is performed to verify that a fixed bug 
hasn't resulted in another functionality or business rule violation. The intent of regression testing is to 
ensure that a change, such as a bug fix should not result in another fault being uncovered in the 
application. 

Regression testing is important because of the following reasons − 

 Minimize the gaps in testing when an application with changes made has to be tested. 

 Testing the new changes to verify that the changes made did not affect any other area of the 
application. 

 Mitigates risks when regression testing is performed on the application. 

 Test coverage is increased without compromising timelines. 

 Increase speed to market the product. 

Acceptance Testing 

This is arguably the most important type of testing, as it is conducted by the Quality Assurance Team 
who will gauge whether the application meets the intended specifications and satisfies the client’s 
requirement. The QA team will have a set of pre-written scenarios and test cases that will be used to test 
the application. 

More ideas will be shared about the application and more tests can be performed on it to gauge its 
accuracy and the reasons why the project was initiated. Acceptance tests are not only intended to point 
out simple spelling mistakes, cosmetic errors, or interface gaps, but also to point out any bugs in the 
application that will result in system crashes or major errors in the application. 

By performing acceptance tests on an application, the testing team will reduce how the application will 
perform in production. There are also legal and contractual requirements for acceptance of the system. 

Alpha Testing 

This test is the first stage of testing and will be performed amongst the teams (developer and QA teams). 
Unit testing, integration testing and system testing when combined together is known as alpha testing. 
During this phase, the following aspects will be tested in the application − 

 Spelling Mistakes 

 Broken Links 

 Cloudy Directions 

 The Application will be tested on machines with the lowest specification to test loading times and 
any latency problems. 

Beta Testing 

This test is performed after alpha testing has been successfully performed. In beta testing, a sample of 
the intended audience tests the application. Beta testing is also known as pre-release testing. Beta test 
versions of software are ideally distributed to a wide audience on the Web, partly to give the program a 
"real-world" test and partly to provide a preview of the next release. In this phase, the audience will be 
testing the following − 



 Users will install, run the application and send their feedback to the project team. 

 Typographical errors, confusing application flow, and even crashes. 

 Getting the feedback, the project team can fix the problems before releasing the software to the 
actual users. 

 The more issues you fix that solve real user problems, the higher the quality of your application 
will be. 

 Having a higher-quality application when you release it to the general public will increase 
customer satisfaction. 

Non-Functional Testing 

This section is based upon testing an application from its non-functional attributes. Non-functional testing 
involves testing a software from the requirements which are nonfunctional in nature but important such 
as performance, security, user interface, etc. 

Some of the important and commonly used non-functional testing types are discussed below. 

Performance Testing 

It is mostly used to identify any bottlenecks or performance issues rather than finding bugs in a software. 
There are different causes that contribute in lowering the performance of a software − 

 Network delay 

 Client-side processing 

 Database transaction processing 

 Load balancing between servers 

 Data rendering 

Performance testing is considered as one of the important and mandatory testing type in terms of the 
following aspects − 

 Speed (i.e. Response Time, data rendering and accessing) 

 Capacity 

 Stability 

 Scalability 

Performance testing can be either qualitative or quantitative and can be divided into different sub-types 
such as Load testing and Stress testing. 

Load Testing 

It is a process of testing the behavior of a software by applying maximum load in terms of software 
accessing and manipulating large input data. It can be done at both normal and peak load conditions. 
This type of testing identifies the maximum capacity of software and its behavior at peak time. 

Most of the time, load testing is performed with the help of automated tools such as Load Runner, 
AppLoader, IBM Rational Performance Tester, Apache JMeter, Silk Performer, Visual Studio Load Test, 
etc. 



Virtual users (VUsers) are defined in the automated testing tool and the script is executed to verify the 
load testing for the software. The number of users can be increased or decreased concurrently or 
incrementally based upon the requirements. 

Stress Testing 

Stress testing includes testing the behavior of a software under abnormal conditions. For example, it 
may include taking away some resources or applying a load beyond the actual load limit. 

The aim of stress testing is to test the software by applying the load to the system and taking over the 
resources used by the software to identify the breaking point. This testing can be performed by testing 
different scenarios such as − 

 Shutdown or restart of network ports randomly 

 Turning the database on or off 

 Running different processes that consume resources such as CPU, memory, server, etc. 

Usability Testing 

Usability testing is a black-box technique and is used to identify any error(s) and improvements in the 
software by observing the users through their usage and operation. 

According to Nielsen, usability can be defined in terms of five factors, i.e. efficiency of use, learn-ability, 
memory-ability, errors/safety, and satisfaction. According to him, the usability of a product will be good 
and the system is usable if it possesses the above factors. 

Nigel Bevan and Macleod considered that usability is the quality requirement that can be measured as 
the outcome of interactions with a computer system. This requirement can be fulfilled and the end-user 
will be satisfied if the intended goals are achieved effectively with the use of proper resources. 

Molich in 2000 stated that a user-friendly system should fulfill the following five goals, i.e., easy to Learn, 
easy to remember, efficient to use, satisfactory to use, and easy to understand. 

In addition to the different definitions of usability, there are some standards and quality models and 
methods that define usability in the form of attributes and sub-attributes such as ISO-9126, ISO-9241-11, 
ISO-13407, and IEEE std.610.12, etc. 

UI vs Usability Testing 

UI testing involves testing the Graphical User Interface of the Software. UI testing ensures that the GUI 
functions according to the requirements and tested in terms of color, alignment, size, and other 
properties. 

On the other hand, usability testing ensures a good and user-friendly GUI that can be easily handled. UI 
testing can be considered as a sub-part of usability testing. 

Security Testing 

Security testing involves testing a software in order to identify any flaws and gaps from security and 
vulnerability point of view. Listed below are the main aspects that security testing should ensure − 

 Confidentiality 

 Integrity 



 Authentication 

 Availability 

 Authorization 

 Non-repudiation 

 Software is secure against known and unknown vulnerabilities 

 Software data is secure 

 Software is according to all security regulations 

 Input checking and validation 

 SQL insertion attacks 

 Injection flaws 

 Session management issues 

 Cross-site scripting attacks 

 Buffer overflows vulnerabilities 

 Directory traversal attacks 

Portability Testing 

Portability testing includes testing a software with the aim to ensure its reusability and that it can be 
moved from another software as well. Following are the strategies that can be used for portability testing 
− 

 Transferring an installed software from one computer to another. 

 Building executable (.exe) to run the software on different platforms. 

Portability testing can be considered as one of the sub-parts of system testing, as this testing type 
includes overall testing of a software with respect to its usage over different environments. Computer 
hardware, operating systems, and browsers are the major focus of portability testing. Some of the pre-
conditions for portability testing are as follows − 

 Software should be designed and coded, keeping in mind the portability requirements. 

 Unit testing has been performed on the associated components. 

 Integration testing has been performed. 

 Test environment has been established. 

Testing documentation involves the documentation of artifacts that should be developed before or during 
the testing of Software. 

Documentation for software testing helps in estimating the testing effort required, test coverage, 
requirement tracking/tracing, etc. This section describes some of the commonly used documented 
artifacts related to software testing such as − 

 Test Plan 

 Test Scenario 

 Test Case 



 Traceability Matrix 

Test Plan 

A test plan outlines the strategy that will be used to test an application, the resources that will be used, 
the test environment in which testing will be performed, and the limitations of the testing and the 
schedule of testing activities. Typically the Quality Assurance Team Lead will be responsible for writing a 
Test Plan. 

A test plan includes the following − 

 Introduction to the Test Plan document 

 Assumptions while testing the application 

 List of test cases included in testing the application 

 List of features to be tested 

 What sort of approach to use while testing the software 

 List of deliverables that need to be tested 

 The resources allocated for testing the application 

 Any risks involved during the testing process 

 A schedule of tasks and milestones to be achieved 

Test Scenario 

It is a one line statement that notifies what area in the application will be tested. Test scenarios are used 
to ensure that all process flows are tested from end to end. A particular area of an application can have 
as little as one test scenario to a few hundred scenarios depending on the magnitude and complexity of 
the application. 

The terms 'test scenario' and 'test cases' are used interchangeably, however a test scenario has several 
steps, whereas a test case has a single step. Viewed from this perspective, test scenarios are test 
cases, but they include several test cases and the sequence that they should be executed. Apart from 
this, each test is dependent on the output from the previous test. 

 

Test Case 

Test cases involve a set of steps, conditions, and inputs that can be used while performing testing tasks. 
The main intent of this activity is to ensure whether a software passes or fails in terms of its functionality 
and other aspects. There are many types of test cases such as functional, negative, error, logical test 
cases, physical test cases, UI test cases, etc. 

Furthermore, test cases are written to keep track of the testing coverage of a software. Generally, there 
are no formal templates that can be used during test case writing. However, the following components 
are always available and included in every test case − 

 Test case ID 

 Product module 

 Product version 



 Revision history 

 Purpose 

 Assumptions 

 Pre-conditions 

 Steps 

 Expected outcome 

 Actual outcome 

 Post-conditions 

Many test cases can be derived from a single test scenario. In addition, sometimes multiple test cases 
are written for a single software which are collectively known as test suites. 

Traceability Matrix 

Traceability Matrix (also known as Requirement Traceability Matrix - RTM) is a table that is used to trace 
the requirements during the Software Development Life Cycle. It can be used for forward tracing (i.e. 
from Requirements to Design or Coding) or backward (i.e. from Coding to Requirements). There are 
many user-defined templates for RTM. 

Each requirement in the RTM document is linked with its associated test case so that testing can be 
done as per the mentioned requirements. Furthermore, Bug ID is also included and linked with its 
associated requirements and test case. The main goals for this matrix are − 

 Make sure the software is developed as per the mentioned requirements. 

 Helps in finding the root cause of any bug. 

 Helps in tracing the developed documents during different phases of SDLC. 

What is Structural Testing ? 

Structural testing, also known as glass box testing or white box testing is an approach where the tests 
are derived from the knowledge of the software's structure or internal implementation. 

The other names of structural testing includes clear box testing, open box testing, logic driven testing or 
path driven testing. 

Structural Testing Techniques: 

 Statement Coverage - This technique is aimed at exercising all programming statements with 
minimal tests. 

 Branch Coverage - This technique is running a series of tests to ensure that all branches are 
tested at least once. 

 Path Coverage - This technique corresponds to testing all possible paths which means that 
each statement and branch are covered. 

Calculating Structural Testing Effectiveness: 

Statement Testing = (Number of Statements Exercised / Total Number of Statements) 

x 100 % 

 



Branch Testing = (Number of decisions outcomes tested / Total Number of decision 

Outcomes) x 100 % 

 

Path Coverage = (Number paths exercised / Total Number of paths in the program) x 

100 % 

Advantages of Structural Testing: 

 Forces test developer to reason carefully about implementation 

 Reveals errors in "hidden" code 

 Spots the Dead Code or other issues with respect to best programming practices. 

Disadvantages of Structural Box Testing: 

 Expensive as one has to spend both time and money to perform white box testing. 

 Every possibility that few lines of code is missed accidentally. 

 Indepth knowledge about the programming language is necessary to perform white box testing. 

What is Structured Walkthrough? 

A structured walkthrough, a static testing technique performed in an organized manner between a group 
of peers to review and discuss the technical aspects of software development process. The main 
objective in a structured walkthrough is to find defects inorder to improve the quality of the product. 

Structured walkthroughs are usually NOT used for technical discussions or to discuss the solutions for 
the issues found. As explained, the aim is to detect error and not to correct errors. When the 
walkthrough is finished, the author of the output is responsible for fixing the issues. 

Benefits: 

 Saves time and money as defects are found and rectified very early in the lifecycle. 

 This provides value-added comments from reviewers with different technical backgrounds and 
experience. 

 It notifies the project management team about the progress of the development process. 

 It creates awareness about different development or maintenance methodologies which can 
provide a professional growth to participants. 

Structured Walkthrough Participants: 

 Author - The Author of the document under review. 

 Presenter - The presenter usually develops the agenda for the walkthrough and presents the 
output being reviewed. 

 Moderator - The moderator facilitates the walkthrough session, ensures the walkthrough agenda 
is followed, and encourages all the reviewers to participate. 



 Reviewers - The reviewers evaluate the document under test to determine if it is technically 
accurate. 

 Scribe - The scribe is the recorder of the structured walkthrough outcomes who records the 
issues identified and any other technical comments, suggestions, and unresolved questions. 

What is Mutation Testing? 

Mutation testing is a structural testing technique, which uses the structure of the code to guide the 
testing process. On a very high level, it is the process of rewriting the source code in small ways in order 
to remove the redundancies in the source code 

These ambiguities might cause failures in the software if not fixed and can easily pass through testing 
phase undetected. 

Mutation Testing Benefits: 

Following benefits are experienced, if mutation testing is adopted: 

 It brings a whole new kind of errors to the developer's attention. 

 It is the most powerful method to detect hidden defects, which might be impossible to identify 
using the conventional testing techniques. 

 Tools such as Insure++ help us to find defects in the code using the state-of-the-art. 

 Increased customer satisfaction index as the product would be less buggy. 

 Debugging and Maintaining the product would be more easier than ever. 

Mutation Testing Types: 

 Value Mutations: An attempt to change the values to detect errors in the programs. We usually 
change one value to a much larger value or one value to a much smaller value. The most 
common strategy is to change the constants. 

 Decision Mutations: The decisions/conditions are changed to check for the design errors. 
Typically, one changes the arithmetic operators to locate the defects and also we can consider 
mutating all relational operators and logical operators (AND, OR , NOT) 

 Statement Mutations: Changes done to the statements by deleting or duplicating the line which 
might arise when a developer is copy pasting the code from somewhere else. 

Software Maintenance 

Software maintenance is widely accepted part of SDLC now a days. It stands for all the modifications 
and updations done after the delivery of software product. There are number of reasons, why 
modifications are required, some of them are briefly mentioned below: 

 Market Conditions - Policies, which changes over the time, such as taxation and newly 
introduced constraints like, how to maintain bookkeeping, may trigger need for modification. 

 Client Requirements - Over the time, customer may ask for new features or functions in the 
software. 

 Host Modifications - If any of the hardware and/or platform (such as operating system) of the 
target host changes, software changes are needed to keep adaptability. 



 Organization Changes - If there is any business level change at client end, such as reduction of 
organization strength, acquiring another company, organization venturing into new business, 
need to modify in the original software may arise. 

Types of maintenance 

In a software lifetime, type of maintenance may vary based on its nature. It may be just a routine 
maintenance tasks as some bug discovered by some user or it may be a large event in itself based on 
maintenance size or nature. Following are some types of maintenance based on their characteristics: 

 Corrective Maintenance - This includes modifications and updations done in order to correct or 
fix problems, which are either discovered by user or concluded by user error reports. 

 Adaptive Maintenance - This includes modifications and updations applied to keep the software 
product up-to date and tuned to the ever changing world of technology and business 
environment. 

 Perfective Maintenance - This includes modifications and updates done in order to keep the 
software usable over long period of time. It includes new features, new user requirements for 
refining the software and improve its reliability and performance. 

 Preventive Maintenance - This includes modifications and updations to prevent future problems 
of the software. It aims to attend problems, which are not significant at this moment but may 
cause serious issues in future. 

Cost of Maintenance 

Reports suggest that the cost of maintenance is high. A study on estimating software maintenance found 
that the cost of maintenance is as high as 67% of the cost of entire software process cycle. 

 

On an average, the cost of software maintenance is more than 50% of all SDLC phases. There are 
various factors, which trigger maintenance cost go high, such as: 

Real-world factors affecting Maintenance Cost 

 The standard age of any software is considered up to 10 to 15 years. 



 Older softwares, which were meant to work on slow machines with less memory and storage 
capacity cannot keep themselves challenging against newly coming enhanced softwares on 
modern hardware. 

 As technology advances, it becomes costly to maintain old software. 

 Most maintenance engineers are newbie and use trial and error method to rectify problem. 

 Often, changes made can easily hurt the original structure of the software, making it hard for any 
subsequent changes. 

 Changes are often left undocumented which may cause more conflicts in future. 

Software-end factors affecting Maintenance Cost 

 Structure of Software Program 

 Programming Language 

 Dependence on external environment 

 Staff reliability and availability 

Maintenance Activities 

IEEE provides a framework for sequential maintenance process activities. It can be used in iterative 
manner and can be extended so that customized items and processes can be included. 

 

These activities go hand-in-hand with each of the following phase: 

 Identification & Tracing - It involves activities pertaining to identification of requirement of 
modification or maintenance. It is generated by user or system may itself report via logs or error 
messages.Here, the maintenance type is classified also. 

 Analysis - The modification is analyzed for its impact on the system including safety and security 
implications. If probable impact is severe, alternative solution is looked for. A set of required 
modifications is then materialized into requirement specifications. The cost of 
modification/maintenance is analyzed and estimation is concluded. 

 Design - New modules, which need to be replaced or modified, are designed against 
requirement specifications set in the previous stage. Test cases are created for validation and 
verification. 



 Implementation - The new modules are coded with the help of structured design created in the 
design step.Every programmer is expected to do unit testing in parallel. 

 System Testing - Integration testing is done among newly created modules. Integration testing 
is also carried out between new modules and the system. Finally the system is tested as a 
whole, following regressive testing procedures. 

 Acceptance Testing - After testing the system internally, it is tested for acceptance with the help 
of users. If at this state, user complaints some issues they are addressed or noted to address in 
next iteration. 

 Delivery - After acceptance test, the system is deployed all over the organization either by small 
update package or fresh installation of the system. The final testing takes place at client end 
after the software is delivered. 

Training facility is provided if required, in addition to the hard copy of user manual. 

 Maintenance management - Configuration management is an essential part of system 
maintenance. It is aided with version control tools to control versions, semi-version or patch 
management. 

Software Re-engineering 

When we need to update the software to keep it to the current market, without impacting its functionality, 
it is called software re-engineering. It is a thorough process where the design of software is changed and 
programs are re-written. 

Legacy software cannot keep tuning with the latest technology available in the market. As the hardware 
become obsolete, updating of software becomes a headache. Even if software grows old with time, its 
functionality does not. 

For example, initially Unix was developed in assembly language. When language C came into existence, 
Unix was re-engineered in C, because working in assembly language was difficult. 

Other than this, sometimes programmers notice that few parts of software need more maintenance than 
others and they also need re-engineering. 

 



Re-Engineering Process 

 Decide what to re-engineer. Is it whole software or a part of it? 

 Perform Reverse Engineering, in order to obtain specifications of existing software. 

 Restructure Program if required. For example, changing function-oriented programs into object-
oriented programs. 

 Re-structure data as required. 

 Apply Forward engineering concepts in order to get re-engineered software. 

There are few important terms used in Software re-engineering 

Reverse Engineering 

It is a process to achieve system specification by thoroughly analyzing, understanding the existing 
system. This process can be seen as reverse SDLC model, i.e. we try to get higher abstraction level by 
analyzing lower abstraction levels. 

An existing system is previously implemented design, about which we know nothing. Designers then do 
reverse engineering by looking at the code and try to get the design. With design in hand, they try to 
conclude the specifications. Thus, going in reverse from code to system specification. 

 

Program Restructuring 

It is a process to re-structure and re-construct the existing software. It is all about re-arranging the 
source code, either in same programming language or from one programming language to a different 
one. Restructuring can have either source code-restructuring and data-restructuring or both. 

Re-structuring does not impact the functionality of the software but enhance reliability and 
maintainability. Program components, which cause errors very frequently can be changed, or updated 
with re-structuring. 

The dependability of software on obsolete hardware platform can be removed via re-structuring. 

Forward Engineering 

Forward engineering is a process of obtaining desired software from the specifications in hand which 
were brought down by means of reverse engineering. It assumes that there was some software 
engineering already done in the past. 

Forward engineering is same as software engineering process with only one difference – it is carried out 
always after reverse engineering. 



 

 

Component reusability 

A component is a part of software program code, which executes an independent task in the system. It 
can be a small module or sub-system itself. 

Example 

The login procedures used on the web can be considered as components, printing system in software 
can be seen as a component of the software. 

Components have high cohesion of functionality and lower rate of coupling, i.e. they work independently 
and can perform tasks without depending on other modules. 

In OOP, the objects are designed are very specific to their concern and have fewer chances to be used 
in some other software. 

In modular programming, the modules are coded to perform specific tasks which can be used across 
number of other software programs. 

There is a whole new vertical, which is based on re-use of software component, and is known as 
Component Based Software Engineering (CBSE). 

 

Re-use can be done at various levels 

 Application level - Where an entire application is used as sub-system of new software. 

 Component level - Where sub-system of an application is used. 

 Modules level - Where functional modules are re-used. 

Software components provide interfaces, which can be used to establish communication among 
different components. 

Reuse Process 

Two kinds of method can be adopted: either by keeping requirements same and adjusting components 
or by keeping components same and modifying requirements. 



 

 Requirement Specification - The functional and non-functional requirements are specified, 
which a software product must comply to, with the help of existing system, user input or both. 

 Design - This is also a standard SDLC process step, where requirements are defined in terms of 
software parlance. Basic architecture of system as a whole and its sub-systems are created. 

 Specify Components - By studying the software design, the designers segregate the entire 
system into smaller components or sub-systems. One complete software design turns into a 
collection of a huge set of components working together. 

 Search Suitable Components - The software component repository is referred by designers to 
search for the matching component, on the basis of functionality and intended software 
requirements.. 

 Incorporate Components - All matched components are packed together to shape them as 
complete software. 

What is Regression Testing? 

Regression testing a black box testing technique that consists of re-executing those tests that are 
impacted by the code changes. These tests should be executed as often as possible throughout the 
software development life cycle. 

Types of Regression Tests: 

 Final Regression Tests: - A "final regression testing" is performed to validate the build that 
hasn't changed for a period of time. This build is deployed or shipped to customers. 

 Regression Tests: - A normal regression testing is performed to verify if the build has NOT 
broken any other parts of the application by the recent code changes for defect fixing or for 
enhancement. 

Selecting Regression Tests: 

 Requires knowledge about the system and how it affects by the existing functionalities. 

 Tests are selected based on the area of frequent defects. 



 Tests are selected to include the area, which has undergone code changes many a times. 

 Tests are selected based on the criticality of the features. 

Regression Testing Steps: 

Regression tests are the ideal cases of automation which results in better Return On Investment (ROI). 

 Select the Tests for Regression. 

 Choose the apt tool and automate the Regression Tests 

 Verify applications with Checkpoints 

 Manage Regression Tests/update when required 

 Schedule the tests 

 Integrate with the builds 

 Analyze the results 

What is User Interface Testing? 

User interface testing, a testing technique used to identify the presence of defects is a product/software 
under test by using Graphical user interface [GUI]. 

GUI Testing - Characteristics: 

 GUI is a hierarchical, graphical front end to the application, contains graphical objects with a set 
of properties. 

 During execution, the values of the properties of each objects of a GUI define the GUI state. 

 It has capabilities to exercise GUI events like key press/mouse click. 

 Able to provide inputs to the GUI Objects. 

 To check the GUI representations to see if they are consistent with the expected ones. 

 It strongly depends on the used technology. 

GUI Testing - Approaches: 

 Manual Based - Based on the domain and application knowledge of the tester. 

 Capture and Replay - Based on capture and replay of user actions. 

 Model-based testing - Based on the execution of user sessions based on a GUI model. Various 
GUI models are briefly discussed below. 

Model Based Testing - In Brief: 

 Event-based model - Based on all events of the GUI need to be executed at least once. 

 State-based model - "all states" of the GUI are to be exercised at least once. 



 Domain model - Based on the application domain and its functionality. 

GUI Testing Checklist: 

 Check Screen Validations 

 Verify All Navigations 

 Check usability Conditions 

 Verify Data Integrity 

 Verify the object states 

 Verify the date Field and Numeric Field Formats 

GUI Automation Tools 

Following are some of the open source GUI automation tools in the market: 

Product Licensed Under URL 

AutoHotkey GPL http://www.autohotkey.com/ 

Selenium Apache http://docs.seleniumhq.org/ 

Sikuli MIT http://sikuli.org 

Robot Framework Apache www.robotframework.org 

watir BSD http://www.watir.com/ 

Dojo Toolkit BSD http://dojotoolkit.org/ 

Following are some of the Commercial GUI automation tools in the market. 

Product Vendor URL 

AutoIT AutoIT http://www.autoitscript.com/site/autoit/ 

EggPlant TestPlant www.testplant.com 

QTP Hp http://www8.hp.com/us/en/software-solutions/ 



Rational 
Functional Tester 

IBM http://www-
03.ibm.com/software/products/us/en/functional 

Infragistics Infragistics www.infragistics.com 

iMacros iOpus http://www.iopus.com/iMacros/ 

CodedUI Microsoft http://www.microsoft.com/visualstudio/ 

Sikuli Micro Focus 
International 

http://www.microfocus.com/ 

 



 

12 

 

UNIT V   PATENTS                                                                                                               6 

Patents – objectives and benefits of patent, Concept, features of patent,  Inventive step, 

Specification, Types of patent application, process E-filling, Examination of patent, Grant of patent, 

Revocation, Equitable Assignments, Licences, Licensing of related patents, patent agents, 

Registration of patent agents. 

TOTAL: 30 PERIODS 

REFERENCES: 

1. Cooper Donald R, Schindler Pamela S and Sharma JK, “Business Research Methods”,                 

Tata McGraw Hill Education, 11e (2012). 

2. Catherine J. Holland, “Intellectual property: Patents, Trademarks, Copyrights, Trade 

Secrets”, Entrepreneur Press, 2007. 

3. David Hunt,  Long Nguyen,  Matthew Rodgers,  “Patent searching: tools & 

techniques”, Wiley, 2007. 

4. The Institute of Company Secretaries of India, Statutory body under an Act of parliament, 

“Professional Programme Intellectual Property Rights, Law and practice”, September 2013. 

 

Course Outcomes: 

At the end of this course, the students will have the ability to 

1. Formulate and Design research problem  

2. Understand and Comprehend the Data Collection Methods 

3. Perform Data analysis and acquire Insights  

4. Understand IPR and follow research ethics  

5. Understand and Practice Drafting and filing a Patent in research and development 

 

O-PO Mapping: 

 

CO PO 

1 2 3 4 5 6 

1 3 3 - 1 - 1 

2 3 2 - 2 - 1 

3 3 2 2 2 - 1 

4 3 2 - 1 - - 

5 3 3 - 1 - - 

Avg. 3 2.4 0.4 1.4 - 0.6 

 

MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS 

 

L T P C 

3  0 0 3 

COURSE OBJECTIVES: 

 To understand the usage of algorithms in computing  

 To learn and use hierarchical data structures and its operations  

 To learn the usage of graphs and its applications  

 To select and design data structures and algorithms that is appropriate for problems  

 To study about NP Completeness of problems. 

 

UNIT I ROLE OF ALGORITHMS IN COMPUTING & COMPLEXITY ANALYSIS 9 

Algorithms – Algorithms as a Technology -Time and Space complexity of algorithms- Asymptotic 

analysis-Average and worst-case analysis-Asymptotic notation-Importance of efficient algorithms- 

Program performance measurement - Recurrences: The Substitution Method – The Recursion-



 

13 

 

Tree Method- Data structures and algorithms.  

 

UNIT II HIERARCHICAL DATA STRUCTURES 9 

Binary Search Trees: Basics – Querying a Binary search tree – Insertion and Deletion- Red Black 

trees: Properties of Red-Black Trees – Rotations – Insertion – Deletion -B-Trees: Definition of B -

trees – Basic operations on B-Trees – Deleting a key from a B-Tree- Heap – Heap 

Implementation – Disjoint Sets - Fibonacci Heaps: structure – Mergeable-heap operations- 

Decreasing a key and deleting a node-Bounding the maximum degree.  

 

UNIT III GRAPHS 9 

Elementary Graph Algorithms: Representations of Graphs – Breadth-First Search – Depth-First 

Search – Topological Sort – Strongly Connected Components- Minimum Spanning Trees: 

Growing a Minimum Spanning Tree – Kruskal and Prim- Single-Source Shortest Paths: The 

Bellman-Ford algorithm – Single-Source Shortest paths in Directed Acyclic Graphs – Dijkstra‘s 

Algorithm; Dynamic Programming - All-Pairs Shortest Paths: Shortest Paths and Matrix 

Multiplication – The Floyd-Warshall Algorithm  

 

UNIT IV ALGORITHM DESIGN TECHNIQUES 9 

Dynamic Programming: Matrix-Chain Multiplication – Elements of Dynamic Programming – 

Longest Common Subsequence- Greedy Algorithms: – Elements of the Greedy Strategy- An 

Activity-Selection Problem - Huffman Coding.  

 

UNIT V NP COMPLETE AND NP HARD 9 

NP-Completeness: Polynomial Time – Polynomial-Time Verification – NP- Completeness and 

Reducibility – NP-Completeness Proofs – NP-Complete Problems.  

TOTAL : 45 PERIODS 

 

SUGGESTED ACTIVITIES: 

1. Write an algorithm for Towers of Hanoi problem using recursion and analyze the complexity 

(No of disc-4) 

2. Write any one real time application of hierarchical data structure 

3. Write a program to implement Make_Set, Find_Set and Union functions for Disjoint Set 

Data Structure for a given undirected graph G(V,E) using the linked list representation with 

simple implementation of Union operation 

4. Find the minimum cost to reach last cell of the matrix from its first cell 

5. Discuss about any NP completeness problem 

 

COURSE OUTCOMES: 

CO1:Design data structures and algorithms to solve computing problems. 

CO2:Choose and implement efficient data structures and apply them to solve problems. 

CO3:Design algorithms using graph structure and various string-matching algorithms to solve 

real-life problems. 

CO4: Design one’s own algorithm for an unknown problem. 

CO5: Apply suitable design strategy for problem solving. 

 

REFERENCES 

1. S.Sridhar,” Design and Analysis of Algorithms”, Oxford University Press, 1st Edition, 2014. 

2. Adam Drozdex, “Data Structures and Algorithms in C++”, Cengage Learning, 4th Edition, 

2013. 

https://www.techiedelight.com/find-minimum-cost-reach-last-cell-matrix-first-cell/


Algorithm
Definition

An algorithm is a finite set of instructions that accomplishes 
a particular task.

Characteristics of an algorithm:-
 Must take an input.
 Must give some output(yes/no,valueetc.)
 Definiteness –each instruction is clear and

unambiguous.
 Finiteness –algorithm terminates after a finite number

of steps.
 Effectiveness –every instruction must be basic i.e.

simple instruction.

CHAPTER 1



Expectation from an algorithm
 Correctness:-

Correct: Algorithms must produce correct result.

Produce an incorrect answer: Even if it fails to give correct results
all the time still there is a control on how often it gives wrong
result. Eg.Rabin-Miller

PrimalityTest (Used in RSA algorithm): It doesn’t give correct
answer all the time.1 out of 250 times it gives incorrect result.

Approximation algorithm: Exact solution is not found, but near
optimal solution can be found out. (Applied to optimization
problem.)

 Less resource usage: Algorithms should use less resources
(time and space)



Good Algorithms?

 Run in less time

 Consume less memory

But computational resources (time complexity) is 

usually more important

5



Algorithms as a Technology 

 Algorithms are just like a technology. We all use latest and

greatest processors but we need to run implementations of

good algorithms on that computer in order to properly take

benefits of our money that we spent to have the latest

processor.

 Let’s make this example more concrete by pitting a faster

computer(computer A) running a sorting algorithm whose

running time on n values grows like n2 against a slower

computer (computer B) running a sorting algorithm whose

running time grows like n log n



Algorithms as a Technology 

 They each must sort an array of 10 million numbers. Suppose
that computer A executes 10 billion instructions per second
(faster than any single sequential computer at the time of this
writing) and computer B executes only 10 million instructions
per second, so that computer A is 1000 times faster than
computer B in raw computing power.

 To make the difference even more dramatic, suppose that the
world’s craftiest programmer codes in machine language for
computer A, and the resulting code requires 2n2 instructions to
sort n numbers. Suppose further that just an average
programmer writes for computer B, using a high level language
with an inefficient compiler, with the resulting code taking 50 n
log n instructions.



Time and Space complexity of 

algorithms



9

Time and space complexity of algorithms

 To analyze an algorithm means:

 developing a formula for predicting how fast an 
algorithm is, based on the size of the input (time 
complexity), and/or

 developing a formula for predicting how much 
memory an algorithm requires, based on the size of 
the input (space complexity)

 Usually time is our biggest concern

 Most algorithms require a fixed amount of space



Time Complexity of Algorithms

 If running time T(n) is O(f(n)) then the function f

measures time complexity

 Polynomial algorithms: T(n) is O(nk); k = const

 Exponential algorithm: otherwise

 Intractable problem:  if no polynomial 
algorithm is known for its solution



Time Complexity
Problem : 

1. Find the time complexity of sum of n numbers in an 
array? 

for(i=0;i<n;i++) 

{ 

sum=sum+a[i]; 

}



Time  Complexity

Statement Space occupied 

i=0 
1 ( as it executes only one time) 

i<n 
The statement executes n times and the statement
executes once more when i<n is false. So execution
may be n+1 times.

i++ n times 

Sum=sum+a[i] n times 

Total 3n+2



Big-Omega

 The function g(n) is W(f(n)) iff there exist a real 
positive constant c > 0 and a positive integer n0 such 
that g(n)  cf(n) for all n  n0

 Big Omega is just opposite to Big Oh

 It generalises the concept of “lower bound” () in the 
same way as Big Oh generalises the concept of “upper 
bound” (≤)

 If f(n) is O(g(n)) then g(n) is W(f(n)) 



Big-Theta

 The function g(n) is Q(f(n)) iff there exist two real 
positive constants c1 > 0 and c2 > 0 and a positive 
integer n0 such that:

c1f(n)  g(n)  c2f(n) for all n  n0

 Whenever two functions, f and g, are of the same 
order, g(n) is Q(f(n)), they are each Big-Oh of the 
other: g(n) is O(f(n)) AND f(n) is O(g(n)) 



Upper bounds of complexity

“Big-Oh” specifies an upper bound of complexity so 
that the following (and like) relationships hold: 

1 = O(log n) = O(n) = O(n log n) = …

log n = O(n) = O(n log n) = O(na); a > 1 = …

n = O(n log n) = O(na); a > 1 = O(2n) =…

n log n = O(na); a > 1 = O(nk); k > a = …

nk = O(na); a > k = O(2n) = …



Time complexity growth

f(n) Number of data items processed per:

1 minute 1 day 1 year 1 century

n 10 14,400 5.26106 5.26108

n log n 10 3,997 883,895 6.72107

n1.5 10 1,275 65,128 1.40106

n2 10 379 7,252 72,522

n3 10 112 807 3,746

2n 10 20 29 35



Beware exponential complexity

☺If a linear, O(n), algorithm processes 10 items per
minute, then it can process 14,400 items per day,
5,260,000 items per year, and 526,000,000 items
per century.

☻If an exponential, O(2n), algorithm processes 10
items per minute, then it can process only 20 items
per day and 35 items per century...



Big-Oh vs. Actual Running Time

 Example 1: let algorithms A and B have running 
times TA(n) = 20n ms and TB(n) = 0.1n log2n ms

 In the “Big-Oh”sense, A is better than B…

 But: on which data volume can A outperform B?

TA(n) < TB(n) if 20n < 0.1n log2n, or

log2n > 200, that is, when n >2200 ≈ 1060 !

 Thus, in all practical cases B is better than A…                                             



“Big-Oh” Feature 1: Scaling 

 Constant factors are ignored. Only the powers and 
functions of n should be exploited:

for all c > 0  cf = O(f) where f  f(n)

 It is this ignoring of constant factors that motivates 
for such a notation!

 Examples: 50n,  50000000n, and 0.0000005n are O(n)



“Big-Oh” Feature 2: Transitivity

 If h does not grow faster than g and g does not grow
faster than f, then h does not grow faster than f:

h = O(g) AND g = O(f)  h = O(f)

 In other words, if f grows faster than g and g grows
faster than h, then f grows faster than h

 Example: h = O(g); g = O(n2)  h = O(n2)



Feature 3: The Rule of Sums

 The sum grows as its fastest term:

g1 = O(f1) AND g2 = O(f2)  g1+g2 = O(max{f1,f2})

 if g = O(f) and h = O(f), then g + h = O (f)

 if g = O(f), then g + f = O (f)

 Examples: 
 if  h = O(n) AND g = O(n2), then g + h = O(n2)

 if  h = O(n log n) AND g = O(n log log n), then g + h = 
O(n log n)



The Rule of Sums



Feature 4: The Rule of Products

 The upper bound for the product of functions is
given by the product of the upper bounds for the
functions:

g1 = O(f1) AND g2 = O(f2)  g1  g2 = O( f1  f2 )

 if g = O(f) and h = O(f), then g  h = O (f2)

 if g = O(f), then g  h = O (f  h)

 Example: 

if h = O(n) AND g = O(n2), then g  h = O(n3)



Ascending order of complexity

1  log log n  log n  n  n log n

 na; 1<a <2  n2  n3  nm; m > 3  2n …

Questions:

Where is the place of n2 log n?

Where is the place of  n2.79? 

 Answers: … n2  n2 log n  n2.79  n3…



Answers to the questions

Running time T(n) Complexity O(n)

n2 + 100 n + 1 O(n2)

0.001n3 + n2 + 1 O(n3)

23 n O(n)

23n O(8n) as 23n(23)n

23+n O(2n) as 23+n232n

23n O(3n) 



Answers to the questions

Running time T(n) Complexity O(n)

0.0001 n + 10000 O(n)

100000 n + 10000 O(n)

0.0001 n2 + 10000 n O(n2)

100000 n2 + 10000 n O(n2)

30 log20(23n) 

actually NOT that hard…

O(log n) as 

logc(ab)=logca +logcb



Space Complexity
The space complexity can be defined as amount of

memory required by an algorithm to run

 To compute space complexity we use two factors
constant and instance characteristics. The space
requirement s(p) can be given as

 S(p) = c + sp

 Here c constant

 Spspace dependent upon instance characteristics



Space Complexity
Problem : 

1.Find the space complexity of measure of algorithm
which returns (a+b+b*c+4.0)

Solution: 

sample alg(a,b,c) 

{ 

return(a+b+c); 

} 

 Space complexity is calculated as S(p) = c + sp

 Assume each variable occupies one word size then the
space is



Space Complexity

Statement Space occupied 

Space allocation is done for variable a 1

Space allocation is done for variable b 1

Space allocation is done for variable c 1

Total 3

• S(p)=3 + 0 =3 (Assuming a,b,c occupies 1 word size each)

• Because there are no instance characteristics and we know that we get a

single output for the algorithm the space occupied by the algorithm is 3.



Space Complexity
Problem : 

1. Find the space complexity for adding sum of n 
numbers in the array using recursive concept? 

recursivesum(a,n) 

{ 

if(n<0) 

return(0.0) 

else return(rsum(a(n-1))+a[n]); 

}



Space Complexity

Statement Space occupied 

Space allocation is done for variable a 1

Space allocation is done for a 1

Space allocation is done for output (returning value) 1

Total 3

• To know the depth of the recursion is (n+1) so we need to multiply
this depth of recursion with the total space. So the space
occupied is given as follows

• Total Space occupied is 3*(n+1)
 3(n+1)



Asymptotic analysis



Asymptotic analysis

Asymptotic analysis of an algorithm refers to defining

the mathematical boundation /framing of its run-time

performance.

Using asymptotic analysis, we can very well conclude

the best case, average case, and worst case scenario of an

algorithm.

Asymptotic analysis is input bound i.e., if there's no input

to the algorithm, it is concluded to work in a constant time.

Other than the "input" all other factors are considered

constant.



Asymptotic analysis
Asymptotic analysis refers to computing the running time of

any operation in mathematical units of computation. For

example, the running time of one operation is computed as f(n)

and may be for another operation it is computed as g(n2).

This means the first operation running time will increase

linearly with the increase in n and the running time of the second

operation will increase exponentially when n increases. Similarly,

the running time of both operations will be nearly the same if n is

significantly small.

Usually, the time required by an algorithm falls under three types:

 Best Case − Minimum time required for program execution.

 Average Case − Average time required for program execution.

 Worst Case − Maximum time required for program execution.



Average Case Analysis (Sometimes 

done)
In average case analysis, we take all possible inputs

and calculate computing time for all of the inputs. Sum
all the calculated values and divide the sum by the total
number of inputs. We must know (or predict) the
distribution of cases.

=Ѳ(n)



Average Case Analysis (Sometimes 

done)
In average case analysis, we take all possible inputs

and calculate computing time for all of the inputs. Sum
all the calculated values and divide the sum by the total
number of inputs. We must know (or predict) the
distribution of cases.

For the linear search problem, let us assume that all
cases are uniformly districuted (including the case of x
not being present in the array). So we sum all the cases
and divide the sum by (n+1). Following is the value of
average-case time complexity.



Worst Case Analysis (Usually Done)

In the worst-case analysis, we calculate the upper bound on

the running time of an algorithm. We must know the case that

causes a maximum number of operations to be executed.

For Linear Search, the worst case happens when the element

to be searched (x in the above code) is not present in the array.

When x is not present, the search() function compares it with all

the elements of arr[] one by one. Therefore, the worst-case time

complexity of linear search would be Θ(n).



Asymptotic Notations



Comp 122

Asymptotic Complexity
 Running time of an algorithm as a function of input 

size n for large n.

 Expressed using only the highest-order term in the 
expression for the exact running time.

 Instead of exact running time, say Q(n2).

 Describes behavior of function in the limit.

 Written using Asymptotic Notation.



Comp 122

Asymptotic Notation

 Q, O, W, o, w

 Defined for functions over the natural numbers.

 Ex: f(n)  =  Q(n2).

 Describes how f(n) grows in comparison to n2.

 Define a set of functions; in practice used to 
compare two function sizes.

 The notations describe different rate-of-growth 
relations between the defining function and the 
defined set of functions.



Comp 122

Q-notation

Q(g(n)) = {f(n) : 

 positive constants c1, c2, and 
n0, such that n  n0,

we have 0  c1g(n)  f(n) 

c2g(n)

}

For function g(n), we define 
Q(g(n)), big-Theta of n, as the set:

g(n) is an asymptotically tight bound for f(n).

Intuitively: Set of all functions that
have the same rate of growth as g(n).



Comp 122

Q-notation

Q(g(n)) = {f(n) : 

 positive constants c1, c2, and 
n0, such that n  n0,

we have 0  c1g(n)  f(n) 

c2g(n)

}

For function g(n), we define 
Q(g(n)), big-Theta of n, as the set:

Technically, f(n)  Q(g(n)).
Older usage,  f(n) = Q(g(n)).
I’ll accept either… 

f(n) and g(n) are nonnegative, for large n. 



Comp 122

O-notation

O(g(n)) = {f(n) : 

 positive constants c and n0,

such that n  n0,

we have 0  f(n)  cg(n) }

For function g(n), we define 
O(g(n)), big-O of n, as the set:

g(n) is an asymptotic upper bound for f(n).

Intuitively: Set of all functions whose rate 
of growth is the same as or lower than that 
of g(n).

f(n) = Q(g(n))  f(n) = O(g(n)).
Q(g(n))   O(g(n)).



Comp 122

W -notation

g(n) is an asymptotic lower bound for f(n).

Intuitively: Set of all functions whose rate 
of growth is the same as or higher than 
that of g(n).

f(n) = Q(g(n))  f(n) = W(g(n)).
Q(g(n))   W(g(n)).

W(g(n)) = {f(n) : 

 positive constants c and n0,

such that n  n0,

we have 0  cg(n)  f(n)}

For function g(n), we define 
W(g(n)), big-Omega of n, as the set:



Comp 122

Relations Between Q, O, W



Comp 122

Relations Between Q, W, O

 I.e., Q(g(n)) = O(g(n))  W(g(n))

 In practice, asymptotically tight bounds are 
obtained from asymptotic upper and lower 
bounds.

Theorem : For any two functions g(n) and 
f(n), 

f(n) = Q(g(n)) iff
f(n) = O(g(n)) and f(n) = W(g(n)).



Comp 122

Running Times
 “Running time is O(f(n))”  Worst case is O(f(n))

 O(f(n)) bound on the worst-case running time 
O(f(n)) bound on the running time of every input.

 Q(f(n)) bound on the worst-case running time 
Q(f(n)) bound on the running time of every input.

 “Running time is W(f(n))”  Best case is W(f(n))

 Can still say “Worst-case running time is W(f(n))”

 Means worst-case running time is given by some 
unspecified function g(n)  W(f(n)).



Comp 122

Example

 Insertion sort takes Q(n2) in the worst case, so 
sorting (as a problem) is O(n2).  Why?

 Any sort algorithm must look at each item, so 
sorting is W(n).

 In fact, using (e.g.) merge sort, sorting is Q(n lg n) 
in the worst case.

 Later, we will prove that we cannot hope that any 
comparison sort to do better in the worst case.



Comp 122

Asymptotic Notation in Equations

 Can use asymptotic notation in equations to 
replace expressions containing lower-order 
terms.

 For example,
4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Q(n) 

= 4n3 + Q(n2) = Q(n3). How to interpret?

 In equations, Q(f(n)) always stands for an 
anonymous function g(n)  Q(f(n))

 In the example above, Q(n2) stands for 
3n2 + 2n + 1.



Comp 122

o-notation

f(n) becomes insignificant relative to g(n) as n 
approaches infinity:

lim [f(n) / g(n)] = 0
n

g(n) is an upper bound for f(n) that is not 
asymptotically tight.

Observe the difference in this definition from 
previous ones. Why?

o(g(n)) = {f(n):  c > 0,  n0 > 0 such that 
 n  n0, we have 0  f(n) < cg(n)}.

For a given function g(n), the set little-o:



Comp 122

w(g(n)) = {f(n):  c > 0,  n0 > 0 such that 
 n  n0, we have 0  cg(n) < f(n)}.

f(n) becomes arbitrarily large  relative to g(n) as n 
approaches infinity:

lim [f(n) / g(n)] = .
n

g(n) is a lower bound for f(n) that is not 
asymptotically tight.

For a given function g(n), the set little-omega:



Comp 122

Comparison of Functions
f  g   a  b

f (n) = O(g(n))  a   b

f (n) = W(g(n))  a   b

f (n) = Q(g(n))  a  =  b

f (n) = o(g(n))  a  < b

f (n) = w (g(n))  a  > b



Importance of efficient algorithms-

An algorithm is a method or a process followed to
solve a problem. If the problem is viewed as a function,
then an algorithm is an implementation for the function
that transforms an input to the corresponding output.

A problem can be solved by many different
algorithms. A given algorithm solves only one problem
(i.e., computes a particular function).



Importance of efficient algorithms-

The advantage of knowing several solutions to a problem
is that solution A might be more efficient than solution B for
a specific variation of the problem, or for a specific class of
inputs to the problem, while solution B might be more
efficient than A for another variation or class of inputs.

 For example, one sorting algorithm might be the best for
sorting a small collection of integers (which is important
if you need to do this many times).

 Another might be the best for sorting a large collection of
integers.

 A third might be the best for sorting a collection of
variable-length strings



Importance of efficient algorithms-

By definition, something can only be called an algorithm
if it has all of the following properties.

1. It must be correct: In other words, it must compute the
desired function, converting each input to the correct
output. Note that every algorithm implements some
function, because every algorithm maps every input to
some output (even if that output is a program crash).

2. It is composed of a series of concrete steps: Concrete
means that the action described by that step is completely
understood — and doable — by the person or machine
that must perform the algorithm. Each step must also be
doable in a finite amount of time



3. There can be no ambiguity as to which step will be
performed next. Often it is the next step of the
algorithm description.

4. It must be composed of a finite number of steps. Most
languages for describing algorithms (including
English and “pseudocode”). Data Structures and
Algorithms way to perform repeated actions, known
as iteration.

5. It must terminate. In other words, it may not go into
an infinite loop.



Importance of efficient algorithms-
As applications are getting complex and data rich, there are

three common problems that applications face now-a-days.

 Data Search − Consider an inventory of 1 million(106) items of a
store. If the application is to search an item, it has to search an
item in 1 million(106) items every time slowing down the search.
As data grows, search will become slower.

 Processor speed − Processor speed although being very high,
falls limited if the data grows to billion records.

 Multiple requests − As thousands of users can search data
simultaneously on a web server, even the fast server fails while
searching the data.

 To solve the above-mentioned problems, data structures come to
rescue. Data can be organized in a data structure in such a way
that all items may not be required to be searched, and the
required data can be searched almost instantly.



Recurrences 
Recursion is a particularly powerful kind of reduction,

which can be described loosely as follows:

 If the given instance of the problem is small or simple
enough, just solve it.

Otherwise, reduce the problem to one or more simpler
instances of the same problem.

 Recursion is generally expressed in terms of recurrences.

 In other words, when an algorithm calls to itself, we can
often describe its running time by a recurrence equation
which describes the overall running time of a problem of
size n in terms of the running time on smaller inputs.



Recurrences 
E.g.the worst case running time T(n) of the merge 

sort procedure by recurrence can be expressed as

T(n)= ϴ(1) ; if n=1

2T(n/2) + ϴ(n) ;if n>1

whose solution can be found as T(n)=ϴ(nlog n)

There are various techniques to solve recurrences..



Recurrences – Substitution method
The substitution method comprises of 3 steps

i. Guess the form of the solution

ii. Verify by induction

iii. Solve for constants

 We substitute the guessed solution for the function
when applying the inductive hypothesis to smaller
values. Hence the name “substitution method”.

 This method is powerful, but we must be able to guess
the form of the answer in order to apply it.



Recurrences – Substitution method
e.g.recurrence equation: T(n)=4T(n/2)+n

step 1: guess the form of 
solution
T(n)=4T(n/2)
F(n)=4f(n/2)
F(2n)=4f(n)
F(n)=n2

So, T(n) is order of n2

Guess T(n)=O(n3)

Step 2: verify the induction
Assume T(k)<=ck3

T(n)=4T(n/2)+n
<=4c(n/2)3 +n
<=cn3/2+n
<=cn3-(cn3/2-n)
T(n)<=cn3 as (cn3/2 –n) is always 
positive So what we assumed was 
true.
T(n)=O(n3)



Recurrences – Substitution method
Step 3: solve for constants

Cn3/2-n>=0

n>=1

c>=2

Now suppose we guess that T(n)=O(n2) which is tight 
upper bound

Assume,T(k)<=ck2 so,we should prove that T(n)<=cn2

T(n)=4T(n/2)+n

4c(n/2)2+n

cn2+n

 So,T(n) will never be less than cn2. But if we will take the 
assumption of T(k)=c1 k2-c2k, then wecan find that T(n) = 
O(n2)



Recurrences – Reccursion Tree method

RECURSSION TREE METHOD:

 In a recursion tree ,each node represents the cost of a
single sub-problem somewhere in the set of recursive
problems invocations .we sum the cost within each
level of the tree to obtain a set of per level cost,and
then we sum all the per level cost to determine the
total cost of all levels of recursion .

 Constructing a recursion tree for the recurrence

T(n)=3T(n/4)+cn2



Recurrences – Reccursion Tree method



Recurrences – Reccursion Tree method

 Constructing a recursion tree for the recurrence T 
(n)= 3T (n=4) + cn2.. Part (a) shows T (n),

 which progressively expands in (b)–(d) to form the 
recursion tree. The fully expanded tree in part (d) has 
height log4n (it has log4n + 1 levels).

 Sub problem size at depth i =n/4i

 Sub problem size is 1 when n/4i=1 => i=log4n

 So, no. of levels =1+ log4n

 Cost of each level = (no. of nodes) x (cost of each node)



Recurrences – Reccursion Tree method



 Definition

 Data structure is a specified format for organizing and 
storing the data

 Types of data structures

 Primitive data structures

 Composite data structures with 2 types

 Composite data structure

 Linear data structures

 Non-Linear data structures

67



 Composite - Linear data 
structures

 Arrays

 Stack

 Queue

 Linked List

 Composite - Non-Linear data 
structures

 Trees

 Graphs

68

 Primitive data structures

 Integer – Example: 1, 2, 3, -1, -5, 77 

 Float – Example: 1.3, 2.34, 3.5, -1.3, -5.6, 77.765 

 Character – Example: ‘A’, ‘a’, ‘2’

 String – Example: “abc”, “123”, “ASD”

 Boolean – Example: TRUE, FALSE



 Algorithm
 Step by Step Process which defines set of instruction to be 

executed in certain order to get the desired output

 Characteristics of Algorithm
 Unambiguous

 Input

 Output

 Finiteness

 Flexibility

 Independent

69



 Operations on data structures
 There are six operations can be obtained with Non-Primitive data 

structures. They are as follows

 Insertion

 Deletion

 Searching

 Traversing

 Sorting

 Merging

70



MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS UNIT - II 

Binary Search Trees: Basics – Querying a Binary search tree – Insertion and Deletion- Red 

Black trees: Properties of Red-Black Trees – Rotations – Insertion – Deletion -B-Trees: 

Definition of B trees – Basic operations on B-Trees – Deleting a key from a B-Tree- Heap – 

Heap Implementation – Disjoint Sets - Fibonacci Heaps: structure – Mergeable-heap 

operations- Decreasing a key and deleting a node-Bounding the maximum degree.   

 

BINARY SEARCH TREES 
 

BASICS: 

 

1. Hierarchical data structure with a single reference to root node  

2. Each node has at most two child nodes (a left and  a right child)  

3. Nodes are organized by the Binary Search property:  

• Every node is ordered by some key data field(s)  

• For every node in the tree, its key is greater than its  left child’s key and less than 

its right child’s key  

Dia: Binary Search Trees 
 

 

 
TERMINOLOGY: 

 

1. The Root node is the top node in the hierarchy  

2. A Child node has exactly one Parent node, a Parent node  has at most two child nodes, 

Sibling nodes share the same  Parent node (ex. node 22 is a child of node 15)  

3. A Leaf node has no child nodes, an Interior node has at  least one child node (ex. 18 is a 

leaf node)  

4. Every node in the BST is a Subtree of the BST rooted at that node. 

 

 
 

IMPLEMENTING BINARY SEARCH TREE: 

 
Self-referential class is used to build Binary Search Trees  

   public class BSTNode  

   {  

    Comparable data;  



MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS UNIT - II 

    BSTNode left;   

   BSTNode right;  

   public BSTNode(Comparable d)  

   {   

   data = d; left = right = null;  

  } } 

• left refers to the left child  

• right refers to the left child  

• data field refers to object that implements the Comparable  interface, so that data fields 

can be compared to order nodes  in the BST  

• Single reference to the root of the BST  

 All BST nodes can be accessed through root reference  by recursively accessing 

left or right child nodes  

OPERATIONS: 

 

• Naturally recursive:  

– Each node in the BST is itself a BST  

• Some Operations:  

– Create a BST  

– Find node in BST using its key field  

– Add a node to the BST  

– Traverse the BST  

 visit all the tree nodes in some order  

 

(1) Create a BST: 
                 bst_node root = null; // an empty BST  

      root = new BSTNode(new Integer(35)); // a BST w/1 node         

Root.setLeft(new BSTNode(new Integer(22)); // add left  child  

 

 
(2) Find node in BST using its key field  

• Use the search key to direct a recursive binary search for a matching node  

1. Start at the root node as current node  

2. If the search key’s value matches the current  node’s key then found a match  

3. If search key’s value is greater than current  node’s  

1. If the current node has a right child, search right  

2. Else, no matching node in the tree  



MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS UNIT - II 

4. If search key is less than the current node’s  

1. If the current node has a left child, search left  

2. Else, no matching node in the tree  

 

 

 

 

 

(3) Add a node to the BST  
1. Always insert new node as leaf node  

2. Start at root node as current node  

3. If new node’s key < current’s key  

i. If current node has a left child, search left  

ii. Else add new node as current’s left child  

4. If new node’s key > current’s key  

i. If current node has a right child, search right  

ii. Else add new node as current’s right child  

 

       Eg: Insert 60 in the tree 

 

1. start at the root, 60 is greater than 25, search in right subtree  

2. 60 is greater than 50, search in 50’s right subtree  

3. 60 is less than 70, search in 70’s left subtree  

60 is less than 66, add 60 as 66’s left child 

 



MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS UNIT - II 

 
(4) Traversal 

 Visit every node in the tree and perform some operation on it, (eg) print out the data 

fields of each node  

 Three steps to a traversal  

 Visit the current node  

 Traverse its left subtree  

 Traverse its right subtree  

 The order in which you perform these three steps  results in different traversal 

orders:  

 Pre-order traversal:(1) (2) (3)  

 In-order traversal: (2) (1) (3)  

 Post-order traversal: (2) (3) (1)  

Eg: 

   public void InOrder(bst_node root) 

 {  

// stop the recursion:  

if(root == null)  

{  

   return;  

            }  

// recursively traverse left subtree:  InOrder(root.leftChild());  

// visit the current node:  Visit(root);  

// recursively traverse right subtree:  InOrder(root.rightChild());  

 }  

 



MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS UNIT - II 

25

15

10 22

4 12 2418

// in main: a call to InOrder passing root  

InOrder(root);

InOrder: root

InOrder: root

InOrder: root

InOrder: root

// The call stack after the first few

// calls to InOrder(root.leftChild()):

Call Stack (drawn upside down):

main: root

ca
lls

CS21, Tia Newhall  
 

 

 

 

25

15

10 22

4 12 2418

50

35 70

31 44 9066

root

InOrder(root) visits nodes in the following order:

4, 10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90

A Pre-order traversal visits nodes in the following order:  

25, 15, 10, 4, 12, 22, 18, 24, 50, 35, 31, 44, 70, 66, 90

A Post-order traversal visits nodes in the following order:  

4, 12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25

CS21, Tia Newhall

Traversal Examples

 
 

 

QUERYING A BINARY SEARCH TREE 

A common operation performed on a binary search tree is searching for a key stored in the 

tree. Besides the SEARCH operation, binary search trees can support such queries as 

MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR. In this section, we shall 



MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS UNIT - II 

examine these operations and show that each can be supported in time O(h) on a binary search 

tree of height h. 

Searching 

We use the following procedure to search for a node with a given key in a binary search tree. 

Given a pointer to the root of the tree and a key k, TREE-SEARCH returns a pointer to a node 

with key k if one exists; otherwise, it returns NIL. 

TREE-SEARCH (x, k) 

1  if x= NIL or k = key[x] 

2     then return x 

3  if k < key[x] 

4     then return TREE-SEARCH(left[x], k) 

5     else return TREE-SEARCH(right[x], k) 

The procedure begins its search at the root and traces a path downward in the tree, as 

shown in diagram. 

 

Dia: Binary Search Tree 

 

 

 

 

 

  For each node x it encounters, it compares the key k with key[x]. If the two keys are 

equal, the search terminates. If k is smaller than key[x], the search continues in the left subtree 

of x, since the binary-search-tree property implies that k could not be stored in the right subtree. 

Symmetrically, if k is larger than key[x], the search continues in the right subtree. The nodes 

encountered during the recursion form a path downward from the root of the tree, and thus the 

running time of TREE-SEARCH is O(h), where h is the height of the tree. 

 

  Queries on a binary search tree. To search for the key 13 in the tree, we follow the path 

15 → 6 → 7 → 13 from the root. The minimum key in the tree is 2, which can be found by 



MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS UNIT - II 

following left pointers from the root. The maximum key 20 is found by following right pointers 

from the root. The successor of the node with key 15 is the node with key 17, since it is the 

minimum key in the right subtree of 15. The node with key 13 has no right subtree, and thus its 

successor is its lowest ancestor whose left child is also an ancestor. In this case, the node with 

key 15 is its successor. 

The same procedure can be written iteratively by "unrolling" the recursion into 

a while loop. On most computers, this version is more efficient. 

ITERATIVE-TREE-SEARCH(x, k) 

1  while x ≠ NIL and k ≠ key[x] 

2      do if k < key[x] 

3            then x ← left[x] 

4            else x ← right[x] 

5  return x 

Minimum and maximum 

An element in a binary search tree whose key is a minimum can always be found by 

following left child pointers from the root until a NIL is encountered, as shown in diagram. The 

following procedure returns a pointer to the minimum element in the subtree rooted at a given 

node x. 

TREE-MINIMUM (x) 

1  while left[x] ≠ NIL 

2      do x ← left[x] 

3  return x 

The binary-search-tree property guarantees that TREE-MINIMUM is correct. If a 

node x has no left subtree, then since every key in the right subtree of x is at least as large 

as key[x], the minimum key in the subtree rooted at x is key[x]. If node x has a left subtree, then 

since no key in the right subtree is smaller than key[x] and every key in the left subtree is not 

larger than key[x], the minimum key in the subtree rooted at x can be found in the subtree rooted 

at left[x]. 

The pseudocode for TREE-MAXIMUM is symmetric. 

TREE-MAXIMUM(x) 

1  while right[x] ≠ NIL 

2      do x ← right[x] 

3  return x 

Both of these procedures run in O(h) time on a tree of height h since, as in TREE-

SEARCH, the sequence of nodes encountered forms a path downward from the root. 

Successor and predecessor 



MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS UNIT - II 

Given a node in a binary search tree, it is sometimes important to be able to find its 

successor in the sorted order determined by an inorder tree walk. If all keys are distinct, the 

successor of a node x is the node with the smallest key greater than key[x]. The structure of a 

binary search tree allows us to determine the successor of a node without ever comparing keys. 

The following procedure returns the successor of a node x in a binary search tree if it exists, and 

NIL if x has the largest key in the tree. 

TREE-SUCCESSOR(x) 

1  if right[x] ≠ NIL 

2      then return TREE-MINIMUM (right[x]) 

3  y ← p[x] 

4  while y ≠ NIL and x = right[y] 

5      do x ← y 

6         y ← p[y] 

7  return y 

The code for TREE-SUCCESSOR is broken into two cases. If the right subtree of 

node x is nonempty, then the successor of x is just the leftmost node in the right subtree, which is 

found in line 2 by calling TREE-MINIMUM(right[x]). For example, the successor of the node 

with key 15 in diagram is the node with key 17. 

INSERTION AND DELETION: 

INSERTION 
 Change the dynamic set represented by a BST. 

 Ensure the binary-search-tree property holds after change. 

 Insertion is easier than deletion. 

 

 

 

http://www.euroinformatica.ro/documentation/programming/!!!Algorithms_CORMEN!!!/DDU0072.html#ch12fig02


MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS UNIT - II 

 

 
Tree-Insert(T, z) 

y  NIL 

x  root[T] 

while x  NIL 

    do y  x  

         if key[z] < key[x] 

              then x  left[x] 

              else x  right[x] 

p[z]  y  

if y = NIL 

    then root[t]  z  

    else if key[z] < key[y] 

          then  left[y]  z  

          else right[y]  z  

 

 Initialization: O(1) 

 While loop in lines 3-7 searches for place to insert z, maintaining parent y. 

This takes O(h) time. 

 Lines 8-13 insert the value: O(1)  

 TOTAL: O(h) time to insert a node. 

 

DELETION: 

 
 if x has no children                      case 0  

  then remove x  

 if x has one child    case 1  

  then make p[x] point to child 

 if x has two children (subtrees)   case 2  

  then swap x with its successor 

 perform case 0 or case 1 to delete it 

TOTAL: O(h) time to delete a node 

Tree-Delete(T, z) 

/* Determine which node to splice out: either z or z’s successor. */  

1.  if left[z] = NIL or right[z] = NIL 

2.      then y  z  

3.      else y  Tree-Successor[z] 

a. /* Set x to a non-NIL child of x, or to NIL if y has no children. */  

4. if  left[y]  NIL 

5.       then x  left[y]  

6.       else x  right[y] 

/* y is removed from the tree by manipulating pointers of  p[y] and x */  

7. if x  NIL 



MC4101 ADVANCED DATA STRUCTURES AND ALGORITHMS UNIT - II 

8.     then p[x]  p[y] 

/* Continued on next slide */ 

9. if p[y] = NIL 

10.      then root[T]  x  

11.      else if  y  left[p[i]] 

12.             then left[p[y]]  x  

13.             else right[p[y]]  x  

/* If z’s successor was spliced out, copy its data into z */ 

14. if y  z  

15.      then  key[z]  key[y]  

16.                copy y’s satellite data into z. 

17. return y  

 



Red Black Tree 

Red black tree is another variant of binary search tree in which every node is colored either red or black 

we can define a red black tree as follows: 

Red black tree is a binary search tree in which every node is colored either red or black. 

A red-black tree's node structure would be:  

struct t_red_black_node { 

    enum { red, black } colour; 

    void *item; 

    struct t_red_black_node *left, 

                     *right, 

                     *parent; 

    } 

In red black tree the color of node is decided based on the properties of red black tree. Every red black 

tree has the following properties: 

1. Red black tree must be a binary search tree. 

2.The root node must be colored black. 

3. The children of red color node must be colored black. There should not be two consecutive red nodes. 

4. In all the paths of the tree there should be same number of black color nodes. 

5. Every new node must be inserted with red color. 

6. Every leaf( i.e null node) must be colored black. 

Example: 

Following is a red black tree which is created by inserting number from 1 to 9. 

 

The above tree is a red black tree where every node is satisfying all the properties of red black tree. 

2 

4 

1 3 5 8 

7 9 

6 



 

Insertion into red black tree: 

In a red black tree, every new node must be inserted with the color red. The insertion operation in red 

black tree is similar to insertion operation in binary search tree. But it is inserted with a color property. 

After every insertion operation, we need to check all the properties of red black tree. If all the properties 

are satisfied then we go to next operation otherwise we perform the following operation to make it red 

black tree. 

The operations are 

1. Recolor 

2. Rotation 

3. Rotation followed by recolor. 

The insertion operation in red black tree is performed using the following steps: 

Step 1: Check whether tree is empty. 

Step2: If tree is empty when insert the newnode as root node with color black an exit from the 

operation. 

Step3: If tree is not empty then insert the newnode as leaf node with color red. 

Step4: If the parent of newnode is black then exit from the operation. 

Step5: If the parent of newnode is r red then change the color of parent node’s sibling of newnode. 

Step6: If it is colored black or null then make suitable rotation and recolor it. 

Step7: If it is colored red then perform recolor. 

Repeat the same until tree becomes red black tree. 

Example: 

Create a red black tree by inserting following sequence of number :- 

8, 18, 5, 15, 17, 25, 40, and 80 

Insert (8) 

Tree is empty. So insert newnode as root node with black color. 

 

 

 

 

 8 



Insert (18) 

Tree is not empty. So insert newnode with red color. 

 

 

 

 

 

 

Insert (5) 

Tree is not empty. So insert newnode with red color. 

 

 

 

 

Insert (15) 

Tree is not empty. So insert newnode with red color. 

 

 

 

 

 

                                                After recolor 

 

 

 

 

 

 

 

 8 

18

8 

 8 

18  5 

18  5 

15 

 8 
Here there are two consecutive red nodes 18 and 15. 

The newnode’s parent sibling color is red and 

parent’s parent is root node. So we use recolor to 

make it red black tree. 

 

 8 

18

88

88

18

18 

 5 

15 

After recolor operation, the trees satisfying 

all red black tree properties. 

 



Insert (17) 

The tree is not empty. So insert newnode with red color. 

 

 

 

 

 

 

 

                                 After left rotation 

 

 

 

                                                                                                                                         After right rotation and recolor 

                                 

 

 

 

 

 

Insert (25) 

Tree is not empty. So insert newnode with red color. 

 

 

 

 

 

 

 

18

88

88

18

18 

 5 

15 

Here there two consecutive red nodes 15 and 

17.The newnode’s parent sibling is null. So we 

need rotation. Here we need LR rotation and 

recolor. 

 

 8 

17 

18

88

88

18

18 

 5 

17 

 8 

15 

 8 

 5  17 

18 15 

17

88

88

18

18 

 5 

15 

 8 

18 

25 

There are two consecutive red nodes 18 and 

25. The newnode’s parent sibling color is red 

and parent’s parent is not root node. So we 

use recolor and recheck. 

 



                                              After recolor 

 

 

 

 

 

 

 

 

Insert( 40) 

Tree is not empty. So insert newnode with red color. 

 

 

 

 

 

 

 

 

 

 

                 After LL rotation and recolor 

 

 

 

 

 

 

 

17

88

88

18

18 

 5 

15 18 

25 

After recolor operation, the tree is 

satisfying all red black tree properties. 

 

 8 

17

88

88

18

18 

 5 

15 18 

25 

Here there are two consecutive red nodes 

25 and 40. The newnode’s parent sibling is 

null. So we need rotation and recolor. 

Here we use LL rotation and recheck. 

 

 8 

40 

17

88

88

18

18 

 5 

15 25 

40 

After LL rotation and recolor operation, 

the tree satisfying all red black tree 

properties. 

 8 

18 



 

Insert(80) 

Tree is not empty. So insert newnode with red color. 

 

 

 

 

 

 

 

 

 

 

                                        After recolor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     After left rotation And recolor 

17

88

88

18

18 

 5 

15 25 

40 

There are two consecutive red nodes 40 and 

80. The newnodes parent sibling color is red 

and parent’s parent is not root node. So we 

use recolor and recheck. 

 

18 

 8 

80 

17

88

88

18

18 

 5 

15 25 

40 

After recolor again there are two consecutive 

red nodes 17 and 25. The newnode’s parent 

sibling color is black. So we need rotation. 

We use left rotation And recolor. 

 

18 

80 

 8 



 

 

 

 

 

 

 

 

 

 

 

Finally  above tree is satisfying all the properties of red black tree and it is a perfect red black tree. 

 

Deletion operation in red black tree 

The deletion operation in red black tree is similar to deletion operation in BST. But after every deletion 

operation we need to check with the red black tree properties. If any of the properties violated then 

make suitable operations like recolor, rotation and rotation followed by recolor to make it red black 

tree. 

Operations on Red Black Tree in details: 

Rotations: 

A rotation is a local operation in a search tree that preserves in-order traversal key ordering.  

Note that in both trees, an in-order traversal yields: 

A x B y C 

 

The left_rotate operation may be encoded:  

left_rotate( Tree T, node x ) { 

    node y; 

    y = x->right; 

    /* Turn y's left sub-tree into x's right sub-tree */ 

    x->right = y->left; 

    if ( y->left != NULL ) 

        y->left->parent = x; 

    /* y's new parent was x's parent */ 

    y->parent = x->parent; 

25  8 

18 40 

80 

 17 

15 5 



    /* Set the parent to point to y instead of x */ 

    /* First see whether we're at the root */ 

    if ( x->parent == NULL ) T->root = y; 

    else 

        if ( x == (x->parent)->left ) 

            /* x was on the left of its parent */ 

            x->parent->left = y; 

        else 

            /* x must have been on the right */ 

            x->parent->right = y; 

    /* Finally, put x on y's left */ 

    y->left = x; 

    x->parent = y; 

    } 

Insertion: 

Insertion is somewhat complex and involves a number of cases. Note that we start by inserting the new 

node, x, in the tree just as we would for any other binary tree, using the tree_insert function. This 

new node is labelled red, and possibly destroys the red-black property. The main loop moves up the 

tree, restoring the red-black property.  

Algorithm to Insert a New Node 

Following steps are followed for inserting a new element into a red-black tree: 

1. The newNode be: 

 
2. Let y be the leaf (ie. NIL) and x be the root of the tree. The new node is inserted in the 

following tree. 

 



3. Check if the tree is empty (ie. whether x is NIL). If yes, insert newNode as a root node and color 
it black. 

4. Else, repeat steps following steps until leaf (NIL) is reached.  
a. Compare newKey with rootKey. 
b. If newKey is greater than rootKey, traverse through the right subtree. 
c. Else traverse through the left subtree. 

 
5. Assign the parent of the leaf as parent of newNode. 
6. If leafKey is greater than newKey, make newNode as rightChild. 
7. Else, make newNode as leftChild. 

 
8. Assign NULL to the left and rightChild of newNode. 
9. Assign RED color to newNode. 

 



10. Call InsertFix-algorithm to maintain the property of red-black tree if violated. 

 

Why newly inserted nodes are always red in a red-black tree? 

This is because inserting a red node does not violate the depth property of a red-black tree. 

If you attach a red node to a red node, then the rule is violated but it is easier to fix this problem 

than the problem introduced by violating the depth property. 

 

Algorithm to Maintain Red-Black Property After Insertion 

This algorithm is used for maintaining the property of a red-black tree if insertion of a newNode 

violates this property. 

1. Do the following until the parent of newNode p is RED. 
2. If p is the left child of grandParent gP of newNode, do the following. 

Case-I:  
a. If the color of the right child of gP of newNode is RED, set the color of both the children 

of gP as BLACK and the color of gP as RED. 

 



b. Assign gP to newNode. 

 
Case-II: 

c. (Before moving on to this step, while loop is checked. If conditions are not satisfied, it 
the loop is broken.) 
Else if newNode is the right child of p then, assign p to newNode. 

 



d. Left-Rotate newNode. 

 
Case-III: 

e. (Before moving on to this step, while loop is checked. If conditions are not satisfied, it 
the loop is broken.) 
Set color of p as BLACK and color of gP as RED. 

 



f. Right-Rotate gP. 

 
3. Else, do the following.  

a. If the color of the left child of gP of z is RED, set the color of both the children of gP as 
BLACK and the color of gP as RED. 

b. Assign gP to newNode. 
c. Else if newNode is the left child of p then, assign p to newNode and Right-Rotate 

newNode. 
d. Set color of p as BLACK and color of gP as RED. 
e. Left-Rotate gP. 

4. (This step is perfomed after coming out of the while loop.) 
Set the root of the tree as BLACK. 

 

The final tree look like this: 



 

 

 

The insertion operation is encoded as:  

 

rb_insert( Tree T, node x ) { 

    /* Insert in the tree in the usual way */ 

    tree_insert( T, x ); 

    /* Now restore the red-black property */ 

    x->colour = red; 

    while ( (x != T->root) && (x->parent->colour == red) ) { 

       if ( x->parent == x->parent->parent->left ) { 

           /* If x's parent is a left, y is x's right 'uncle' */ 

           y = x->parent->parent->right; 

           if ( y->colour == red ) { 

               /* case 1 - change the colours */ 

               x->parent->colour = black; 

               y->colour = black; 

               x->parent->parent->colour = red; 

               /* Move x up the tree */ 

               x = x->parent->parent; 

               } 

           else { 

               /* y is a black node */ 

               if ( x == x->parent->right ) { 

                   /* and x is to the right */  

                   /* case 2 - move x up and rotate */ 

                   x = x->parent; 

                   left_rotate( T, x ); 

                   } 



               /* case 3 */ 

               x->parent->colour = black; 

               x->parent->parent->colour = red; 

               right_rotate( T, x->parent->parent ); 

               } 

           } 

       else { 

           /* repeat the "if" part with right and left 

              exchanged */ 

           }  

       } 

    /* Colour the root black */ 

    T->root->colour = black; 

    } 

        

           Examination of the code reveals only one loop. In that loop, the node at the root of the 

sub-tree whose red-black property we are trying to restore, x, may be moved up the tree at least 

one level in each iteration of the loop. Since the tree originally has O(log n) height, there are 

O(log n) iterations. The tree_insert routine also has O(log n) complexity, so overall the rb_insert 

routine also has O(log n) complexity.  

Red-black trees: 

Trees which remain balanced - and thus guarantee O(logn) search times - in a dynamic 

environment. Or more importantly, since any tree can be re-balanced - but at considerable 

cost - can be re-balanced in O(logn) time.  

 

 

 

 

 

 

Applications: 

Red black tree offer worst case guarantee for insertion time, deletion time and search time. Not only 

does this make them valuable in time sensitive applications such as real time applications but it makes 

them valuable building blocks in other data structures which provide worst case guarantees. 

1. Most of the self-balancing BST library functions like map and set in C++ (OR TreeSet and 

TreeMap in Java) use Red Black Tree 

2. It is used to implement CPU Scheduling Linux. Completely Fair Scheduler uses it. 

 

 
 

Time complexity in big O notation 

Algorithm  Average Worst case 

Space  O(n) O(n) 

Search  O(log n)[1] O(log n)[1] 

Insert  O(log n)[1] O(log n)[1] 

Delete  O(log n)[1] O(log n)[1] 
 



B-TREES 

DEFINITION: 

B-Tree is a self-balanced search tree in which every node contains multiple keys and has 

more than two children. 

In search trees like binary search tree, AVL Tree, Red-Black tree, etc., every node contains only one 

value (key) and a maximum of two children. But there is a special type of search tree called B-Tree in which a 

node contains more than one value (key) and more than two children.  

 Here, the number of keys in a node and number of children for a node depends on the 

order of B-Tree. 

 Every B-Tree has an order. 

 
 

B-Tree of Order m has the following properties... 

 Property #1 - All leaf nodes must be at same level. 

 Property #2 - All nodes except root must have at least [m/2]-1 keys and maximum of m-1 keys. 

 Property #3 - All non leaf nodes except root (i.e. all internal nodes) must have at 

least m/2 children. 

 Property #4 - If the root node is a non leaf node, then it must have atleast 2 children. 

 Property #5 - A non leaf node with n-1 keys must have n number of children. 

 Property #6 - All the key values in a node must be in Ascending Order. 

 

 

 

 

 

 

 

 

 



 

 

BASIC OPERATIONS ON B-TREES: 

 

The following operations are performed on a B-Tree... 

1. Search 

2. Insertion 

3. Deletion 

Search Operation in B-Tree 

The search operation in B-Tree is similar to the search operation in Binary Search Tree. In a 

Binary search tree, the search process starts from the root node and we make a 2-way decision 

every time (we go to either left subtree or right subtree). In B-Tree also search process starts 

from the root node but here we make an n-way decision every time. Where 'n' is the total number 

of children the node has. In a B-Tree, the search operation is performed with O(log n) time 

complexity. The search operation is performed as follows... 

 Step 1 - Read the search element from the user. 

 Step 2 - Compare the search element with first key value of root node in the tree. 

 Step 3 - If both are matched, then display "Given node is found!!!" and terminate the 

function 

 Step 4 - If both are not matched, then check whether search element is smaller or larger 

than that key value. 

 Step 5 - If search element is smaller, then continue the search process in left subtree. 

 Step 6 - If search element is larger, then compare the search element with next key value 

in the same node and repeate steps 3, 4, 5 and 6 until we find the exact match or until the 

search element is compared with last key value in the leaf node. 

 Step 7 - If the last key value in the leaf node is also not matched then display "Element is 

not found" and terminate the function. 

Insertion Operation in B-Tree 

In a B-Tree, a new element must be added only at the leaf node. That means, the new 

keyValue is always attached to the leaf node only. The insertion operation is performed as 

follows... 

 Step 1 - Check whether tree is Empty. 

 Step 2 - If tree is Empty, then create a new node with new key value and insert it into the 

tree as a root node. 



 Step 3 - If tree is Not Empty, then find the suitable leaf node to which the new key value 

is added using Binary Search Tree logic. 

 Step 4 - If that leaf node has empty position, add the new key value to that leaf node in 

ascending order of key value within the node. 

 Step 5 - If that leaf node is already full, split that leaf node by sending middle value to its 

parent node. Repeat the same until the sending value is fixed into a node. 

 Step 6 - If the spilting is performed at root node then the middle value becomes new root 

node for the tree and the height of the tree is increased by one. 

 



 

 



 

 

 

 



 

 

 



http://www.tutorialspoint.com/data_structures_algorithms/heap_data_structure.htm Copyright © tutorialspoint.com

DATA STRUCTURE - HEAPDATA STRUCTURE - HEAP

Heap is a special case of balanced binary tree data structure where root-node key is compared
with its children and arranged accordingly. If α has child node β then −

keyα ≥ keyβ

As the value of parent is greater than that of child, this property generates Max Heap. Based on
this criteria a heap can be of two types −

For Input → 35 33 42 10 14 19 27 44 26 31

Min-Heap − where the value of root node is less than or equal to either of its children.

Max-Heap − where the value of root node is greater than or equal to either of its children.

Both trees are constructed using the same input and order of arrival.

Max Heap Construction Algorithm
We shall use the same example to demonstrate how a Max Heap is created. The procedure to
create Min Heap is similar but we go for min values instead of max ones.

We are going to derive an algorithm for max-heap by inserting one element at a time. At any point
of time, heap must maintain its property. While insertion, we also assume that we are inserting a
node in already heapified tree.

Step 1 − Create a new node at the end of heap.
Step 2 − Assign new value to the node.

http://www.tutorialspoint.com/data_structures_algorithms/heap_data_structure.htm


Step 3 − Compare the value of this child node with its parent.
Step 4 − If value of parent is less than child, then swap them.
Step 5 − Repeat step 3 & 4 until Heap property holds.

Note − In Min Heap construction algorithm we expect the value of parent node to be less than that
of child node.

Let's understand Max Heap construction by an animated illustration. We take the same input
sample that we use earlier.

Max Heap Deletion Algorithm
Lets derive an algorithm to delete from max-heap. Deletion in Max orMin Heap is always happen at
the root to remove the Maximum orminimum value.

Step 1 − Remove root node.
Step 2 − Move the last element of last level to root.
Step 3 − Compare the value of this child node with its parent.
Step 4 − If value of parent is less than child, then swap them.
Step 5 − Repeat step 3 & 4 until Heap property holds.

Loading [MathJax]/jax/output/HTML-CSS/jax.js



COS 423 Theory of Algorithms   •   Kevin Wayne   •   Spring 2007

Fibonacci Heaps

Lecture slides adapted from:

•  Chapter 20 of Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein.

•  Chapter 9 of The Design and Analysis of Algorithms by Dexter Kozen.

2

Theorem.  Starting from empty Fibonacci heap, any sequence of
a1 insert, a2 delete-min, and a3 decrease-key operations takes
O(a1 + a2 log n + a3) time.

make-heap

Operation

insert

find-min

delete-min

union

decrease-key

delete

1

Binary
Heap

log n

1

log n

n

log n

log n

1

Binomial
Heap

log n

log n

log n

log n

log n

log n

1

Fibonacci
Heap †

1

1

log n

1

1

log n

1

Relaxed
Heap

1

1

log n

1

1

log n

1

Linked
List

1

n

n

1

n

n

is-empty 1 1 1 11

Priority Queues Performance Cost Summary

†  amortizedn = number of elements in priority queue

3

Hopeless challenge.  O(1) insert, delete-min and decrease-key. Why?

Priority Queues Performance Cost Summary

make-heap

Operation

insert

find-min

delete-min

union

decrease-key

delete

1

Binary
Heap

log n

1

log n

n

log n

log n

1

Binomial
Heap

log n

log n

log n

log n

log n

log n

1

Fibonacci
Heap †

1

1

log n

1

1

log n

1

Relaxed
Heap

1

1

log n

1

1

log n

1

Linked
List

1

n

n

1

n

n

is-empty 1 1 1 11

†  amortizedn = number of elements in priority queue

4

Fibonacci Heaps

History.   [Fredman and Tarjan, 1986]
! Ingenious data structure and analysis.
! Original motivation:  improve Dijkstra's shortest path algorithm

from O(E log V ) to O(E + V log V ).

Basic idea.
! Similar to binomial heaps, but less rigid structure.
! Binomial heap:  eagerly consolidate trees after each insert.

! Fibonacci heap:  lazily defer consolidation until next delete-min.

V insert, V delete-min, E decrease-key



5

723

30

17

35

26 46

24

Heap H
39

4118 52

3

44

Fibonacci Heaps:  Structure

Fibonacci heap.
! Set of heap-ordered trees.
! Maintain pointer to minimum element.
! Set of marked nodes.

roots heap-ordered tree

each parent larger than its children

6

723

30

17

35

26 46

24

Heap H
39

4118 52

3

44

Fibonacci Heaps:  Structure

Fibonacci heap.
! Set of heap-ordered trees.
! Maintain pointer to minimum element.
! Set of marked nodes.

min

find-min takes O(1) time

7

723

30

17

35

26 46

24

Heap H
39

4118 52

3

44

Fibonacci Heaps:  Structure

Fibonacci heap.
! Set of heap-ordered trees.
! Maintain pointer to minimum element.
! Set of marked nodes.

min

use to keep heaps flat (stay tuned)

marked

8

Fibonacci Heaps:  Notation

Notation.
! n             = number of nodes in heap.
! rank(x)    = number of children of node x.
! rank(H)    = max rank of any node in heap H.
! trees(H)   = number of trees in heap H.
! marks(H) = number of marked nodes in heap H.

723

30

17

35

26 46

24

39

4118 52

3

44

rank = 3    min

Heap H

trees(H) = 5 marks(H) = 3

marked

n = 14



9

Fibonacci Heaps:  Potential Function

723

30

17

35

26 46

24

!(H) = 5 + 2"3 = 11

39

4118 52

3

44

min

Heap H

 !(H) !=!trees(H) + 2 " marks(H)

potential of heap H

trees(H) = 5 marks(H) = 3

marked

10

Insert

11

Fibonacci Heaps:  Insert

Insert.
! Create a new singleton tree.
! Add to root list; update min pointer (if necessary).

723

30

17

35

26 46

24

39

4118 52

3

44

21

insert 21

min

Heap H

12

Fibonacci Heaps:  Insert

Insert.
! Create a new singleton tree.
! Add to root list; update min pointer (if necessary).

39

41

723

18 52

3

30

17

35

26 46

24

44

21

min

Heap H

insert 21



13

Fibonacci Heaps:  Insert Analysis

Actual cost.  O(1)

Change in potential.  +1

Amortized cost.  O(1)

39

41

7

18 52

3

30

17

35

26 46

24

44

2123

min

Heap H

 !(H) !=!trees(H) + 2 " marks(H)

potential of heap H

14

Delete Min

15

Linking Operation

Linking operation.  Make larger root be a child of smaller root.

39

4118 52

3

4477

56 24

15

tree T1 tree T2

39

4118 52

3

44

77

56 24

15

tree T'

smaller rootlarger root still heap-ordered

16

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

4118 52

3

44

1723

30

7

35

26 46

24

min



17

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

411723 18 52

30

7

35

26 46

24

44

min

18

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

411723 18 52

30

7

35

26 46

24

44

min
current

19

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

411723 18 52

30

7

35

26 46

24

44

0 1 2 3

current
min

rank

20

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

411723 18 52

30

7

35

26 46

24

44

0 1 2 3

min
current

rank



21

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

411723 18 52

30

7

35

26 46

24

44

0 1 2 3

min

current

rank

22

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

411723 18 52

30

7

35

26 46

24

44

0 1 2 3

min

current

rank

link 23 into 17

23

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

4117

23

18 52

30

7

35

26 46

24

44

0 1 2 3

min

current

rank

link 17 into 7

24

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

417

30

18 52

17

35

26 46

24

44

0 1 2 3

23

current

min

rank

link 24 into 7



25

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

417

30

18 52

23

17

35

26 46

24 44

0 1 2 3

min

current

rank

26

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

417

30

18 52

23

17

35

26 46

24 44

0 1 2 3

min

current

rank

27

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

417

30

18 52

23

17

35

26 46

24 44

0 1 2 3

min

current

rank

28

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

39

417

30

18 52

23

17

35

26 46

24 44

0 1 2 3

min

current

rank

link 41 into 18



29

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

3941

7

30

1852

23

17

35

26 46

24

44

0 1 2 3

min

current

rank

30

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

7

30

52

23

17

35

26 46

24

0 1 2 3

min

rank

3941

18

44

current

31

Fibonacci Heaps:  Delete Min

Delete min.
! Delete min; meld its children into root list; update min.
! Consolidate trees so that no two roots have same rank.

7

30

52

23

17

35

26 46

24

min

3941

18

44

stop

32

Fibonacci Heaps:  Delete Min Analysis

Delete min.

Actual cost.   O(rank(H))  + O(trees(H))
! O(rank(H)) to meld min's children into root list.
! O(rank(H)) + O(trees(H)) to update min.
! O(rank(H)) + O(trees(H)) to consolidate trees.

Change in potential.  O(rank(H)) - trees(H)
! trees(H' )  # rank(H) + 1 since no two trees have same rank.
! $!(H) # rank(H) + 1 - trees(H).

Amortized cost.  O(rank(H))

 !(H) !=!trees(H) + 2 " marks(H)

potential function



33

Q.  Is amortized cost of O(rank(H)) good?

A.  Yes, if only insert and delete-min operations.
! In this case, all trees are binomial trees.
! This implies rank(H)  #  lg n.

A.  Yes, we'll implement decrease-key so that rank(H) = O(log n).

Fibonacci Heaps:  Delete Min Analysis

B0 B1 B2 B3

we only link trees of equal rank

34

Decrease Key

35

Intuition for deceasing the key of node x.
! If heap-order is not violated, just decrease the key of x.
! Otherwise, cut tree rooted at x and meld into root list.
! To keep trees flat:  as soon as a node has its second child cut,

cut it off and meld into root list (and unmark it).

24

46

17

30

23

7

88

26

21

52

39

18

41

38

72

Fibonacci Heaps:  Decrease Key

35

min

marked node:
one child already cut

36

Case 1.  [heap order not violated]
! Decrease key of x.
! Change heap min pointer (if necessary).

24

46

17

30

23

7

88

26

21

52

39

18

41

38

72

Fibonacci Heaps:  Decrease Key

29

35

min

x

decrease-key of x from 46 to 29



37

Case 1.  [heap order not violated]
! Decrease key of x.
! Change heap min pointer (if necessary).

24

29

17

30

23

7

88

26

21

52

39

18

41

38

72

Fibonacci Heaps:  Decrease Key

35

min

x

decrease-key of x from 46 to 29

38

Case 2a.  [heap order violated]
! Decrease key of x.
! Cut tree rooted at x, meld into root list, and unmark.
! If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

24

29

17

30

23

7

88

26

21

52

39

18

41

38

72

Fibonacci Heaps:  Decrease Key

15

35

min

decrease-key of x from 29 to 15

p

x

39

Case 2a.  [heap order violated]
! Decrease key of x.
! Cut tree rooted at x, meld into root list, and unmark.
! If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

24

15

17

30

23

7

88

26

21

52

39

18

41

38

72

Fibonacci Heaps:  Decrease Key

35

min

decrease-key of x from 29 to 15

p

x

40

Case 2a.  [heap order violated]
! Decrease key of x.
! Cut tree rooted at x, meld into root list, and unmark.
! If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

24 17

30

23

7

88

26

21

52

39

18

41

38

Fibonacci Heaps:  Decrease Key

35

min

decrease-key of x from 29 to 15

p

15

72

x



41

Case 2a.  [heap order violated]
! Decrease key of x.
! Cut tree rooted at x, meld into root list, and unmark.
! If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

24 17

30

23

7

88

26

21

52

39

18

41

38

Fibonacci Heaps:  Decrease Key

35

min

decrease-key of x from 29 to 15

p

15

72

x

mark parent

24

42

35

Case 2b.  [heap order violated]
! Decrease key of x.
! Cut tree rooted at x, meld into root list, and unmark.
! If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

24

15

17

30

23

7

88

26

21

52

39

18

41

38

72 24

Fibonacci Heaps:  Decrease Key

5

min

x

p

decrease-key of x from 35 to 5

43

5

Case 2b.  [heap order violated]
! Decrease key of x.
! Cut tree rooted at x, meld into root list, and unmark.
! If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

24

15

17

30

23

7

88

26

21

52

39

18

41

38

72 24

Fibonacci Heaps:  Decrease Key

min

x

p

decrease-key of x from 35 to 5

44

Fibonacci Heaps:  Decrease Key

24 17

30

23

7

26

21

52

39

18

41

38

24

5

88

15

72

decrease-key of x from 35 to 5

x

p

min

Case 2b.  [heap order violated]
! Decrease key of x.
! Cut tree rooted at x, meld into root list, and unmark.
! If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).



45

Case 2b.  [heap order violated]
! Decrease key of x.
! Cut tree rooted at x, meld into root list, and unmark.
! If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

24 17

30

23

7

26

21

52

39

18

41

38

24

5

Fibonacci Heaps:  Decrease Key

88

15

72

decrease-key of x from 35 to 5

x

p

second child cut

min

46

Case 2b.  [heap order violated]
! Decrease key of x.
! Cut tree rooted at x, meld into root list, and unmark.
! If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

24

26

17

30

23

7

21

52

39

18

41

38

88 24

5

Fibonacci Heaps:  Decrease Key

15

72

decrease-key of x from 35 to 5

x p
min

47

Case 2b.  [heap order violated]
! Decrease key of x.
! Cut tree rooted at x, meld into root list, and unmark.
! If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

24

26

17

30

23

7

21

52

39

18

41

38

88 24

5

Fibonacci Heaps:  Decrease Key

15

72

decrease-key of x from 35 to 5

x p

p'

second child cut

min

48

Case 2b.  [heap order violated]
! Decrease key of x.
! Cut tree rooted at x, meld into root list, and unmark.
! If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

26

17

30

23

7

21

52

39

18

41

38

88

5

Fibonacci Heaps:  Decrease Key

15 24

72

decrease-key of x from 35 to 5

x p p'
min

don't mark
parent if
it's a root

p''



49

Decrease-key.

Actual cost.  O(c)
! O(1) time for changing the key.
! O(1) time for each of c cuts, plus melding into root list.

Change in potential.  O(1) - c
! trees(H')   = trees(H) + c.
! marks(H') #  marks(H) - c + 2.
! $!  # c  +  2 " (-c + 2)  =  4 - c.

Amortized cost.  O(1)

Fibonacci Heaps:  Decrease Key Analysis

 !(H) !=!trees(H) + 2 " marks(H)

potential function

50

Analysis

51

Analysis Summary

Insert. O(1)
Delete-min. O(rank(H))  †

Decrease-key. O(1) †

Key lemma.  rank(H) = O(log n).

† amortized

number of nodes is exponential in rank

52

Fibonacci Heaps:  Bounding the Rank

Lemma.  Fix a point in time. Let x be a node, and let y1, …, yk  denote
its children in the order in which they were linked to x.  Then:

Pf.
! When yi was linked into x, x had at least i -1 children y1, …, yi-1.
! Since only trees of equal rank are linked, at that time

rank(yi)!= rank(xi) % i - 1.
! Since then, yi  has lost at most one child.
! Thus, right now rank(yi) %  i - 2.

! 

rank (yi ) "
0 if i =1

i#2 if i "1

$ 
% 
& 

or yi would have been cut

x

y1 y2 yk
…



53

Fibonacci Heaps:  Bounding the Rank

Lemma.  Fix a point in time. Let x be a node, and let y1, …, yk  denote
its children in the order in which they were linked to x.  Then:

Def.  Let Fk be smallest possible tree of rank k satisfying property.

F0 F1 F2 F3 F4 F5

1 2 3 5 8 13

! 

rank (yi ) "
0 if i =1

i#2 if i "1

$ 
% 
& 

x

y1 y2 yk
…

54

Fibonacci Heaps:  Bounding the Rank

Lemma.  Fix a point in time. Let x be a node, and let y1, …, yk  denote
its children in the order in which they were linked to x.  Then:

Def.  Let Fk be smallest possible tree of rank k satisfying property.

F4 F5

8 13

F6

8 + 13 = 21

! 

rank (yi ) "
0 if i =1

i#2 if i "1

$ 
% 
& 

x

y1 y2 yk
…

55

Fibonacci Heaps:  Bounding the Rank

Lemma.  Fix a point in time. Let x be a node, and let y1, …, yk  denote
its children in the order in which they were linked to x.  Then:

Def.  Let Fk be smallest possible tree of rank k satisfying property.

Fibonacci fact.  Fk  %  &k, where &  =  (1 + '5) / 2  ( 1.618.

Corollary.  rank(H) # log& n . golden ratio

x

y1 y2 yk
…

! 

rank (yi ) "
0 if i =1

i#2 if i "1

$ 
% 
& 

56

Fibonacci Numbers



57

Fibonacci Numbers:  Exponential Growth

Def.  The Fibonacci sequence is:  1, 2, 3, 5, 8, 13, 21, …

Lemma.   Fk  %  &k, where &  =  (1 + '5) / 2 ( 1.618.

Pf.  [by induction on k]
! Base cases:  F0 = 1 % 1,  F1 = 2  %  &.
! Inductive hypotheses:  Fk  %  &k  and Fk+1 %  &k + 1

! 

F
k

=

1 if k = 0

2 if k =1

F
k-1

+ F
k-2

if k " 2

# 

$ 
% 

& 
% 

slightly non-standard definition

! 

F
k+2 = F

k
+ F

k+1

" # k + # k+1

= # k (1 + #)

= # k (# 2 )

= # k+2

(&2 = & + 1)

(inductive hypothesis)

(definition)

(algebra)

(algebra)

58

Fibonacci Numbers and Nature

pinecone

cauliflower

59

Union

60

Fibonacci Heaps:  Union

Union.  Combine two Fibonacci heaps.

Representation.  Root lists are circular, doubly linked lists.

39

41

717

18 52

3

30

23

35

26 46

24

44

21

min min

Heap H' Heap H''



61

Fibonacci Heaps:  Union

Union.  Combine two Fibonacci heaps.

Representation.  Root lists are circular, doubly linked lists.

39

41

717

18 52

3

30

23

35

26 46

24

44

21

min

Heap H

62

Fibonacci Heaps:  Union

Actual cost.  O(1)

Change in potential.  0

Amortized cost.  O(1)

 !(H) !=!trees(H) + 2 " marks(H)

potential function

39

41

717

18 52

3

30

23

35

26 46

24

44

21

min

Heap H

63

Delete

64

Delete node x.
! decrease-key of x to -).
! delete-min element in heap.

Amortized cost.  O(rank(H))
! O(1) amortized for decrease-key.
! O(rank(H)) amortized for delete-min.

Fibonacci Heaps:  Delete

 !(H) !=!trees(H) + 2 " marks(H)

potential function



19 Binomial Heaps

This chapter and Chapter 20 present data structures known as mergeable heaps,
which support the following five operations.

MAKE-HEAP() creates and returns a new heap containing no elements.

INSERT(H, x) inserts node x , whose key field has already been filled in, into
heap H .

MINIMUM(H ) returns a pointer to the node in heap H whose key is minimum.

EXTRACT-MIN(H ) deletes the node from heap H whose key is minimum, return-
ing a pointer to the node.

UNION(H1, H2) creates and returns a new heap that contains all the nodes of heaps
H1 and H2. Heaps H1 and H2 are “destroyed” by this operation.

In addition, the data structures in these chapters also support the following two
operations.

DECREASE-KEY(H, x, k) assigns to node x within heap H the new key value k,
which is assumed to be no greater than its current key value.1

DELETE(H, x) deletes node x from heap H .

As the table in Figure 19.1 shows, if we don’t need the UNION operation, ordi-
nary binary heaps, as used in heapsort (Chapter 6), work well. Operations other
than UNION run in worst-case time O(lg n) (or better) on a binary heap. If the
UNION operation must be supported, however, binary heaps perform poorly. By
concatenating the two arrays that hold the binary heaps to be merged and then run-
ning MIN-HEAPIFY (see Exercise 6.2-2), the UNION operation takes �(n) time in
the worst case.

1As mentioned in the introduction to Part V, our default mergeable heaps are mergeable min-
heaps, and so the operations MINIMUM, EXTRACT-MIN, and DECREASE-KEY apply. Alterna-
tively, we could define a mergeable max-heap with the operations MAXIMUM, EXTRACT-MAX,
and INCREASE-KEY.



456 Chapter 19 Binomial Heaps

Binary heap Binomial heap Fibonacci heap
Procedure (worst-case) (worst-case) (amortized)

MAKE-HEAP �(1) �(1) �(1)

INSERT �(lg n) O(lg n) �(1)

MINIMUM �(1) O(lg n) �(1)

EXTRACT-MIN �(lg n) �(lg n) O(lg n)

UNION �(n) O(lg n) �(1)

DECREASE-KEY �(lg n) �(lg n) �(1)

DELETE �(lg n) �(lg n) O(lg n)

Figure 19.1 Running times for operations on three implementations of mergeable heaps. The
number of items in the heap(s) at the time of an operation is denoted by n.

In this chapter, we examine “binomial heaps,” whose worst-case time bounds are
also shown in Figure 19.1. In particular, the UNION operation takes only O(lg n)

time to merge two binomial heaps with a total of n elements.
In Chapter 20, we shall explore Fibonacci heaps, which have even better time

bounds for some operations. Note, however, that the running times for Fibonacci
heaps in Figure 19.1 are amortized time bounds, not worst-case per-operation time
bounds.

This chapter ignores issues of allocating nodes prior to insertion and freeing
nodes following deletion. We assume that the code that calls the heap procedures
deals with these details.

Binary heaps, binomial heaps, and Fibonacci heaps are all inefficient in their
support of the operation SEARCH; it can take a while to find a node with a given
key. For this reason, operations such as DECREASE-KEY and DELETE that refer
to a given node require a pointer to that node as part of their input. As in our
discussion of priority queues in Section 6.5, when we use a mergeable heap in
an application, we often store a handle to the corresponding application object
in each mergeable-heap element, as well as a handle to corresponding mergeable-
heap element in each application object. The exact nature of these handles depends
on the application and its implementation.

Section 19.1 defines binomial heaps after first defining their constituent binomial
trees. It also introduces a particular representation of binomial heaps. Section 19.2
shows how we can implement operations on binomial heaps in the time bounds
given in Figure 19.1.



19.1 Binomial trees and binomial heaps 457

19.1 Binomial trees and binomial heaps

A binomial heap is a collection of binomial trees, so this section starts by defining
binomial trees and proving some key properties. We then define binomial heaps
and show how they can be represented.

19.1.1 Binomial trees

The binomial tree Bk is an ordered tree (see Section B.5.2) defined recursively.
As shown in Figure 19.2(a), the binomial tree B0 consists of a single node. The
binomial tree Bk consists of two binomial trees Bk−1 that are linked together: the
root of one is the leftmost child of the root of the other. Figure 19.2(b) shows the
binomial trees B0 through B4.

Some properties of binomial trees are given by the following lemma.

Lemma 19.1 (Properties of binomial trees)
For the binomial tree Bk ,

1. there are 2k nodes,

2. the height of the tree is k,

3. there are exactly
(k

i

)
nodes at depth i for i = 0, 1, . . . , k, and

4. the root has degree k, which is greater than that of any other node; moreover if
the children of the root are numbered from left to right by k − 1, k − 2, . . . , 0,
child i is the root of a subtree Bi .

Proof The proof is by induction on k. For each property, the basis is the binomial
tree B0. Verifying that each property holds for B0 is trivial.

For the inductive step, we assume that the lemma holds for Bk−1.

1. Binomial tree Bk consists of two copies of Bk−1, and so Bk has 2k−1+2k−1 = 2k

nodes.

2. Because of the way in which the two copies of Bk−1 are linked to form Bk , the
maximum depth of a node in Bk is one greater than the maximum depth in Bk−1.
By the inductive hypothesis, this maximum depth is (k − 1)+ 1 = k.

3. Let D(k, i) be the number of nodes at depth i of binomial tree Bk. Since Bk

is composed of two copies of Bk−1 linked together, a node at depth i in Bk−1

appears in Bk once at depth i and once at depth i + 1. In other words, the
number of nodes at depth i in Bk is the number of nodes at depth i in Bk−1 plus



458 Chapter 19 Binomial Heaps

B4

Bk–1
Bk–2

Bk

B2
B1

B0

B3B2B1B0

Bk

Bk–1
Bk–1

B0

(a)

depth

0

1

2

3

4

(b)

(c)

Figure 19.2 (a) The recursive definition of the binomial tree Bk . Triangles represent rooted sub-
trees. (b) The binomial trees B0 through B4. Node depths in B4 are shown. (c) Another way of
looking at the binomial tree Bk .

the number of nodes at depth i − 1 in Bk−1. Thus,

D(k, i) = D(k − 1, i)+ D(k − 1, i − 1) (by the inductive hypothesis)

=
(

k − 1

i

)
+
(

k − 1

i − 1

)
(by Exercise C.1-7)

=
(

k

i

)
.

4. The only node with greater degree in Bk than in Bk−1 is the root, which
has one more child than in Bk−1. Since the root of Bk−1 has degree k − 1,
the root of Bk has degree k. Now, by the inductive hypothesis, and as Fig-
ure 19.2(c) shows, from left to right, the children of the root of Bk−1 are roots
of Bk−2, Bk−3, . . . , B0. When Bk−1 is linked to Bk−1, therefore, the children of
the resulting root are roots of Bk−1, Bk−2, . . . , B0.



19.1 Binomial trees and binomial heaps 459

Corollary 19.2
The maximum degree of any node in an n-node binomial tree is lg n.

Proof Immediate from properties 1 and 4 of Lemma 19.1.

The term “binomial tree” comes from property 3 of Lemma 19.1, since the
terms

(k
i

)
are the binomial coefficients. Exercise 19.1-3 gives further justification

for the term.

19.1.2 Binomial heaps

A binomial heap H is a set of binomial trees that satisfies the following binomial-
heap properties.

1. Each binomial tree in H obeys the min-heap property: the key of a node is
greater than or equal to the key of its parent. We say that each such tree is
min-heap-ordered.

2. For any nonnegative integer k, there is at most one binomial tree in H whose
root has degree k.

The first property tells us that the root of a min-heap-ordered tree contains the
smallest key in the tree.

The second property implies that an n-node binomial heap H consists of at most
�lg n� + 1 binomial trees. To see why, observe that the binary representation of n
has �lg n� + 1 bits, say 〈b�lg n�, b�lg n�−1, . . . , b0〉, so that n = ∑�lg n�

i=0 bi2i . By
property 1 of Lemma 19.1, therefore, binomial tree Bi appears in H if and only if
bit bi = 1. Thus, binomial heap H contains at most �lg n� + 1 binomial trees.

Figure 19.3(a) shows a binomial heap H with 13 nodes. The binary represen-
tation of 13 is 〈1101〉, and H consists of min-heap-ordered binomial trees B3, B2,
and B0, having 8, 4, and 1 nodes respectively, for a total of 13 nodes.

Representing binomial heaps

As shown in Figure 19.3(b), each binomial tree within a binomial heap is stored
in the left-child, right-sibling representation of Section 10.4. Each node has a key
field and any other satellite information required by the application. In addition,
each node x contains pointers p[x] to its parent, child[x] to its leftmost child, and
sibling[x] to the sibling of x immediately to its right. If node x is a root, then
p[x] = NIL. If node x has no children, then child[x] = NIL, and if x is the
rightmost child of its parent, then sibling[x] = NIL. Each node x also contains the
field degree[x], which is the number of children of x .

As Figure 19.3 also shows, the roots of the binomial trees within a binomial
heap are organized in a linked list, which we refer to as the root list. The degrees



460 Chapter 19 Binomial Heaps

10 1

12 25

18

6

14 29

38

8

11 17

27

head[H](a)

10
0

12
1

18
0

1
2

25
0

14
1

38
0

6
3

29
0

11
1

27
0

8
2

17
0

head[H](b)

key

degree

child

p

sibling

Figure 19.3 A binomial heap H with n = 13 nodes. (a) The heap consists of binomial trees B0, B2,
and B3, which have 1, 4, and 8 nodes respectively, totaling n = 13 nodes. Since each binomial tree
is min-heap-ordered, the key of any node is no less than the key of its parent. Also shown is the root
list, which is a linked list of roots in order of increasing degree. (b) A more detailed representation
of binomial heap H . Each binomial tree is stored in the left-child, right-sibling representation, and
each node stores its degree.

of the roots strictly increase as we traverse the root list. By the second binomial-
heap property, in an n-node binomial heap the degrees of the roots are a subset
of {0, 1, . . . , �lg n�}. The sibling field has a different meaning for roots than for
nonroots. If x is a root, then sibling[x] points to the next root in the root list. (As
usual, sibling[x] = NIL if x is the last root in the root list.)

A given binomial heap H is accessed by the field head[H ], which is simply a
pointer to the first root in the root list of H . If binomial heap H has no elements,
then head[H ] = NIL.



19.2 Operations on binomial heaps 461

0111

01100101

0100

0011

00100001

0000

1111

11101101

1100

1011

10101001

1000

Figure 19.4 The binomial tree B4 with nodes labeled in binary by a postorder walk.

Exercises

19.1-1
Suppose that x is a node in a binomial tree within a binomial heap, and assume
that sibling[x] �= NIL. If x is not a root, how does degree[sibling[x]] compare to
degree[x]? How about if x is a root?

19.1-2
If x is a nonroot node in a binomial tree within a binomial heap, how does degree[x]
compare to degree[p[x]]?

19.1-3
Suppose we label the nodes of binomial tree Bk in binary by a postorder walk, as
in Figure 19.4. Consider a node x labeled l at depth i , and let j = k − i . Show
that x has j 1’s in its binary representation. How many binary k-strings are there
that contain exactly j 1’s? Show that the degree of x is equal to the number of 1’s
to the right of the rightmost 0 in the binary representation of l.

19.2 Operations on binomial heaps

In this section, we show how to perform operations on binomial heaps in the time
bounds shown in Figure 19.1. We shall only show the upper bounds; the lower
bounds are left as Exercise 19.2-10.

Creating a new binomial heap

To make an empty binomial heap, the MAKE-BINOMIAL-HEAP procedure sim-
ply allocates and returns an object H , where head[H ] = NIL. The running time
is �(1).



462 Chapter 19 Binomial Heaps

Finding the minimum key

The procedure BINOMIAL-HEAP-MINIMUM returns a pointer to the node with the
minimum key in an n-node binomial heap H . This implementation assumes that
there are no keys with value ∞. (See Exercise 19.2-5.)

BINOMIAL-HEAP-MINIMUM(H )

1 y ← NIL

2 x ← head[H ]
3 min ←∞
4 while x �= NIL

5 do if key[x] < min
6 then min ← key[x]
7 y ← x
8 x ← sibling[x]
9 return y

Since a binomial heap is min-heap-ordered, the minimum key must reside in a
root node. The BINOMIAL-HEAP-MINIMUM procedure checks all roots, which
number at most �lg n� + 1, saving the current minimum in min and a pointer to
the current minimum in y. When called on the binomial heap of Figure 19.3,
BINOMIAL-HEAP-MINIMUM returns a pointer to the node with key 1.

Because there are at most �lg n� + 1 roots to check, the running time of
BINOMIAL-HEAP-MINIMUM is O(lg n).

Uniting two binomial heaps

The operation of uniting two binomial heaps is used as a subroutine by most of the
remaining operations. The BINOMIAL-HEAP-UNION procedure repeatedly links
binomial trees whose roots have the same degree. The following procedure links
the Bk−1 tree rooted at node y to the Bk−1 tree rooted at node z; that is, it makes z
the parent of y. Node z thus becomes the root of a Bk tree.

BINOMIAL-LINK(y, z)

1 p[y] ← z
2 sibling[y] ← child[z]
3 child[z] ← y
4 degree[z] ← degree[z]+ 1

The BINOMIAL-LINK procedure makes node y the new head of the linked list
of node z’s children in O(1) time. It works because the left-child, right-sibling
representation of each binomial tree matches the ordering property of the tree: in
a Bk tree, the leftmost child of the root is the root of a Bk−1 tree.



19.2 Operations on binomial heaps 463

The following procedure unites binomial heaps H1 and H2, returning the re-
sulting heap. It destroys the representations of H1 and H2 in the process. Be-
sides BINOMIAL-LINK, the procedure uses an auxiliary procedure BINOMIAL-
HEAP-MERGE that merges the root lists of H1 and H2 into a single linked list that
is sorted by degree into monotonically increasing order. The BINOMIAL-HEAP-
MERGE procedure, whose pseudocode we leave as Exercise 19.2-1, is similar to
the MERGE procedure in Section 2.3.1.

BINOMIAL-HEAP-UNION(H1, H2)

1 H ← MAKE-BINOMIAL-HEAP()

2 head[H ] ← BINOMIAL-HEAP-MERGE(H1, H2)

3 free the objects H1 and H2 but not the lists they point to
4 if head[H ] = NIL

5 then return H
6 prev-x ← NIL

7 x ← head[H ]
8 next-x ← sibling[x]
9 while next-x �= NIL

10 do if (degree[x] �= degree[next-x]) or
(sibling[next-x] �= NIL and degree[sibling[next-x]] = degree[x])

11 then prev-x ← x ✄ Cases 1 and 2
12 x ← next-x ✄ Cases 1 and 2
13 else if key[x] ≤ key[next-x]
14 then sibling[x] ← sibling[next-x] ✄ Case 3
15 BINOMIAL-LINK(next-x, x) ✄ Case 3
16 else if prev-x = NIL ✄ Case 4
17 then head[H ] ← next-x ✄ Case 4
18 else sibling[prev-x] ← next-x ✄ Case 4
19 BINOMIAL-LINK(x, next-x) ✄ Case 4
20 x ← next-x ✄ Case 4
21 next-x ← sibling[x]
22 return H

Figure 19.5 shows an example of BINOMIAL-HEAP-UNION in which all four cases
given in the pseudocode occur.

The BINOMIAL-HEAP-UNION procedure has two phases. The first phase, per-
formed by the call of BINOMIAL-HEAP-MERGE, merges the root lists of binomial
heaps H1 and H2 into a single linked list H that is sorted by degree into monotoni-
cally increasing order. There might be as many as two roots (but no more) of each
degree, however, so the second phase links roots of equal degree until at most one
root remains of each degree. Because the linked list H is sorted by degree, we can
perform all the link operations quickly.



464 Chapter 19 Binomial Heaps

12 7

25

15

3328

41

18

3

37

8

2223

24

30

3245

55

6

4410

17

29

3148

50

12 18 7

25

15

3328

41

3

37

8

2223

24

30

3245

55

6

4410

17

29

3148

50

x next-x

15

3328

41

3

37

12

18

7

25 8

2223

24

30

3245

55

6

4410

17

29

3148

50

x next-x

BINOMIAL-HEAP-MERGE

Case 3

Case 2

head[H1](a) head[H2]

head[H](b)

head[H](c)

Figure 19.5 The execution of BINOMIAL-HEAP-UNION. (a) Binomial heaps H1 and H2. (b) Bi-
nomial heap H is the output of BINOMIAL-HEAP-MERGE(H1, H2). Initially, x is the first root on
the root list of H . Because both x and next-x have degree 0 and key[x] < key[next-x], case 3 applies.
(c) After the link occurs, x is the first of three roots with the same degree, so case 2 applies. (d) After
all the pointers move down one position in the root list, case 4 applies, since x is the first of two
roots of equal degree. (e) After the link occurs, case 3 applies. (f) After another link, case 1 applies,
because x has degree 3 and next-x has degree 4. This iteration of the while loop is the last, because
after the pointers move down one position in the root list, next-x = NIL.

In detail, the procedure works as follows. Lines 1–3 start by merging the root
lists of binomial heaps H1 and H2 into a single root list H . The root lists of H1

and H2 are sorted by strictly increasing degree, and BINOMIAL-HEAP-MERGE re-
turns a root list H that is sorted by monotonically increasing degree. If the root lists
of H1 and H2 have m roots altogether, BINOMIAL-HEAP-MERGE runs in O(m)

time by repeatedly examining the roots at the heads of the two root lists and ap-
pending the root with the lower degree to the output root list, removing it from its
input root list in the process.



19.2 Operations on binomial heaps 465

15

3328

41

3

37

12

18

7

25 8

2223

24

30

3245

55

6

4410

17

29

3148

50

x next-xprev-x

15

3328

41

7

25

12

18

3

37 8

2223

24

30

3245

55

6

4410

17

29

3148

50

x next-xprev-x

15

3328

41

7

25

12

18

3

37 8

2223

24

30

3245

55

6

4410

17

29

3148

50

x next-xprev-x

Case 4

Case 3

Case 1

(d) head[H]

(e) head[H]

(f) head[H]

The BINOMIAL-HEAP-UNION procedure next initializes some pointers into the
root list of H . First, it simply returns in lines 4–5 if it happens to be uniting two
empty binomial heaps. From line 6 on, therefore, we know that H has at least one
root. Throughout the procedure, we maintain three pointers into the root list:

• x points to the root currently being examined,

• prev-x points to the root preceding x on the root list: sibling[prev-x] = x (since
initially x has no predecessor, we start with prev-x set to NIL), and

• next-x points to the root following x on the root list: sibling[x] = next-x.

Initially, there are at most two roots on the root list H of a given degree: because
H1 and H2 were binomial heaps, they each had at most one root of a given degree.
Moreover, BINOMIAL-HEAP-MERGE guarantees us that if two roots in H have
the same degree, they are adjacent in the root list.

In fact, during the execution of BINOMIAL-HEAP-UNION, there may be three
roots of a given degree appearing on the root list H at some time. We shall see



466 Chapter 19 Binomial Heaps

in a moment how this situation could occur. At each iteration of the while loop of
lines 9–21, therefore, we decide whether to link x and next-x based on their degrees
and possibly the degree of sibling[next-x]. An invariant of the loop is that each time
we start the body of the loop, both x and next-x are non-NIL. (See Exercise 19.2-4
for a precise loop invariant.)

Case 1, shown in Figure 19.6(a), occurs when degree[x] �= degree[next-x], that
is, when x is the root of a Bk-tree and next-x is the root of a Bl-tree for some l > k.
Lines 11–12 handle this case. We don’t link x and next-x, so we simply march the
pointers one position farther down the list. Updating next-x to point to the node
following the new node x is handled in line 21, which is common to every case.

Case 2, shown in Figure 19.6(b), occurs when x is the first of three roots of equal
degree, that is, when

degree[x] = degree[next-x] = degree[sibling[next-x]] .

We handle this case in the same manner as case 1: we just march the pointers one
position farther down the list. The next iteration will execute either case 3 or case 4
to combine the second and third of the three equal-degree roots. Line 10 tests for
both cases 1 and 2, and lines 11–12 handle both cases.

Cases 3 and 4 occur when x is the first of two roots of equal degree, that is, when

degree[x] = degree[next-x] �= degree[sibling[next-x]] .

These cases may occur in any iteration, but one of them always occurs immediately
following case 2. In cases 3 and 4, we link x and next-x. The two cases are
distinguished by whether x or next-x has the smaller key, which determines the
node that will be the root after the two are linked.

In case 3, shown in Figure 19.6(c), key[x] ≤ key[next-x], so next-x is linked to x .
Line 14 removes next-x from the root list, and line 15 makes next-x the leftmost
child of x .

In case 4, shown in Figure 19.6(d), next-x has the smaller key, so x is linked to
next-x. Lines 16–18 remove x from the root list; there are two cases depending
on whether x is the first root on the list (line 17) or is not (line 18). Line 19 then
makes x the leftmost child of next-x, and line 20 updates x for the next iteration.

Following either case 3 or case 4, the setup for the next iteration of the while
loop is the same. We have just linked two Bk-trees to form a Bk+1-tree, which x
now points to. There were already zero, one, or two other Bk+1-trees on the root
list resulting from BINOMIAL-HEAP-MERGE, so x is now the first of either one,
two, or three Bk+1-trees on the root list. If x is the only one, then we enter case 1
in the next iteration: degree[x] �= degree[next-x]. If x is the first of two, then we
enter either case 3 or case 4 in the next iteration. It is when x is the first of three
that we enter case 2 in the next iteration.

The running time of BINOMIAL-HEAP-UNION is O(lg n), where n is the total
number of nodes in binomial heaps H1 and H2. We can see this as follows. Let H1



19.2 Operations on binomial heaps 467

Case 4

Case 3

key[x] > key[next-x]

key[x] ≤ key[next-x]

……
prev-x x next-x sibling[next-x]

(a)
Case 1

(b)

(c)

……
prev-x x next-x

……
prev-x x next-x sibling[next-x]

Case 2
……

prev-x x next-x

……
prev-x x next-x sibling[next-x]

……
prev-x x next-x

a b

c

da b c d

(d) ……
prev-x x next-x sibling[next-x]

……
prev-x x next-x

a

b

c da b c d

a b c d

a b c d

a b c d

a b c d

Bk Bl

Bk Bk Bk

Bk Bk Bl

Bk Bk Bl

Bk Bl

Bk Bk Bk

Bk

Bk Bl

Bk+1

Bk

Bk Bl

Bk+1

Figure 19.6 The four cases that occur in BINOMIAL-HEAP-UNION. Labels a, b, c, and d serve
only to identify the roots involved; they do not indicate the degrees or keys of these roots. In
each case, x is the root of a Bk-tree and l > k. (a) Case 1: degree[x] �= degree[next-x]. The
pointers move one position farther down the root list. (b) Case 2: degree[x] = degree[next-x] =
degree[sibling[next-x]]. Again, the pointers move one position farther down the list, and the
next iteration executes either case 3 or case 4. (c) Case 3: degree[x] = degree[next-x] �=
degree[sibling[next-x]] and key[x] ≤ key[next-x]. We remove next-x from the root list and link it
to x , creating a Bk+1-tree. (d) Case 4: degree[x] = degree[next-x] �= degree[sibling[next-x]] and
key[next-x] ≤ key[x]. We remove x from the root list and link it to next-x, again creating a Bk+1-tree.

contain n1 nodes and H2 contain n2 nodes, so that n = n1+n2. Then H1 contains at
most �lg n1�+1 roots and H2 contains at most �lg n2�+1 roots, and so H contains at
most �lg n1�+�lg n2�+2 ≤ 2 �lg n�+2 = O(lg n) roots immediately after the call
of BINOMIAL-HEAP-MERGE. The time to perform BINOMIAL-HEAP-MERGE is
thus O(lg n). Each iteration of the while loop takes O(1) time, and there are at
most �lg n1� + �lg n2� + 2 iterations because each iteration either advances the



468 Chapter 19 Binomial Heaps

pointers one position down the root list of H or removes a root from the root list.
The total time is thus O(lg n).

Inserting a node

The following procedure inserts node x into binomial heap H , assuming that x has
already been allocated and key[x] has already been filled in.

BINOMIAL-HEAP-INSERT(H, x)

1 H ′ ← MAKE-BINOMIAL-HEAP()

2 p[x] ← NIL

3 child[x] ← NIL

4 sibling[x] ← NIL

5 degree[x] ← 0
6 head[H ′] ← x
7 H ← BINOMIAL-HEAP-UNION(H, H ′)

The procedure simply makes a one-node binomial heap H ′ in O(1) time and unites
it with the n-node binomial heap H in O(lg n) time. The call to BINOMIAL-HEAP-
UNION takes care of freeing the temporary binomial heap H ′. (A direct implemen-
tation that does not call BINOMIAL-HEAP-UNION is given as Exercise 19.2-8.)

Extracting the node with minimum key

The following procedure extracts the node with the minimum key from binomial
heap H and returns a pointer to the extracted node.

BINOMIAL-HEAP-EXTRACT-MIN(H )

1 find the root x with the minimum key in the root list of H ,
and remove x from the root list of H

2 H ′ ← MAKE-BINOMIAL-HEAP()

3 reverse the order of the linked list of x’s children,
and set head[H ′] to point to the head of the resulting list

4 H ← BINOMIAL-HEAP-UNION(H, H ′)
5 return x

This procedure works as shown in Figure 19.7. The input binomial heap H is
shown in Figure 19.7(a). Figure 19.7(b) shows the situation after line 1: the root x
with the minimum key has been removed from the root list of H . If x is the root
of a Bk-tree, then by property 4 of Lemma 19.1, x’s children, from left to right,
are roots of Bk−1-, Bk−2-, . . . , B0-trees. Figure 19.7(c) shows that by reversing the
list of x’s children in line 3, we have a binomial heap H ′ that contains every node



19.2 Operations on binomial heaps 469

37

41

28

77

10

13

11

27

8

17

14

38

6

29 26

42

16

23

12

18

1

25

11

27

8

17

14

38

6

29 26

42

16

23

12

18

1

25

x

28

77

10

13

11

27

8

17

14

38

6

2926

42

16

23

12

18

25

28

77

10

13 11

27

8

17

14

38

6

29

26

42

16

23

12

18

25

37

41

28

77

10

13

37

41

37

41

(a) head[H]

(b) head[H]

(c) head[H]

(d) head[H]

head[H′]

Figure 19.7 The action of BINOMIAL-HEAP-EXTRACT-MIN. (a) A binomial heap H . (b) The
root x with minimum key is removed from the root list of H . (c) The linked list of x’s children is
reversed, giving another binomial heap H ′. (d) The result of uniting H and H ′.

in x’s tree except for x itself. Because x’s tree was removed from H in line 1, the
binomial heap that results from uniting H and H ′ in line 4, shown in Figure 19.7(d),
contains all the nodes originally in H except for x . Finally, line 5 returns x .

Since each of lines 1–4 takes O(lg n) time if H has n nodes, BINOMIAL-HEAP-
EXTRACT-MIN runs in O(lg n) time.



470 Chapter 19 Binomial Heaps

Decreasing a key

The following procedure decreases the key of a node x in a binomial heap H to a
new value k. It signals an error if k is greater than x’s current key.

BINOMIAL-HEAP-DECREASE-KEY(H, x, k)

1 if k > key[x]
2 then error “new key is greater than current key”
3 key[x] ← k
4 y ← x
5 z ← p[y]
6 while z �= NIL and key[y] < key[z]
7 do exchange key[y] ↔ key[z]
8 ✄ If y and z have satellite fields, exchange them, too.
9 y ← z

10 z ← p[y]

As shown in Figure 19.8, this procedure decreases a key in the same manner
as in a binary min-heap: by “bubbling up” the key in the heap. After ensuring
that the new key is in fact no greater than the current key and then assigning the
new key to x , the procedure goes up the tree, with y initially pointing to node x .
In each iteration of the while loop of lines 6–10, key[y] is checked against the
key of y’s parent z. If y is the root or key[y] ≥ key[z], the binomial tree is now
min-heap-ordered. Otherwise, node y violates min-heap ordering, and so its key is
exchanged with the key of its parent z, along with any other satellite information.
The procedure then sets y to z, going up one level in the tree, and continues with
the next iteration.

The BINOMIAL-HEAP-DECREASE-KEY procedure takes O(lg n) time. By
property 2 of Lemma 19.1, the maximum depth of x is �lg n�, so the while loop of
lines 6–10 iterates at most �lg n� times.

Deleting a key

It is easy to delete a node x’s key and satellite information from binomial heap H
in O(lg n) time. The following implementation assumes that no node currently in
the binomial heap has a key of −∞.

BINOMIAL-HEAP-DELETE(H, x)

1 BINOMIAL-HEAP-DECREASE-KEY(H, x,−∞)

2 BINOMIAL-HEAP-EXTRACT-MIN(H )

The BINOMIAL-HEAP-DELETE procedure makes node x have the unique mini-
mum key in the entire binomial heap by giving it a key of −∞. (Exercise 19.2-6



19.2 Operations on binomial heaps 471

25 12

18

7

42

16

23

28

77

10

13 11

27

8

17

14

38

6

29

z

y

25

16

42

7

23

28

77

10

13 11

27

8

17

14

38

6

29z

y

25

16

42

10

23

28

77

7

13 11

27

8

17

14

38

6

29

z

y

37

41

12

1837

41

12

1837

41

(a) head[H]

(b) head[H]

(c) head[H]

Figure 19.8 The action of BINOMIAL-HEAP-DECREASE-KEY. (a) The situation just before line 6
of the first iteration of the while loop. Node y has had its key decreased to 7, which is less than the
key of y’s parent z. (b) The keys of the two nodes are exchanged, and the situation just before line 6
of the second iteration is shown. Pointers y and z have moved up one level in the tree, but min-heap
order is still violated. (c) After another exchange and moving pointers y and z up one more level, we
find that min-heap order is satisfied, so the while loop terminates.

deals with the situation in which −∞ cannot appear as a key, even temporarily.) It
then bubbles this key and the associated satellite information up to a root by calling
BINOMIAL-HEAP-DECREASE-KEY. This root is then removed from H by a call
of BINOMIAL-HEAP-EXTRACT-MIN.

The BINOMIAL-HEAP-DELETE procedure takes O(lg n) time.

Exercises

19.2-1
Write pseudocode for BINOMIAL-HEAP-MERGE.



472 Chapter 19 Binomial Heaps

19.2-2
Show the binomial heap that results when a node with key 24 is inserted into the
binomial heap shown in Figure 19.7(d).

19.2-3
Show the binomial heap that results when the node with key 28 is deleted from the
binomial heap shown in Figure 19.8(c).

19.2-4
Argue the correctness of BINOMIAL-HEAP-UNION using the following loop in-
variant:

At the start of each iteration of the while loop of lines 9–21, x points to a
root that is one of the following:

• the only root of its degree,
• the first of the only two roots of its degree, or
• the first or second of the only three roots of its degree.

Moreover, all roots preceding x’s predecessor on the root list have unique
degrees on the root list, and if x’s predecessor has a degree different from
that of x , its degree on the root list is unique, too. Finally, node degrees
monotonically increase as we traverse the root list.

19.2-5
Explain why the BINOMIAL-HEAP-MINIMUM procedure might not work correctly
if keys can have the value∞. Rewrite the pseudocode to make it work correctly in
such cases.

19.2-6
Suppose there is no way to represent the key −∞. Rewrite the BINOMIAL-HEAP-
DELETE procedure to work correctly in this situation. It should still take O(lg n)

time.

19.2-7
Discuss the relationship between inserting into a binomial heap and incrementing a
binary number and the relationship between uniting two binomial heaps and adding
two binary numbers.

19.2-8
In light of Exercise 19.2-7, rewrite BINOMIAL-HEAP-INSERT to insert a node di-
rectly into a binomial heap without calling BINOMIAL-HEAP-UNION.



Problems for Chapter 19 473

19.2-9
Show that if root lists are kept in strictly decreasing order by degree (instead of
strictly increasing order), each of the binomial heap operations can be implemented
without changing its asymptotic running time.

19.2-10
Find inputs that cause BINOMIAL-HEAP-EXTRACT-MIN, BINOMIAL-HEAP-
DECREASE-KEY, and BINOMIAL-HEAP-DELETE to run in �(lg n) time. Ex-
plain why the worst-case running times of BINOMIAL-HEAP-INSERT, BINOMIAL-
HEAP-MINIMUM, and BINOMIAL-HEAP-UNION are

∞
�(lg n) but not �(lg n).

(See Problem 3-5.)

Problems

19-1 2-3-4 heaps
Chapter 18 introduced the 2-3-4 tree, in which every internal node (other than pos-
sibly the root) has two, three, or four children and all leaves have the same depth. In
this problem, we shall implement 2-3-4 heaps, which support the mergeable-heap
operations.

The 2-3-4 heaps differ from 2-3-4 trees in the following ways. In 2-3-4 heaps,
only leaves store keys, and each leaf x stores exactly one key in the field key[x].
There is no particular ordering of the keys in the leaves; that is, from left to right,
the keys may be in any order. Each internal node x contains a value small[x] that
is equal to the smallest key stored in any leaf in the subtree rooted at x . The root r
contains a field height[r] that is the height of the tree. Finally, 2-3-4 heaps are
intended to be kept in main memory, so that disk reads and writes are not needed.

Implement the following 2-3-4 heap operations. Each of the operations in
parts (a)–(e) should run in O(lg n) time on a 2-3-4 heap with n elements. The
UNION operation in part (f) should run in O(lg n) time, where n is the number of
elements in the two input heaps.

a. MINIMUM, which returns a pointer to the leaf with the smallest key.

b. DECREASE-KEY, which decreases the key of a given leaf x to a given value
k ≤ key[x].

c. INSERT, which inserts leaf x with key k.

d. DELETE, which deletes a given leaf x .

e. EXTRACT-MIN, which extracts the leaf with the smallest key.



474 Chapter 19 Binomial Heaps

f. UNION, which unites two 2-3-4 heaps, returning a single 2-3-4 heap and de-
stroying the input heaps.

19-2 Minimum-spanning-tree algorithm using binomial heaps
Chapter 23 presents two algorithms to solve the problem of finding a minimum
spanning tree of an undirected graph. Here, we shall see how binomial heaps can
be used to devise a different minimum-spanning-tree algorithm.

We are given a connected, undirected graph G = (V, E) with a weight function
w : E → R. We call w(u, v) the weight of edge (u, v). We wish to find a minimum
spanning tree for G: an acyclic subset T ⊆ E that connects all the vertices in V
and whose total weight

w(T ) =
∑

(u,v)∈T

w(u, v)

is minimized.
The following pseudocode, which can be proven correct using techniques from

Section 23.1, constructs a minimum spanning tree T . It maintains a partition {Vi}
of the vertices of V and, with each set Vi , a set

Ei ⊆ {(u, v) : u ∈ Vi or v ∈ Vi}
of edges incident on vertices in Vi .

MST(G)

1 T ← ∅
2 for each vertex vi ∈ V [G]
3 do Vi ← {vi}
4 Ei ← {(vi , v) ∈ E[G]}
5 while there is more than one set Vi

6 do choose any set Vi

7 extract the minimum-weight edge (u, v) from Ei

8 assume without loss of generality that u ∈ Vi and v ∈ Vj

9 if i �= j
10 then T ← T ∪ {(u, v)}
11 Vi ← Vi ∪ Vj , destroying Vj

12 Ei ← Ei ∪ E j

Describe how to implement this algorithm using binomial heaps to manage the
vertex and edge sets. Do you need to change the representation of a binomial
heap? Do you need to add operations beyond the mergeable-heap operations given
in Figure 19.1? Give the running time of your implementation.



Notes for Chapter 19 475

Chapter notes

Binomial heaps were introduced in 1978 by Vuillemin [307]. Brown [49, 50] stud-
ied their properties in detail.



12 Introduction 37

FIBONACCI HEAPS

12 Introduction

Priority queues are a classic topic in theoretical computer science. The search
for a fast priority queue implementation is motivated primarily by two net-
work optimization algorithms: Shortest Path (SP) and Minimum Spanning
Tree (MST), i.e., the connector problem. As we shall see, Fibonacci Heaps
provide a fast and elegant solution.
The following 3-step procedure shows that both Dijkstra’s SP-algorithm or
Prim’s MST-algorithm can be implemented using a priority queue:

1. Maintain a priority queue on the vertices V (G).

2. Put s in the queue, where s is the start vertex (Shortest Path) or any
vertex (MST). Give s a key of 0. Add all other vertices and set their
key to infinity.

3. Repeatedly delete the minimum-key vertex v from the queue and mark
it scanned. For each neighbor w of v do: If w is not scanned (so far),
decrease its key to the minimum of the value calculated below and w’s
current key:

• SP: key(v) + length(vw),

• MST: weight(vw).

The classical answer to the problem of maintaining a priority queue on the
vertices is to use a binary heap, often just called a heap. Heaps are commonly
used because they have good bounds on the time required for the following
operations: insert O(log n), delete-min O(log n), and decrease-key O(log n),
where n reflects the number of elements in the heap.
If a graph has n vertices and e edges, then running either Prim’s or Dijkstra’s
algorithms will require O(n log n) time for inserts and deletes. However, in



13 Definition and Elementary Operations 38

the worst case, we will also perform e decrease-keys, because we may have to
perform a key update every time we come across a new edge. This will take
O(e log n) time. Since the graph is connected, e ≥ n, and the overall time
bound is given by O(e log n). As we shall see, Fibonacci heaps allow us to
do much better.

13 Definition and Elementary Operations

The Fibonacci heap data structure invented by Fredman and Tarjan in 1984
gives a very efficient implementation of the priority queues. Since the goal
is to find a way to minimize the number of operations needed to compute
the MST or SP, the kind of operations that we are interested in are insert,
decrease-key, link, and delete-min (we have not covered why link is a useful
operation yet, but this will become clear later on). The method to achieve
this minimization goal is laziness - do work only when you must, and then

use it to simplify the structure as much as possible so that your future work

is easy. This way, the user is forced to do many cheap operations in order to
make the data structure complicated.
Fibonacci heaps make use of heap-ordered trees. A heap-ordered tree is one
that maintains the heap property, that is, where key(parent) ≤ key(child)
for all nodes in the tree.

Definition 13.1: A Fibonacci heap H is a collection of heap-ordered trees
that have the following properties:

1. The roots of these trees are kept in a doubly-linked list (the root list of
H),

2. The root of each tree contains the minimum element in that tree (this
follows from being a heap-ordered tree),

3. We access the heap by a pointer to the tree root with the overall min-
imum key,

4. For each node x, we keep track of the degree (also known as the order
or rank) of x, which is just the number of children x has; we also keep
track of the mark of x, which is a Boolean value whose role will be
explained later.



13 Definition and Elementary Operations 39

Fig. 9: A detailed view of a Fibonacci Heap. Null pointers are omitted for
clarity.

For each node, we have at most four pointers that respectively point to the
node’s parent, to one of its children, and to two of its siblings. The sibling
pointers are arranged in a doubly-linked list (the child list of the parent
node). We have not described how the operations on Fibonacci heaps are
implemented, and their implementation will add some additional properties
to H . The following are some elementary operations used in maintaining
Fibonacci heaps:

Inserting a node x: We create a new tree containing only x and insert it
into the root list of H ; this is clearly an O(1) operation.

Linking two trees x and y: Let x and y be the roots of the two trees we
want to link; then if key(x) ≥ key(y), we make x the child of y; otherwise,
we make y the child of x. We update the appropriate node’s degrees and the
appropriate child list; this takes O(1) operations.

Cutting a node x: If x is a root in H , we are done. If x is not a root in
H , we remove x from the child list of its parent, and insert it into the root
list of H , updating the appropriate variables (the degree of the parent of x
is decremented, etc.). Again, this takes O(1) operations. We assume that
when we want to cut/find a node, we have a pointer hanging around that
accesses it directly, so actually finding the node takes O(1) time.



13 Definition and Elementary Operations 40

Cleanup:

newmin ← some root list node
for i← 0 to ⌊log n⌋

B[i]← Null

for all nodes v in the root list
parent(v) ← Null

unmark v
if key(newmin) > key(v)

newmin← v
LinkDupes(v)

LinkDupes:

w ← B[deg(v)]
while w 6= Null

B[deg(v)]← Null

if key(w) ≤ key(v)
swap v and w

remove w from root list
link w to v
w ← B[deg(v)]

B[deg(v)]← v

Fig. 10: The Cleanup algorithm executed after performing a delete-min

Marking a node x: We say that x is marked if its mark is set to true, and
that it is unmarked if its mark is set to false. A root is always unmarked.
We mark x if it is not a root and it loses a child (i.e., one of its children is
cut and put into the root-list). We unmark x whenever it becomes a root.
We shall see later on that no marked node will lose a second child before it
is cut itself.

13.1 The delete-min Operation

Deleting the minimum key node is a little more complicated. First, we remove
the minimum key from the root list and splice its children into the root list.
Except for updating the parent pointers, this takes O(1) time. Then we scan
through the root list to find the new smallest key and update the parent
pointers of the new roots. This scan could take O(n) time in the worst
case. To bring down the amortized deletion time (see further on), we apply
a Cleanup algorithm, which links trees of equal degree until there is only
one root node of any particular degree.
Let us describe the Cleanup algorithm in more detail. This algorithm
maintains a global array B[1 . . . ⌊log n⌋], where B[i] is a pointer to some
previously-visited root node of degree i, or Null if there is no such previously-
visited root node. Notice, the Cleanup algorithm simultaneously resets the
parent pointers of all the new roots and updates the pointer to the minimum
key. The part of the algorithm that links possible nodes of equal degree is
given in a separate subroutine LinkDupes, see Figure 10. The subroutine



13 Definition and Elementary Operations 41

Promote:

unmark v
if parent(v) 6= Null

remove v from parent(v)’s child list
insert v into the root list
if parent(v) is marked

Promote(parent(v))
else

mark parent(v)

Fig. 11: The Promote algorithm

ensures that no earlier root node has the same degree as the current. By the
possible swapping of the nodes v and w, we maintain the heap property. We
shall analyze the efficiency of the delete-min operation further on. The fact
that the array B needs at most ⌊log n⌋ entries is proven in Section 15, where
we prove that the degree of any (root) node in an n-node Fibonacci heap is
bounded by ⌊log n⌋.

13.2 The decrease-key Operation

If we also need the ability to delete an arbitrary node. The usual way to do
this is to decrease the node’s key to −∞ and then use delete-min. We start
by describing how to decrease the key of a node in a Fibonacci heap; the
algorithm will take O(log n) time in the worst case, but the amortized time
will be only O(1). Our algorithm for decreasing the key at a node v follows
two simple rules:

1. If newkey(v) < key(parent(v)), promote v up to the root list (this
moves the whole subtree rooted at v).

2. As soon as two children of any node w have been promoted, immedi-
ately promote w.

In order to enforce the second rule, we now mark certain nodes in the Fi-
bonacci heap. Specifically, a node is marked if exactly one of its children has
been promoted. If some child of a marked node is promoted, we promote
(and unmark) that node as well. Whenever we promote a marked node, we



14 Amortized Analysis 42

unmark it; this is the only way to unmark a node (if splicing nodes into the
root list during a delete-min is not considered a promotion). A more formal
description of the Promote algorithm is given in Figure 11. This algorithm
is executed if the new key of the node v is smaller than its parent’s key.

14 Amortized Analysis

In an amortized analysis, time required to perform a sequence of data struc-
ture operations is averaged over all the operations performed. Amortized
analysis can be used to show that the average cost of an operation is small,
if one averages over a sequence of operations, even though a single operation
might be expensive. Amortized analysis differs from average-case analysis
in that probability is not involved; an amortized analysis guarantees that
average performance of each operation in the worst case.

There are several techniques used to perform an amortized analysis, the
method of amortized analysis used to analyze Fibonacci heaps is the potential
method. When using this method we determine the the amortized cost of
each operation and may overcharge operations early on to compensate for
undercharges later. The potential method works as follows. We start with
an initial data structure D0 on which s operations are performed. For each
i = 1, . . . , s, we let ci be the actual cost of the i-th operation and Di be
the data structure that results after applying the i-th operation to the data
structure Di−1. A potential function Φ maps each data structure Di to a
real number Φ(Di), which is the potential (energy) associated with the data
structure Di. The amortized cost ĉi of the i-th operation with respect to the
potential function Φ is defined by:

ĉi = ci + Φ(Di)− Φ(Di−1). (1)

The amortized cost of each operation is thus its actual cost plus the increase
in potential due to the operation. The total amortized costs of the s opera-
tions is

∑

i

ĉi =
∑

i

ci + ΦDs
− ΦD0

, (2)

If we can prove that ΦDs
≥ ΦD0

, then we have shown that the amortized
costs bound the real costs. Thus, we can analyze the amortized costs to
obtain a bound on the actual costs. In practice, we do not know how many



14 Amortized Analysis 43

operations s might be performed. Therefore, if we require that Φ(Di) ≥ ΦD0

for all i, then we guarantee that we pay in advance. It is often convenient to
define Φ(D0) = 0 and then to show that Φ(Di) ≥ 0.

Intuitively, if the potential difference Φ(Di)−Φ(Di−1) of the i-th operation
is positive, then the amortized cost ĉi represents an overcharge to the i-th
operation, and the potential of the data structure increases. If the potential
difference is negative, then the amortized costs represents an undercharge
and the actual cost of the operation is paid by a decrease in the potential.

14.1 Amortized Analysis of the delete-min and

decrease-key Operation

Define Φ(H) as the number of root nodes t(H) plus two times the number of
marked nodes m(H) in the Fibonacci heap H , i.e., Φ(H) = t(H) + 2m(H).
We assume that a single unit of potential can pay for a constant amount
of work, where the constant is sufficiently large to cover the cost of any of
the specific constant-time pieces of work that we might encounter. Assume
that a Fibonacci heap application begins with no heaps (this is the case for
both the SP and MST algorithm). The initial potential, therefore, is 0, and
obviously the potential is nonnegative at all subsequent times. Hence, the
total amortized cost is thus an upper bound on the total actual cost for
the sequence of operations (see Eq. (2)). We further assume that there is
some upper bound D(n) on the maximum degree of any node in an n-node
Fibonacci heap. We derive this upper bound in Section 15.

The actual cost of a delete-min operation can be accounted for as follows.
An O(1) contribution comes from splicing the (at most D(n)) children of the
minimum node in the root list (because setting the parent pointers to Null

and unmarking the nodes is done by the Cleanup algorithm). The size of
the root list upon calling the Cleanup algorithm is D(n) + t(H)− 1, since
it consist of the original t(H) root list nodes, minus the minimum node, plus
the children of the extracted node. Meaning, at most D(n) + t(H)− 1 link
operations are performed. Thus, the total amount of work performed is at
most proportional to D(n)+t(H), i.e., O(D(n)+t(H)). The potential before
extracting the minimum node is t(H) + 2m(H), and the potential afterward
is at most (D(n) + 1) + 2m(H), since at most D(n) + 1 roots remain and no
nodes become marked during the operation. The amortized cost is thus at



15 Bounding the Maximum Degree 44

most

O(D(n) + t(H)) + ((D(n) + 1) + 2m(H))− (t(H) + 2m(H))

= O(D(n)) + O(t(H))− t(H)

= O(D(n)),

since we can scale up the units of the potential to dominate the hidden
constant in O(t(H)). Intuitively, the cost of performing the link operations
is paid by the decrease in the potential due to reducing the number of nodes
on the root list.

Let us now consider the decrease-key operation. Decreasing the key has
an actual cost of O(1). Suppose that c recursive invocations of the Pro-

mote function are called. Each recursive call takes O(1) time except for
the recursive calls, hence, the actual cost of decrease-key is O(c). Next, we
compute the change in potential. Each recursive call, except for the last,
cuts a marked node and unmarks the node. Afterward, there are t(H) + c
trees (the original t(H), c− 1 trees produced by the recursive calls, and the
tree rooted at the node whose key was decreased). Whereas the maximum
number of marked nodes equals m(H)− c + 2 (c− 1 were unmarked and the
last call may have marked a node). The change in potential is therefore at
most

((t(H) + c) + 2(m(H)− c + 2)− (t(H) + 2m(H)) = 4− c. (3)

Thus, the amortized cost of the decrease-min is at most

O(c) + 4− c = O(1), (4)

by scaling up the units of the potential to dominate the hidden constant in
O(c).

15 Bounding the Maximum Degree

In order to prove that the amortized time of the delete-min operation is
O(log(n)), we must show that D(n) is bounded by O(log n). In this section
we shall show that D(n) ≤ ⌊logφ n⌋, where φ = (1 +

√
5)/2 is the golden

ratio.



15 Bounding the Maximum Degree 45

Lemma 15.1: Let x be any node in a Fibonacci heap, and suppose that
d(x) = k, where d(x) denotes the degree of x. Let y1, y2, . . . , yk denote the
children of x in the order in which they were linked to x, from the earliest to
the latest. Then, d(y1) ≥ 0 and d(yi) ≥ i− 2, for i = 2, 3, . . . , k.

Proof: Obviously, d(y1) ≥ 0. For i ≥ 2, we note that when yi was linked to
x, all of y1, y2, . . . , yi−1 were children of x, so we must have had d(yi) ≥ i−1,
as yi was only linked to x if d(x) = d(yi). Since then, node yi has lost at most
one child, otherwise yi would have been cut. We may conclude d(yi) ≥ i− 2.

Q.E.D.

Let us now define the Fibonacci numbers Fk, for k ≥ 0 as follows: F0 = 0,
F1 = 1 and Fk = Fk−1 + Fk−2, for k ≥ 2. Then, we can easily show by
induction on k that Fk+2 = 1+

∑k

i=0
Fk, for all k ≥ 0 (simply apply induction

on the term Fk+1). Moreover, Fk+2 ≥ φk (apply induction on both terms and
use the fact that (1 + φ) = φ2).

Theorem 15.1: Let x be any node in a Fibonacci heap, and let k = d(x).
Then, size(x) ≥ Fk+2 ≥ φk, where φ = (1 +

√
5)/2.

Proof: Let sk denote the minimum possible value of size(z) over all nodes
z such that d(z) = k. That is, sk denotes the minimum number of nodes
in a tree that is rooted by a degree k root node. Let y1, y2, . . . , yk denote
the children of x as in Lemma 15.1 in the order they were linked to x. To
compute a lower bound on size(x), we count one for x itself, one for the first
child y1 and then apply Lemma 15.1 for the remaining children. We have

size(x) ≥ sk ≥ 2 +
k∑

i=2

si−2. (5)

We now show by induction that sk ≥ Fk+2, for all k ≥ 0. The cases for
k = 0 and 1 are trivial. By induction, we have si ≥ Fi+2 for i = 0, . . . , k− 1,
therefore,

sk ≥ 2 +
k∑

i=2

si−2

≥ 1 + F1 +
k∑

i=2

Fi = Fk+2.

Thus, we have shown size(x) ≥ sk ≥ Fk+2 ≥ φk.



15 Bounding the Maximum Degree 46

Q.E.D.

Corollary 15.1: The maximum degree D(n) of any node in an n-node Fi-
bonacci heap is bounded by ⌊logφ n⌋, meaning it is O(logn).

Proof: Let x be any node of an n-node Fibonacci heap and let k be its
degree. By the previous theorem we have n ≥ size(x) ≥ φk. Taking the
base-φ logarithms yields k ≤ logφ n. Therefore, the maximum degree is
O(log n).

Q.E.D.

As a results of this corollary, Prim’s MST algorithm (or Dijkstra’s SP)
has an amortized cost of O(n logn + e), as a decrease-key operation is O(1)
and a delete-min operations is O(log n).



1

Lecture 5

Graphs
[Part 1]



2

Lecture Content

1. Graph Basics

1.1 Definitions and Terminologies

1.2 Data Structures Used to Store Graphs

2. Graph Traversal

2.1 Depth-First Search (DFS)

2.2. Breadth-First Search (BFS)



3

Lecture Content

3. Topological Sorting

Course prerequisites 
Topologically sorted order: C F B A E D G H



4

1. Graph Basics

•
 

Tree generalizes linear structures (i.e., singly 
linked list), graph generalizes tree.



5

1. Graph Basics

•
 

The key difference between tree and graph is that, 
in a graph, there may be more than one path 
between two nodes.
•

 
Many real-world problems can be modeled by 

using graphs. For example, 
-

 
finding the fastest routes for a mass 

transportation system (answers to the question: 
what is the shortest driving route from city A to city 
B),



6

1. Graph Basics

-
 

finding a minimum spanning tree (answers to 
the question: how can computers be connected with 
the least amount of cable)

-
 

routing electronic email through a computer 
network.



7

1. Graph Basics

.



8

1.1 Definitions and Terminologies

•
 

A graph G consists of a set of vertices (also called 
nodes) V and a set of edges (also called arcs) E that 
connect the vertices. 
• That is, G = (V, E), where V is a set of n vertices 
{v0

 

, v1

 

, …, vn-1

 

} and E is a set of m edges {e0

 

, e1

 

, 
…, em-1

 

}. 
•

 
Each edge e 

 
E is a pair (u, v), where u, v 

 
V 

(i.e., e = (u, v)).



9

1.1 Definitions and Terminologies

•
 

The number of vertices and edges of a graph G is 
denoted as |V| and |E|, respectively (i.e., |V| = n and 
|E| = m).

•
 

If each edge e = (u, v) in G is ordered (i.e., (u, v) ≠
 (v, u)), the graph is called directed graph (also 

called digraph). Otherwise, the graph is called 
undirected graph.



10

1.1 Definitions and Terminologies

•
 

If a graph is directed, the in-degree of a vertex is 
the number of edges entering it.
• The out-degree of a vertex is the number of 
edges leaving it.
• The degree of a vertex is the sum of its in-degree 
and out-degree.



11

1.1 Definitions and Terminologies

•
 

If each edge e = (u, v) in G has a weight w (also 
called cost or length), the graph is called weighted 
graph.

• Vertex v is adjacent (also called neighbor) to 
vertex u if there is an edge from u to v.

• A path in a graph is a sequence of vertices 
connected by edges.



12

1.1 Definitions and Terminologies

• In unweighted graphs, a path length is the 
number of edges on the path.

• The distance between two vertices is the length of 
the shortest path between them.

• A weighted path length is the sum of weights 
(costs or lengths) on the path.



13

1.1 Definitions and Terminologies

• If |E| = (|V|2), then the graph G is called dense 
graph.

• If |E| = (|V|), then the graph G is called sparse 
graph.

• A cycle is a path from a vertex back to itself.



14

1.1 Definitions and Terminologies

•
 

A graph with no cycle is called acyclic graph. A 
directed acyclic graph is called a DAG.
•

 
A graph in which every pair of vertices is 

connected by a path is said to be connected.
• Let G be a simple graph (i.e., no parallel edges 
and no self-loop/cycle) with n vertices and m edges. 
If G is undirected, then m ≤

 
n(n -

 
1)/2. If G is 

directed, then m ≤
 

n(n - 1).



15

1.2 Data Structures Used to Store Graphs

•
 

A graph can be stored by using an adjacency 
matrix (i.e., two-dimensional array, also called 
neighbor matrix) or an adjacency list (i.e., singly 
linked list). 
•

 
Normally, dense and sparse graphs are represented 

by using adjacency matrix and an adjacency list, 
respectively.



16

Adjacency Matrix

•
 

An adjacency matrix (e.g., int adjMat[][]) 
is a two-dimensional array in which the elements 
indicate whether an edge is present between two 
vertices. If a graph has n vertices, an n×n 
adjacency matrix is needed to store the graph.



17

Adjacency Matrix

•
 

Example: Consider the following graph



18

Adjacency Matrix

•
 

The adjacency matrix for the graph is as follows.



19

Adjacency List

•
 

An adjacency list is an array of singly linked lists. 
Each individual list shows what vertices a given 
vertex is adjacent to.
•

 
The adjacency lists for the graph is given next.



20

Lecture Content

1. Graph Basics

1.1 Definitions and Terminologies

1.2 Data Structures Used to Store Graphs

2. Graph Traversal

2.1 Depth-First Search (DFS)

2.2. Breadth-First Search (BFS)



21

2. Graph Traversal

•
 

Three traversals of a tree are preorder, inorder, 
and postorder. Tree traversal is always starts at the 
root of the tree.
•

 
Two traversals of a graph are depth-first search 

(DFS) and breadth-first search (BFS). Since a graph 
has no root, we must specify a vertex at which to 
begin a traversal.
•

 
Depth-first search is essentially a generalization of 

the preorder traversal of a rooted tree.



22

2.1 Depth-First Search (DFS)

•
 

Example: List the order in which the nodes of the 
undirected graph shown in the figure

 
below are 

visited by a depth-first traversal that starts from 
vertex a. Assume that we choose to visit adjacent 
vertices in alphabetical order.



23

2.1 Depth-First Search (DFS)

Algorithm DFS // M.H. Alsuwaiyel
Input: A directed or undirected graph G = (V, E).
Output: Numbering of the vertices in 

depth-first search order.
1. predfn ← 1; postdfn ← 1
2. for each vertex v 

 
V

3.      mark v unvisited
4. end for
5. for each vertex v 

 
V

6.      if v is marked unvisited then dfs(v) // starting vertex
7. end for



24

2.1 Depth-First Search (DFS)

Procedure dfs(v) // v is starting vertex, using stack
1. S ← {v} // insert v into stack
2. mark v visited
3. while S ≠

 
{}

4.      v ← Peek(S) // v is current vertex
5.      find an unvisited neighbor w of v



25

2.1 Depth-First Search (DFS)

6.      if w exists then
7.           Push(w, S)
8.           mark w visited
9.           predfn ← predfn + 1
10.     else
11.          Pop(S); postdfn ← postdfn + 1
12.     end if
13. end while



26

2.1 Depth-First Search (DFS)

•
 

The stack contents during DFS are given below. 



27

2.1 Depth-First Search (DFS)

•
 

The order in which the nodes are visited by a DFS 
that starts from vertex a is a, b, c, d, e, f, g, h, i, j.
•

 
The resulting tree (i.e., the depth-first search tree) 

is



28

2.1 Depth-First Search (DFS)

•
 

Tree edges: edges in the depth-first search tree. 
An edge (v, w) is a tree edge if w was first visited 
when exploring the edge (v, w).
•

 
Back edges: All other edges.



29

2.1 Depth-First Search (DFS)

In depth-first search traversal of directed graphs, 
however, the edges of G are classified into four 
types:
•

 
Tree edges: edges in the depth-first search tree. 

An edge (v, w) is a tree edge if w was first visited 
when exploring the edge (v, w).
•

 
Back edges: edges of the form (v, w) such that w 

is an ancestor of v in the depth-first search tree 
(constructed so far) and vertex w was marked 
visited when (v, w) was explored.



30

2.1 Depth-First Search (DFS)

•
 

Forward edges: edges of the form (v, w) such that 
w is a descendant of v in the depth-first search tree 
(constructed so far) and vertex w was marked 
visited when (v, w) was explored.
•

 
Cross edges: All other edges.



31

2.1 Depth-First Search (DFS)

Procedure dfs(v) // v is starting vertex, using recursion
1. mark v visited
2. predfn ← predfn + 1
3. for each edge (v, w) 

 
E

4.      if w is marked unvisited then dfs(w)
5. end for
6. postdfn ← postdfn + 1



32

2.2 Breadth-First Search (BFS)

•
 

Depth-first search algorithm gets as far away from 
the starting point as quickly as possible. DFS is 
implemented using a stack.
•

 
In contrast, breadth-first search algorithm stays as 

close as possible to the starting point. BFS visits all 
the vertices adjacent to the starting vertex, and then 
goes further afield. BFS is implemented using a 
queue.
•

 
The level-order traversal of a tree is an example of 

the breadth-first traversal. 



33

2.2 Breadth-First Search (BFS)

•
 

Example: List the order in which the nodes of the 
undirected graph shown in the figure

 
below are 

visited by a breadth-first traversal that starts from 
vertex a. Assume that we choose to visit adjacent 
vertices in alphabetical order.



34

2.2 Breadth-First Search (BFS)

Algorithm BFS // M.H. Alsuwaiyel
Input: A directed or undirected graph G = (V, E).
Output: Numbering of the vertices in BFS order.
1. bfn ← 1
2. for each vertex v 

 
V

3.      mark v unvisited
4. end for
5. for each vertex v 

 
V

6.      if v is marked unvisited then bfs(v) // starting vertex
7. end for



35

2.2 Breadth-First Search (BFS)

Procedure bfs(v) // v is starting vertex, using queue
1. Q ← {v} // insert v into queue
2. mark v visited
3. while Q ≠

 
{}

4.      v ← dequeue(Q) // v is current vertex
5.      for each edge (v, w) 

 
E

6.           if w is marked unvisited then
7.                enqueue(w, Q)
8.                mark w visited
9.                bfn ← bfn + 1

10.          end if



36

2.2 Breadth-First Search (BFS)

11.     end for
12. end while



37

2.2 Breadth-First Search (BFS)

•
 

The queue contents during BFS are given below.



38

2.2 Breadth-First Search (BFS)

•
 

The order in which the nodes are visited by a BFS 
that starts from vertex a is a, b, g, c, f, h, d, e, i, j.
•

 
The resulting tree (i.e., the breadth-first search 

tree) is



39

2.2 Breadth-First Search (BFS)

•
 

Tree edges: edges in the breadth-first search tree. 
An edge (v, w) is a tree edge if w was first visited 
when exploring the edge (v, w).
•

 
Cross edges: All other edges.



40

3. Topological Sorting

•
 

Given a directed acyclic graph (dag for short) G = 
(V, E), the problem of topological sorting is to find 
a linear ordering of its vertices in such a way that if 
(v, w) 

 
E, then v appears before w in the ordering.



41

3. Topological Sorting

•
 

For example, one possible topological sorting of 
the vertices in the dag shown in figure (a) above is 
b, d, a, c, f, e, g (or a, b, d, c, e, f, g)
•

 
We will assume that the dag has only one vertex, 

say s, of indegree
 

0. If not, we may simply add a 
new vertex s and edges from s to all vertices of 
indegree

 
0.



42

3. Topological Sorting

•
 

Next, we simply carry out a depth-first search on 
G starting at vertex s. 
•

 
When the traversal is complete, the values of the 

counter postdfn define a reverse topological 
ordering of the vertices in the dag. 
•

 
Thus, to obtain the ordering, we may add an 

output step to Algorithm DFS just after the counter 
postdfn is incremented. The resulting output is 
reversed to obtain the desired topological ordering.



43

Exercises

1. Write a complete program to implement the DFS.
2. Write a complete program to implement the BFS.
3. Modify the DFS program to find the 
topologically sorted order of a given dag.



44

Exercises

4. List the order in which the nodes of the 
undirected graph shown in the figure

 
below are 

visited by a depth-first traversal that starts from 
vertex a. Repeat this exercise for a depth-first 
traversal starting from vertex d.



45

Exercises

5. List the order in which the nodes of the 
undirected graph shown in the figure

 
below are 

visited by a breadth-first traversal that starts from 
vertex a. Repeat this exercise for a breadth-first 
traversal starting from vertex d.



46

References

1. Noel Kalicharan. 2008. Data Structures in Java.
CreateSpace. ISBN: 143827517X. Chapter 5

2. Noel Kalicharan. 2008. Data Structures in C.
Createspace

 
Press. ISBN: 1438253273.

Chapter 7
3. Robert Lafore. 2002. Data Structures and

Algorithms in Java. 2nd

 
Ed, SAMS. 

ISBN: 0672324539.



47

References

4. M.H. Alsuwaiyel. 1999. Algorithms Design
Techniques and Analysis. World Scientific
Publishing. ISBN: 9810237405. Chapters 1, 4, 6

5. Anany
 

V. Levitin. 2011. Introduction to the
Design and Analysis of Algorithms. 3Ed.
Addison-Wesley. ISBN:

 
0132316811.



CS161, Winter 2011 Handout #16

Notes on Strongly Connected Components

Recall from Section 3.5 of the Kleinberg-Tardos book that the strongly connected components of a directed
graph G are the equivalence classes of the following equivalence relation: u ∼ v if and only if there is a directed
u v path and also there is a directed v  u path. (Check that this is indeed an equivalence relation.) For
example, in the directed graph in Figure 1, the strongly connected components are identified by the dashed
circles.

Figure 1: The strongly connected components of a directed graph.

1 The Algorithm

Goal of Lecture: to give a linear-time (i.e., O(m+n)-time) algorithm that computes the strongly connected
components of a directed graph.

The algorithm we present is essentially two passes of depth-first search, plus some extremely clever
additional book-keeping. The algorithm is described in a top-down fashion in Figures 2–4.

Input: a directed graph G = (V, E), in adjacency list representation. Assume that the vertices V are labeled
1, 2, 3, . . . , n.

1. Let Grev denote the graph G after the orientation of all arcs have been reversed.

2. Run the DFS-Loop subroutine on Grev, processing vertices according to the given order, to obtain a
finishing time f(v) for each vertex v ∈ V .

3. Run the DFS-Loop subroutine on G, processing vertices in decreasing order of f(v), to assign a leader
to each vertex v ∈ V .

4. The strongly connected components of G correspond to vertices of G that share a common leader.

Figure 2: The top level of our SCC algorithm. The f -values and leaders are computed in the first and second
calls to DFS-Loop, respectively (see below).

1



Input: a directed graph G = (V, E), in adjacency list representation.

1. Initialize a global variable t to 0.

[This keeps track of the number of vertices that have been fully explored.]

2. Initialize a global variable s to NULL.

[This keeps track of the vertex from which the last DFS call was invoked.]

3. For i = n downto 1:

[In the first call, vertices are labeled 1, 2, . . . , n arbitrarily. In the second call, vertices are labeled by
their f(v)-values from the first call.]

(a) if i not yet explored:

i. set s := i

ii. DFS(G, i)

Figure 3: The DFS-Loop subroutine.

Input: a directed graph G = (V, E), in adjacency list representation, and a source vertex i ∈ V .

1. Mark i as explored.

[It remains explored for the entire duration of the DFS-Loop call.]

2. Set leader(i) := s

3. For each arc (i, j) ∈ G:

(a) if j not yet explored:

i. DFS(G, j)

4. t + +

5. Set f(i) := t

Figure 4: The DFS subroutine. The f -values only need to be computed during the first call to DFS-Loop, and
the leader values only need to be computed during the second call to DFS-Loop.

2



As we’ve seen, each invocation of DFS-Loop can be implemented in linear time. You should think
about how to implement the remaining details of the algorithm so that its overall running time is linear (i.e.,
(O(m + n))).

2 An Example

But why on earth should this algorithm work? An example should increase its plausibility (though it
certainly doesn’t constitute a proof of correctness). Figure 5(a) displays a reversed graph Grev, with its
vertices numbered arbitrarily, and the f -values computed in the first call to DFS-Loop. In more detail, the
first DFS is initiated at node 9. The search must proceed next to node 6. DFS then has to make a choice
between two different adjacent nodes; we have shown the f -values that ensue when DFS visits node 3 before
node 8.1 When DFS visits node 3 it gets stuck; at this point node 3 is assigned a finishing time of 1. DFS
backtracks to node 6, proceeds to node 8, then node 2, and then node 5. DFS then backtracks all the way
back to node 9, resulting in nodes 5, 2, 8, 6, and 9 receiving the finishing times 2, 3, 4, 5, and 6, respectively.
Execution returns to DFS-Loop, and the next (and final) call to DFS begins at node 7.

Figure 5(b) shows the original graph (with all arcs now unreversed), with nodes labeled with their finishing
times. The magic of the algorithm is now evident, as the SCCs of G present themselves to us in order: the
first call to DFS discovers the nodes 7–9 (with leader 9); the second the nodes 1, 5, and 6 (with leader 6);
and the third the remaining three nodes (with leader 4).

1

7

4

9

6

3

8

2

5

f(1) = 7

f(4) = 8

f(7) = 9

f(9) = 6

f(6) = 5

f(3) = 1

f(8) = 4

f(2) = 3

f(5) = 2

(a) First DFS-Loop on Grev

7

9

8

6

5

1

4

3

2

leader = 9
leader = 6

leader = 4

(b) Second DFS-Loop on G

Figure 5: Example execution of the strongly connected components algorithm. In (a), nodes are labeled
arbitrarily and their finishing times are shown. In (b), nodes are labeled by their finishing times and their
leaders are shown.

3 Proof of Correctness

3.1 The Acyclic Meta-Graph of SCCs

First, observe that the strongly connected components of a directed graph form an acyclic “meta-graph”,
where the meta-nodes correspond to the SCCs C1, . . . , Ck, and there is an arc Ch → Cℓ with h 6= ℓ if and
only if there is at least one arc (i, j) in G with i ∈ Ch and j ∈ Cℓ. This directed graph must be acyclic:
since within a SCC you can get from anywhere to anywhere else on a directed path, in a purported directed
cycle of SCCs you can get from every node in a constituent SCC to every other node of every other SCC
in the cycle. Thus the purported cycle of SCCs is actually just a single SCC. Summarizing, every directed
graph has a useful “two-tier” structure: zooming out, one sees a DAG on the SCCs of the graph; zooming
in on a particular SCC exposes its finer-grained structure. For example, the meta-graphs corresponding to
the directed graphs in Figures 1 and 5(b) are shown in Figure 6.

3.2 The Key Lemma

Correctness of the algorithm hinges on the following key lemma.

1Different choices of which node to visit next generate different sets of f -values, but our proof of correctness will apply to
all ways of resolving these choices.

3



C1

C2

C3

C4

(a) SCC graph for Figure 1

C1C2
C3

(b) SCC graph for Figure 5(b)

Figure 6: The DAGs of the SCCs of the graphs in Figures 1 and 5(b), respectively.

Key Lemma: Consider two “adjacent” strongly connected components of a graph G: components C1

and C2 such that there is an arc (i, j) of G with i ∈ C1 and j ∈ C2. Let f(v) denote the finishing time of
vertex v in some execution of DFS-Loop on the reversed graph Grev. Then

max
v∈C1

f(v) < max
v∈C2

f(v).

Proof of Key Lemma: Consider two adjacent SCCs C1 and C2, as they appear in the reversed graph Grev

— where there is an arc (j, i), with j ∈ C2 and i ∈ C1 (Figure 7). Because the equivalence relation defining
the SCCs is symmetric, G and Grev have the same SCCs; thus C1 and C2 are also SCCs of Grev. Let v
denote the first vertex of C1 ∪ C2 visited by DFS-Loop in Grev. There are now two cases.

First, suppose that v ∈ C1 (Figure 7(a)). Since there is no non-trivial cycle of SCCs (Section 3.1), there
is no directed path from v to C2 in Grev. Since DFS discovers everything reachable and nothing more, it
will finish exploring all vertices in C1 without reaching any vertices in C2. Thus, every finishing time in C1

will be smaller that every finishing time in C2, and this is even stronger than the assertion of the lemma.
(Cf., the left and middle SCCs in Figure 5.)

Second, suppose that v ∈ C2 (Figure 7(b)). Since DFS discovers everything reachable and nothing more,
the call to DFS at v will finish exploring all of the vertices in C1 ∪ C2 before ending. Thus, the finishing
time of v is the largest amongst vertices in C1 ∪C2, and in particular is larger than all finishing times in C1.
(Cf., the middle and right SCCs in Figure 5.) This completes the proof.

C1
C2

i j

v

(a) All f -values in C1 smaller than in C2

C1
C2

i j

v

(b) v has the largest f -value in C1 ∪ C2

Figure 7: Proof of Key Lemma. Vertex v is the first in C1 ∪ C2 visited during the execution of DFS-Loop

on Grev.

3.3 The Final Argument

The Key Lemma says that traversing an arc from one SCC to another (in the original, unreversed graph)
strictly increases the maximum f -value of the current SCC. For example, if fi denotes the largest f -value of
a vertex in Ci in Figure 6(a), then we must have f1 < f2, f3 < f4. Intuitively, when DFS-Loop is invoked

4



on G, processing vertices in decreasing order of finishing times, the successive calls to DFS peel off the SCCs
of the graph one at a time, like layers of an onion.

We now formally prove correctness of our algorithm for computing strongly connected components.
Consider the execution of DFS-Loop on G. We claim that whenever DFS is called on a vertex v, the
vertices explored — and assigned a common leader — by this call are precisely those in v’s SCC in G. Since
DFS-Loop eventually explores every vertex, this claim implies that the SCCs of G are precisely the groups
of vertices that are assigned a common leader.

We proceed by induction. Let S denote the vertices already explored by previous calls to DFS (initially
empty). Inductively, the set S is the union of zero or more SCCs of G. Suppose DFS is called on a vertex v
and let C denote v’s SCC in G. Since the SCCs of a graph are disjoint, S is the union of SCCs of G,
and v /∈ S, no vertices of C lie in S. Thus, this call to DFS will explore, at the least, all vertices of C.
By the Key Lemma, every outgoing arc (i, j) from C leads to some SCC C′ that contains a vertex w with
a finishing time larger than f(v). Since vertices are processed in decreasing order of finishing time, w has
already been explored and belongs to S; since S is the union of SCCs, it must contain all of C′. Summarizing,
every outgoing arc from C leads directly to a vertex that has already been explored. Thus this call to DFS

explores the vertices of C and nothing else. This completes the inductive step and the proof of correctness.

5



Lecture 7: Minimum Spanning Trees and
Prim’s Algorithm

CLRS Chapter 23

Outline of this Lecture

� Spanning trees and minimum spanning trees.

� The minimum spanning tree (MST) problem.

� The generic algorithm for MST problem.

� Prim’s algorithm for the MST problem.

– The algorithm

– Correctness

– Implementation + Running Time

1



Spanning Trees

Spanning Trees: A subgraph
�

of a undirected graph� � �����	� 

is a spanning tree of

�
if it is a tree and

contains every vertex of
�

.

Example:

����

���� ���� ����
���� ��������

���� ���� ����

����

���� ����
����

���� ����
����
����

����

����

� �
� � � � � � � �� � � �
����

������ � � � � � � �
����

� � �� � � � � � � �� � � �
����
� � ����� � � �

a b

c
d

e

a b

c
d

e

a b

c
d

e

a b

c
d

e

Graph spanning tree 1

spanning tree 2 spanning tree 3

2



Spanning Trees

Theorem: Every connected graph has a spanning
tree.

Question: Why is this true?

Question: Given a connected graph
�

, how can you
find a spanning tree of

�
?

3



Weighted Graphs

Weighted Graphs: A weighted graph is a graph, in
which each edge has a weight (some real number).

Weight of a Graph: The sum of the weights of all
edges.

Example:

����

���� ���� ����
���� ��������

���� ���� ����

����

���� ����
����

���� ����
����
����

����

����

� �
� � � � � � � �� � � �
����

������ � � � � � � �
����

� � �� � � � � � � �� � � �
����
� � ����� � � �

a b

c
d

e

a b

c
d

e

a b

c
d

e

a b

c
d

e

10

9

7 32

23
10 32

23
9

7 7

9

32

23

32
23

10

weighted graph

Tree 2, w=71 Tree 3, w=72

Tree 1. w=74

Minimum spanning tree

4



Minimum Spanning Trees

A Minimum Spanning Tree in an undirected connected
weighted graph is a spanning tree of minimum weight
(among all spanning trees).

Example:

����

���� ���� ����
���� ��������

���� ���� ����

����

���� ����
����

���� ����
����
����

����

����

� �
� � � � � � � �� � � �
����

������ � � � � � � �
����

� � �� � � � � � � �� � � �
����
� � ����� � � �

a b

c
d

e

a b

c
d

e

a b

c
d

e

a b

c
d

e

10

9

7 32

23
10 32

23
9

7 7

9

32

23

32
23

10

weighted graph

Tree 2, w=71 Tree 3, w=72

Tree 1. w=74

Minimum spanning tree

5



Minimum Spanning Trees

Remark: The minimum spanning tree may not be
unique. However, if the weights of all the edges are
pairwise distinct, it is indeed unique (we won’t prove
this now).

Example:

1

2

6724

1

2

6724

MST1 MST2weighted graph

1

2 2

100

6724

6



Minimum Spanning Tree Problem

MST Problem: Given a connected weighted undi-
rected graph

�
, design an algorithm that outputs a

minimum spanning tree (MST) of
�

.

Question: What is most intuitive way to solve?

Generic approach: A tree is an acyclic graph.
The idea is to start with an empty graph and try to add
edges one at a time, always making sure that what is
built remains acyclic. And if we are sure every time the
resulting graph always is a subset of some minimum
spanning tree, we are done.

7



Generic Algorithm for MST problem

Let � be a set of edges such that � � �
, where�

is a MST. An edge
��� ��� 


is a safe edge for � , if
� � � ��� ��� 
	� is also a subset of some MST.

If at each step, we can find a safe edge
��� ��� 


, we
can ’grow’ a MST. This leads to the following generic
approach:

Generic-MST(G, w)
Let A=EMPTY;
while A does not form a spanning tree
find an edge (u, v) that is safe for A
add (u, v) to A

return A

How can we find a safe edge?

8



How to find a safe edge

We first give some definitions. Let
� � ��� � � 


be a
connected and undirected graph. We define:

Cut A cut
��� ��� � ��


of G is a partition of V.

Cross An edge
��� ��� 
 � �

crosses the cut
��� � � �

��

if one of its endpoints is in

�
, and the other is

in
� � �

.

Respect A cut respects a set � of edges if no edge
in A crosses the cut.

Light edge An edge is a light edge crossing a cut
if its weight is the minimum of any edge crossing
the cut.

9



How to find a safe edge

Lemma

Let
� � ��� � � 


be a connected, undirected graph
with a real-valued weight function � defined on

�
. Let

� be a subset of
�

that is included in some minimum
spanning tree for

�
, let

��� � � � ��

be any cut of

�
that

respects � , and let
��� ��� 


be a light edge crossing the
cut

��� � � � ��

. Then, edge

��� ��� 

is safe for � .

It means that we can find a safe edge by

1. first finding a cut that respects � ,

2. then finding the light edge crossing that cut.

That light edge is a safe edge.

10



Proof

1. Let � � �
, where

�
is a MST. Suppose

��� ��� 
 ��
�

.

2. The trick is to construct another MST
� �

that con-
tains both � and

��� ��� 

, thereby showing

��� ��� 

is

a safe edge for � .

11



3. Since
�

, and
�

are on opposite sides of the cut��� � � � ��

, there is at least one edge in

�
on the

path from
�

to
�

that crosses the cut. Let
��� ��� 


be
such edge. Since the cut respects � ,

��� ��� 
 �� � .

Since
��� ��� 


is a light edge crossing the cut, we
have �

��� ��� 
 �
�
��� � � 


.

a cut respects A

another MST T’

A

v

u

y

x
A

MST T

v

u

y

x

12



4. Add
��� ��� 


to
�

, it creates a cycle. By removing
an edge from the cycle, it becomes a tree again.
In particular, we remove

��� ��� 

(

�� � ) to make a
new tree

� �
.

5. The weight of
� �

is

�
� � � 
 �

�
� � 
 �

�
��� ��� 
��

�
��� ��� 


�
�
� � 


6. Since
�

is a MST, we must have �
� � 
 �

�
� � � 


,
hence

� �
is also a MST.

7. Since � � � ��� � � 
	� is also a subset of
� �

(a MST),��� ��� 

is safe for � .

13



Prim’s Algorithm

The generic algorithm gives us an idea how to ’grow’
a MST.

If you read the theorem and the proof carefully, you
will notice that the choice of a cut (and hence the
corresponding light edge) in each iteration is imma-
terial. We can select any cut (that respects the se-
lected edges) and find the light edge crossing that cut
to proceed.

The Prim’s algorithm makes a nature choice of the cut
in each iteration – it grows a single tree and adds a
light edge in each iteration.

14



Prim’s Algorithm : How to grow a tree

Grow a Tree

� Start by picking any vertex � to be the root of the
tree.

� While the tree does not contain
all vertices in the graph
find shortest edge leaving the tree
and add it to the tree .

Running time is
� � ��� � � � ��� � 
����	� � � � 


.

15



More Details

Step 0: Choose any element � ; set
� � ��� � and

� � �
. (Take � as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint
is in

�
and the other is in

� � �
. Add this edge to

� and its (other) endpoint to
�

.

Step 2: If
� � � � �

, then stop & output (minimum)
spanning tree

��� � � 

. Otherwise go to Step 1.

The idea: expand the current tree by adding the
lightest (shortest) edge leaving it and its endpoint.

e

24
20

r

a
b

c

d

26

f

g i
r

a
b

c

d e

f

g i

8 8

12

16
14

new  

24
2026

16
14

12

23 23

new edge

12
12

h h

16



Prim’s Algorithm

Worked Example

a

b

c

d

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

b

c

d

e

f

g

4

8

10

8

2

1

7

9
5

6

2

S={a}

Step 0 

a
V \ S = {b,c,d,e,f,g}

9

Connected graph

lightest edge = {a,b}

17



Prim’s Algorithm

Prim’s Example – Continued

b

c

d

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

c

d

e

f

g

8

9

10

8

2

1

7

9
5

6

2

a

a

Step 1.1 

Step 1.1  after

4

S={a}

S={a,b}
b

before

V \ S = {b,c,d,e,f,g}

V \ S = {c,d,e,f,g}

lightest edge = {a,b}

lightest edge = {b,d}, {a,c}

A={}

A={{a,b}}

18



Prim’s Algorithm

Prim’s Example – Continued

c

d

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

c

e

f

g

8

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb Step 1.2 
S={a,b}

Step 1.2  after

S={a,b,d}

d

V \ S = {c,d,e,f,g}

V \ S = {c,e,f,g}9

lightest edge = {b,d}, {a,c}

lightest edge = {d,c}

A={{a,b}}

A={{a,b},{b,d}}

19



Prim’s Algorithm

Prim’s Example – Continued

c

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

e

f

g

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

Step 1.3 

Step 1.3  after

S={a,b,d}
d

S={a,b,c,d}

V \ S = {c,e,f,g}

V \ S = {e,f,g}

c

lightest edge = {d,c}

lightest edge = {c,f}

A={{a,b},{b,d}}

A={{a,b},{b,d},{c,d}}

20



Prim’s Algorithm

Prim’s Example – Continued

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

e

g

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

d

c

S={a,b,c,d}

V \ S = {e,f,g}

c

S={a,b,c,d,f}
V \ S = {e,g}

Step 1.4 

Step 1.4  after

f

lightest edge = {c,f}

lightest edge = {f,g}

A={{a,b},{b,d},{c,d}}

A={{a,b},{b,d},{c,d},{c,f}}

21



Prim’s Algorithm

Prim’s Example – Continued

e

g

4

8

9

8

2

1

9

7

10

5

6

2

e

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

d

c

c

f

S={a,b,c,d,f}
V \ S = {e,g}

f

Step 1.5 

Step 1.5  after

S={a,b,c,d,f,g}
V \ S = {e}

{f,g}}

g

lightest edge = {f,g}

lightest edge = {f,e}

A={{a,b},{b,d},{c,d},{c,f}}

A={{a,b},{b,d},{c,d},{c,f}, 

22



Prim’s Algorithm

Prim’s Example – Continued

e
4

8

9

8

2

1

9

7

10

5

6

2

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

d

c

c

f

f

g

S={a,b,c,d,f,g}
V \ S = {e}

{f,g}}

g

Step 1.6 

Step 1.6  after

S={a,b,c,d,e,f,g}
V \ S = {}

{f,g},{f,e}}

MST completed

e

lightest edge = {f,e}

A={{a,b},{b,d},{c,d},{c,f}, 

A={{a,b},{b,d},{c,d},{c,f}, 

23



Recall Idea of Prim’s Algorithm

Step 0: Choose any element � and set
� � � ��� and � � �

.
(Take � as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in
�

and
the other is in � 	 � . Add this edge to � and its (other)
endpoint to

�
.

Step 2: If � 	 � � �
, then stop and output the minimum span-

ning tree 
 ��� �� .
Otherwise go to Step 1.

Questions:

� Why does this produce a Minimum Spanning
Tree?

� How does the algorithm find the lightest edge and
update � efficiently?

� How does the algorithm update
�

efficiently?

24



Prim’s Algorithm

Question: How does the algorithm update
�

efficiently?

Answer: Color the vertices. Initially all are white.
Change the color to black when the vertex is moved
to

�
. Use color[

�
] to store color.

Question: How does the algorithm find the lightest
edge and update � efficiently?

Answer:
(a) Use a priority queue to find the lightest edge.
(b) Use pred[

�
] to update � .

25



Reviewing Priority Queues

Priority Queue is a data structure (can be implemented
as a heap) which supports the following operations:

insert(
� ����� �

):
Insert

�
with the key value

��� �
in � .

u = extractMin():
Extract the item with the minimum key value in � .

decreaseKey(
� �����

� -
��� �

):
Decrease

�
’s key value to

���
� -

��� �
.

Remark: Priority Queues can be implemented so that
each operation takes time

� � ���	� � � � 

. See CLRS!

26



Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a triple
��� ���

�
����� ���

,
��� ��� �	� 


,
where

�
�

is a vertex in
� � �

,
�

��� ��� �	�
is the weight of the lightest edge

from
�

to any vertex in
�

, and
�

�
�
����� ���

is the endpoint of this edge in
�

.
The array is used to build the MST tree.

r

a
b

c

d e

f

g i
r

a
b

c

d e

f

g i

24
2026

16
14

8

24
2026

16
14

8

12
12

23 23

new edge
key[f] = 8,  pred[f] = e

12
12

key[i] = infinity, pred[i] = nil key[i] = 23, pred[i] = f

After adding the new edge
and vertex f, update the key[v] 
and pred[v] for each vertex v  
adjacent to f

key[g] = 16, pred[g] = c

key[h] = 24, pred[h] = b

f has the minimum key

h h

27



Description of Prim’s Algorithm

Remark: � is given by adjacency lists. The vertices in � 	 �
are stored in a priority queue with key=value of lightest edge to
vertex in

�
.

Prim( � ��� � � )�
for each � � � initialize� ���
	�� �� � � �

;������� � � �� � �
;����
	�� �� � �

; start at root� � �
��� �� � � �! 
;" �

new PriQueue( � ); put vertices in
"

while(
"

is nonempty) until all vertices in MST�
u=

"$#
extraxtMin(); lightest edge

for each ( %&� ' �)(*� �� )�
if (( ������� � � %! � � �

)&&(
� � � � %!,+ ���
	�� %! ))���-	.� %/ � � � � � %! ; new lightest edge"$#

decreaseKey( % � ���-	.� %! );� � �0��� %! � � ;�
������� � � �� � 1 2��

When the algorithm terminates,
" � �

and the MST is3 � � � % � � � �0��� %! �$4/%&� � 	 � ��� � #
The pred pointers define the MST as an inverted tree

rooted at � .
28



Example for Running Prim’s Algorithm

a

b

c

d

e

f

1

2

3

4

5

1

10
3

4

u

key[u]

pred[u]

a b c d e f

29



Analysis of Prim’s Algorithm

Let
� � � � �

and
� � ��� �

. The data structure PriQueue
supports the following two operations: (See CLRS)

�
� � � � � � 


to extract each vertex from the queue.
Done once for each vertex

� � � � ���	� � 
��

�
� � � � � � 


time to decrease the key value of neigh-
boring vertex.
Done at most once for each edge

� � � � � � � � 
��

Total cost is then

� � � � � � 
 ��� � � 


30



Analysis of Prim’s Algorithm – Continued

Prim(G, w, r)  { 
for each (u in V)
{

key[u] = +infinity; 
color[u] = white; 

}

key[r] = 0; 
pred[r] = nil; 
Q = new PriQueue(V); 

while (Q. nonempty())
{

u = Q.extractMin(); 
for each (v in adj[u])
{

if ((color[v] == white) &
(w(u,v) < key[v]) 

key[v] = w(u, v); 
{

}
}
color[u] = black; 

}
}

1
O(log n)
1

1
1

pred[v] = u;

O(log n)

1

O(deg(u) log n)

1

[O(log n) + O(deg(u) log n)]
u in V

1
1

2n

n

Q.decreaseKey(v, key[v]); 

31



Analysis of Prim’s Algorithm – Continued

So the overall running time is

� � � ��� 

� � � � � �

� � �
� � � ���	� � 
 � � ����� � ��� 
����	� � 
 �

� � � � � � �
��
� � � � � 


� � �
�	� � ��� � ��� 
 
�
�

� � � � � � � � � ���	� � 
 � � � � � 
 �
� � � � ���	� � 
 � � � � � 
 �
� � � � ���	� � 
 � � � � 
 �
� � � ��� � � � ��� � 
 ��� � � � � � �

32



Lecture 8: Kruskal’s MST Algorithm
CLRS Chapter 23

Main Topics of This Lecture

� Kruskal’s algorithm
Another, but different, greedy MST algorithm

� Introduction to UNION-FIND data structure.
Used in Kruskal’s algorithm
Will see implementation in next lecture.

1



Idea of Kruskal’s Algorithm

The Kruskal’s Algorithm is based directly on the generic
algorithm. Unlike Prim’s algorithm, we make a differ-
ent choices of cuts.

Initially, trees of the forest are the vertices (no edges).

In each step add the cheapest edge that does not cre-
ate a cycle.

Observe that unlike Prim’s algorithm, which only grows
one tree, Kruskal’s algorithm grows a collection of trees
(a forest).

Continue until the forest ’merge to’ a single tree.
(Why is a single tree created?)

This is a minimum spanning tree
(we must prove this).

2



Outline by Example

a b

c

de

a b

c

de

original graph

edge weight

3 5

7

10

12

9

2

{d, c} 2
{a, e} 3
{a, d} 5
{e, d}  7
{b, c} 9
{a, b} 10
{b, d} 12

E

forest MST

Forest (V, A) 

A={ }

3



Outline of Kruskal’s Algorithm

Step 0: Set
� � �

and � � �
, the set of all edges.

Step 1: Choose an edge � in � of minimum weight,
and check whether adding � to

�
creates a cycle.

� If “yes”, remove � from � .

� If “no”, move � from � to
�

.

Step 2: If � � �
, stop and output the minimal span-

ning tree ���
	 � � . Otherwise go to Step 1.

Remark: Will see later, after each step, ���
	 � � is a
subgraph of a MST.

4



Outline of Kruskal’s Algorithm

Implementation Questions:

� How does algorithm choose edge � � � with min-
imum weight?

� How does algorithm check whether adding � to
�

creates a cycle?

5



How to Choose the Edge of Least Weight

Question:
How does algorithm choose edge � � � with mini-
mum weight?

Answer: Start by sorting edges in
�

in order of in-
creasing weight.
Walk through the edges in this order.
(Once edge � causes a cycle it will always cause a cycle so it

can be thrown away.)

6



How to Check for Cycles

Observation: At each step of the outlined algorithm,
���
	 � � is acyclic so it is a forest.

If � and � are in the same tree, then adding edge� � 	���� to
�

creates a cycle.

If � and � are not in the same tree, then adding edge� � 	���� to
�

does not create a cycle.

Question: How to test whether � and � are in the
same tree?

High-Level Answer: Use a disjoint-set data structure
Vertices in a tree are considered to be in same set.
Test if Find-Set( � ) = Find-Set( � )?

Low -Level Answer:
The UNION-FIND data structure implements this:

7



The UNION-FIND Data Structure

UNION-FIND supports three operations on collections
of disjoint sets: Let � be the size of the universe.

Create-Set( � ):
� ��� �

Create a set containing the single element � .

Find-Set( � ):
� �����	� �

�
Find the set containing the element � .

Union( � 	�� ):
� �����	� �

�
Merge the sets respectively containing � and �
into a common set.

For now we treat UNION-FIND as a black box.
Will see implementation in next lecture.

8



Kruskal’s Algorithm: the Details

Sort
�

in increasing order by weight � ;
� � � � �

���	�
� � � �

/* After sorting � � �����
	����	������������������������������������� ��������!�#" */

� � � � ;
for (each � in � ) CREATE-SET( � );

� � � � � �

for �%$ � ���&$ 	 �'$ � from 1 to
� � �

do
� � � � �

���	�
� � � �

if (FIND-SET( � $ ) != FIND-SET( � $ ) )(
add

� � $ 	�� $ � to
�

;
UNION( � $ 	 � $ );)

return(A);

Remark: With a proper implementation of UNION-FIND, Kruskal’s

algorithm has running time *,+.-/�0-21!3546-!�0- 7 .

9



Why Kruskal’s Algorithm is correct?

Let
�

be the edge set which has been selected by
Kruskal’s Algorithm, and ��� 	 � � be the edge to be added
next. It suffices to show there is a cut which respects�

, and ��� 	�� � is the light edge crossing that cut.

1. Let
� � � ��� � 	 � � �

denote the tree of the forest
�

that contains � . Consider the cut ��� � 	�� � � � �
.

2. Observe that there is no edge in
�

crosses this
cut, so the cut respects

�
.

3. Since adding ��� 	 � � to
� �

does not induce a cy-
cle, ��� 	�� � crosses the cut. Moreover, since ��� 	�� �
is currently the smallest edge, ��� 	 � � is the light
edge crossing the cut. This completes the cor-
rectness proof of Kruskal’s Algorithm.

10



Why Kruskal’s Algorithm is correct?

G=(V, E)

A’=(V’, E’)

cut (V’, V−V’)

v

u

A

11



Single Source Shortest Paths 
 Given a weighted graph G= (V,E) where the weights are >0. 

 A source vertex, vo belong to V. 

  Find the shortest path from vo to all other nodes in G. 

 Shortest paths are generated in increasing order: 1,2,3,… .. 
 

Dijkstra Algorithm 
 S: Set of vertices (including vo) whose final shortest paths from the source 

vo have already been determined. 

 For each node wV-S, 
Dist (w): the length of the shortest path starting from vo going through only 
vertices which are in S and ending at w. 

 The next path is generated as follows: 
It's the path of a vertex u which has Dist (u) minimum among all vertices in 
V-S 
Put u in S. 

 Dist (w) for w in V-S may be decreased going though u. 
 

 
 
 
 
 
 
 
 



Algorithm: 
 
 
 
 

 

 

 

 

 

 

 

 

 

Example: 

                                     2                                    1 

                                  5           2            

                   3                                

                                1              3                            2 

                                       4 

Iteration      N DB DC DD DE DF 

Initial    {A} 2 3   5 

1 {A,B} 2 3  3 4 

2 {A,B, C} 2 3 7(A-C-D) 3 4(no change because 

of same cost A-C-F) 
3 {A,B, C,E} 2 3 5(min{(A-C-D,A- 3 4 

Procedure SSSP (vo, cost, n) 
Array S (1:n); 

Begin 
/* initialization*/ 

For i=1 to n do 
S(i)=0, Dist (i)= cost (vo ,i) 
End for. 
S(vo)=1, Dist (vo)=o; 
For i=1 to n-1 do. 

Choose u s.t. Dist (u)= min {Dist (w) } & S(w)=0 
S(u)=1; 
For all w with S(w)=0 do. 

Dist (w)= min (Dist (w), Dist (u) +Cost (u,w)) 
End for. 

end for. 
end. 

 

A B 

C D 

E 

F 
This will change to 5 to 4 because 

Min{(A-F), (A-B-F)} 

Min{5,4} 

 



B-E-D)} 
4 { A,B, C,E,F} 2 3 5 no change 3 4 

5 { A,B, C,E,F,D} 2 3 5 3 4 

 

                                     2                                    1 

                                  5           2            

                   3                                

                                1              3                            2 

 4 

  

 

                                     2                                    1 

                                  5           2            

                   3                                

                                1              3                            2 

 4 

 

                                     2                                    1 

                                  5           2            

                   3                                

                                1              3                            2 

 4 

 

A B 

C D 

E 

F 

A B 

C D 

E 

F 

A B 

C D 

E 

F 



                                     2                                    1 

                                  5           2            

                   3                                

                                1              3                            2 

 4 

 

                                     2                                    1 

                                  5           2            

                   3                                

                                1              3                            2 

 4 

 

 

                                     2                                    1 

                                  5           2            

                   3                                

                                1              3                            2 

 4 

Implementation using min heap 

 Build heap---------------- O(v) 

 Extracting min element from min-heap & Adjusting min heap v times-- v 

log2 v               

 Decrease key operation: 
o Delete min key from heap---- O(1). 

A B 

C D 

E 

F 

A B 

C D 

E 

F 

A B 

C D 

E 

F 



o Adjust root ------log2 v 
o We have to perform decrease key operation on rest of the vertices at 

max. When the value change from infinite, we have adjust min heap  
which takes log2 v (v time) So v log2v. At max we have perform this 
decrease key operation v-1 times so decrease key operation v-1 
times take v2 log2v 

o v2 log2v     we can write it as elog2v because e= v2  in dense graph 
worst case. 

 
 
 
Time complexity:  O(v)    +          v log2 v              +                  e log2 v 
 
                             Build heap      
 
 
 
 
 
Time complexity: O(v2) when adjacency matrix if the input is represented  using 
adjacency list it can be reduced to O((e+v) log v) with the help of binary heap. 
 
 
Drawback: 

Dijkstra Algorithm will fail when there is negative weight cycle in the graph. 
 
 
 
 
 
 
 
 
 

Extracting min 

element from 

min-heap & 

Adjusting min 

heap v times 



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Shortest Paths
Dijkstra Bellman-Ford Floyd All-pairs paths

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures

1 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

1 Single-source shortest path

2 Dijkstra’s algorithm

3 Bellman-Ford algorithm

4 All-pairs shortest path problem

5 Floyd’s algorithm

2 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Paths and Distances Revisited

Cost of a walk / path v0, v1, . . . , vk in a digraph G = (V,E) with
edge weights {c(u, v) | (u, v) ∈ E}:

cost(v0, v1, . . . , vk) =

k−1∑
i=0

c(vi, vi+1)

Distance d(u, v) between two vertices u and v of V (G): the
minimum cost of a path between u and v.

Eccentricity of a node u ∈ V : ec[u] = max
v∈V

d(u, v).

Radius of G: the minimum eccentricity of u ∈ V : min
u∈V

ec[u].

Diameter of G: the maximum eccentricity of u ∈ V : max
u∈V

ec[u].

Note: there are analogous definitions for graphs.

3 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Unweighted / Weighted Graphs: Shortest Paths

The shortest path from the vertex A to the vertex D:

A B

C D

E

F

min{2A,C,D, 3A,C,E,D, 3A,B,F,D}

A B

C D

E

F1

4

3

3
8

2 3

min{9A,C,D, 6A,C,E,D, 10A,B,F,D}

4 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Single-source Shortest Path (SSSP) in G = (V,E, c)

Given a source node v, find the shortest (minimum weight) path to
each other node.

• Weight of a path: the sum of weights (costs) on the arcs.

• BFS works only if all weights c(u, v); (u, v) ∈ E, are equal.

• Dijkstra’s algorithm – one of the known solutions.

• A greedy algorithm: each locally best choice is globally
best.

• Works only if all weights are non-negative.
• Initial paths: one-arc paths from s to v of weight

cost(s, v).
• Each step compares the shortest paths with and without

each new node.

5 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Single-source Shortest Path (SSSP) in G = (V,E, c)

1 Build a list S of visited nodes (say, using a priority queue).

2 Iterative propagation of the shortest paths:

1 Choose the closest unvisited node u being on a path with
internal nodes in S.

2 If adding the node u has established shorter paths,
update distances of remaining unvisited nodes v from the
source s.

Complexity depends on data structures used.

• For a priority queue, such as a binary heap, running time
O((m+ n) log n) is possible.
• If every node is reachable from the source: O(m log n).

• More sophisticated Fibonacci heaps lead to the best
complexity of O(m+ n log n).

6 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm

algorithm Dijkstra( weighted digraph (G, c), node s ∈ V (G) )
array colour[n] = {WHITE, . . . ,WHITE}
array dist[n] = {c[s, 0], . . . , c[s, n− 1]}
colour[s]← BLACK
while there is a WHITE node do

pick a WHITE node u, such that dist[u] is minimum
colour[u]← BLACK
for each x adjacent to u do

if colour[x] = WHITE then
dist[x]← min

{
dist[x], dist[u] + c[u, x]

}
end if

end for
end while
return dist

end
7 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: Example 1

a

b

c

d

e

3

8

1

2

2

2

7

3

2

5

BLACK dist[x]
List S a b c d e

a 0 3 8 ∞ ∞
a b 0 3 8 5 ∞
a b d 0 3 7 5 10
a b c d 0 3 7 5 9
a b c d e 0 3 7 5 9

8 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: Example 1

a

b

c

d

e

3

8

1

2

2

2

7

3

2

5

BLACK dist[x]
List S a b c d e

a 0 3 8 ∞ ∞
a b 0 3 8 5 ∞
a b d 0 3 7 5 10
a b c d 0 3 7 5 9
a b c d e 0 3 7 5 9

8 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: Example 1

a

b

c

d

e

3

8

1

2

2

2

7

3

2

5

BLACK dist[x]
List S a b c d e

a 0 3 8 ∞ ∞
a b 0 3 8 5 ∞
a b d 0 3 7 5 10
a b c d 0 3 7 5 9
a b c d e 0 3 7 5 9

8 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: Example 1

a

b

c

d

e

3

8

1

2

2

2

7

3

2

5

BLACK dist[x]
List S a b c d e

a 0 3 8 ∞ ∞
a b 0 3 8 5 ∞
a b d 0 3 7 5 10
a b c d 0 3 7 5 9
a b c d e 0 3 7 5 9

8 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: Example 1

a

b

c

d

e

3

8

1

2

2

2

7

3

2

5

BLACK dist[x]
List S a b c d e

a 0 3 8 ∞ ∞
a b 0 3 8 5 ∞
a b d 0 3 7 5 10
a b c d 0 3 7 5 9
a b c d e 0 3 7 5 9

8 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Why Does Dijkstra’s Algorithm Work?

Let an S-path be a path starting
at node s and ending at node x
with all the intermediate nodes
coloured BLACK, i.e., from the
list S, except possibly x.

x

u

S
s

y
·

·

Theorem 6.8: Suppose that all arc weights are nonnegative.

Then these two properties hold at the top of while-loop:

P1: If x ∈ V (G), then dist[x] is the minimum cost of an S-path
from s to x.

P2: If colour[w] = BLACK (i.e., w ∈ S), then dist[w] is the
minimum cost of a path from s to w.

Once a node u is added to S and dist[u] is updated, dist[u] never changes in
subsequent steps. After S = V , dist holds the goal shortest distances.

9 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Proving Why Dijkstra’s Algorithm Works

The update rule: dist[x]← min
{
dist[x], dist[u] + c[u, x]

}
.

dist[x] is the length of some path from
s to x at every step.

• If x ∈ S, then it is an S-path.

• Updated dist[v] never increases.

To prove P1 and P2: induction on the
number of times k of going through the
while-loop (Sk; S0 = {s}; dist[s] = 0).

x

u

S
s

y
·

·

• k = 0: P1 and P2 hold as dist[s] = 0.

• Inductive hypothesis: P1 and P2 hold for k ≥ 0; Sk+1 = Sk
⋃
{u}.

• Inductive steps for P2 and P1:

• Consider any s-to-w Sk+1-path γ = (s, . . . , y, u) of the weight
|γ|.

• If w ∈ Sk, consider the hypothesis.
• If w /∈ Sk, γ extends some s-to-y Sk-path γ1 = (s, . . . , y).

10 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Proving Why Dijkstra’s Algorithm Works

Inductive step for P2:

• For w ∈ Sk+1 and w 6= u, P2 holds by inductive hypothesis.

• For w = u, P2 holds, too, because any Sk+1-path γ = (s, . . . , y, u)
of weight |γ| extends some Sk-path γ1 = (s, . . . , y) of weight |γ1|:
• By the inductive hypothesis, dist[y] ≤ |γ1|.
• By the update rule, dist[u] ≤ dist[y] + c(y, u).
• Therefore, dist[u] ≤ |γ| = |γ1|+ c(y, u).

u

Sk

γ1

s

y

11 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Proving Why Dijkstra’s Algorithm Works

Inductive step for P1: x ∈ V (G); γ – any s-to-x Sk+1-path;
Sk+1 = Sk

⋃
{u}:

• u /∈ γ: γ is an Sk-path and |γ| ≤ dist[x] by the inductive hypothesis.

• u ∈ γ =
( γ1︷ ︸︸ ︷
s, . . . , u, x

)
: by the update rule, |γ| = |γ1|+ c(u, x) ≥ dist[x].

• u ∈ γ = (

γ1︷ ︸︸ ︷
s, . . . , u, . . . .y, x

)
, returning to Sk after u: by the update rule,

|γ| = |γ1|+ c(y, x) ≥ |β|+ c(y, x) ≥ dist[y] + c(y, x) ≥ dist[x]

where |β| is the min weight of an s-to-y Sk-path.

x

u

Sk
s

y
·

·

12 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijksra’s Algorithm: Example 2

7

9

14

10

15

112

9 6

A B

C

F E D Node u A B C D E F

0 7 9 ∞ ∞ 14
A 0 7 9 ∞ ∞ 14
A B 0 7 9 22 ∞ 14
A B C 0 7 9 20 ∞ 11
A B C F 0 7 9 20 20 11
A B C D F 0 7 9 20 20 11
A B C D E F 0 7 9 20 20 11

for u ∈ V (G) dist[u]← c[A, u]

13 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijksra’s Algorithm: Example 2

7

9

14

10

15

112

9 6

A B

C

F E D

A

Node u A B C D E F

0 7 9 ∞ ∞ 14
A 0 7 9 ∞ ∞ 14
A B 0 7 9 22 ∞ 14
A B C 0 7 9 20 ∞ 11
A B C F 0 7 9 20 20 11
A B C D F 0 7 9 20 20 11
A B C D E F 0 7 9 20 20 11

colour[A]← BLACK; dist[A]← 0

13 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijksra’s Algorithm: Example 2

7

9

14

10

15

112

9 6

A B

C

F E D

A B

Node u A B C D E F

0 7 9 ∞ ∞ 14
A 0 7 9 ∞ ∞ 14
A B 0 7 9 22 ∞ 14
A B C 0 7 9 20 ∞ 11
A B C F 0 7 9 20 20 11
A B C D F 0 7 9 20 20 11
A B C D E F 0 7 9 20 20 11

while-loop:
WHITE B,C,D,E, F : min dist[B]
colour[B]← BLACK
for x ∈ V (G)

dist[x]←
min

{
dist[x], dist[B] + c[B, x]

}

13 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijksra’s Algorithm: Example 2

7

9

14

10

15

112

9 6

A B

C

F E D

A B

C

Node u A B C D E F

0 7 9 ∞ ∞ 14
A 0 7 9 ∞ ∞ 14
A B 0 7 9 22 ∞ 14
A B C 0 7 9 20 ∞ 11
A B C F 0 7 9 20 20 11
A B C D F 0 7 9 20 20 11
A B C D E F 0 7 9 20 20 11

while-loop:
WHITE C,D,E, F : min dist[C]
colour[C]← BLACK;
for x ∈ V (G)

dist[x]←
min

{
dist[x], dist[C] + c[C, x]

}

13 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijksra’s Algorithm: Example 2

7

9

14

10

15

112

9 6

A B

C

F E D

A B

C

F
Node u A B C D E F

0 7 9 ∞ ∞ 14
A 0 7 9 ∞ ∞ 14
A B 0 7 9 22 ∞ 14
A B C 0 7 9 20 ∞ 11
A B C F 0 7 9 20 20 11
A B C D F 0 7 9 20 20 11
A B C D E F 0 7 9 20 20 11

while-loop:
WHITE D,E, F : min dist[F ]
colour[F ]← BLACK;
for x ∈ V (G)

dist[x]←
min

{
dist[x], dist[F ] + c[F, x]

}

13 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijksra’s Algorithm: Example 2

7

9

14

10

15

112

9 6

A B

C

F E D

A B

C

F D
Node u A B C D E F

0 7 9 ∞ ∞ 14
A 0 7 9 ∞ ∞ 14
A B 0 7 9 22 ∞ 14
A B C 0 7 9 20 ∞ 11
A B C F 0 7 9 20 20 11
A B C D F 0 7 9 20 20 11
A B C D E F 0 7 9 20 20 11

while-loop:
WHITE D,E: min dist[D]
colour[D]← BLACK;
for x ∈ V (G)

dist[x]←
min

{
dist[x], dist[D] + c[D,x]

}

13 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijksra’s Algorithm: Example 2

7

9

14

10

15

112

9 6

A B

C

F E D

A B

C

F DE
Node u A B C D E F

0 7 9 ∞ ∞ 14
A 0 7 9 ∞ ∞ 14
A B 0 7 9 22 ∞ 14
A B C 0 7 9 20 ∞ 11
A B C F 0 7 9 20 20 11
A B C D F 0 7 9 20 20 11
A B C D E F 0 7 9 20 20 11

while-loop:
WHITE E: min dist[E]
colour[E]← BLACK;
for x ∈ V (G)

dist[x]←
min

{
dist[x], dist[E] + c[E, x]

}

13 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijksta’s Algorithm: PFS Version

Input: weighted digraph (G, c); source node s ∈ V (G);
priority queue Q; arrays dist[0..n− 1]; colour[0..n− 1]

for u ∈ V (G) do:
colour[u]←WHITE

colour[s]← GREY
Q.insert(s, keys = 0)

Q.is empty()? return dist
yes

no

Q.delete() u← Q.peek()
τ ← Q.getKey(u)

for each x adjacent to u do:

t← τ + c(u, x)

colour[x] = WHITE?
yes

colour[x]← GREY
Q.insert(x, t)

no

colour[x] = GREY?
yes

Q.getKey(x) > t?
yes

Q.decreaseKey(x, t)

nono

14 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Start at a

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

Initialisation:

Priority queue Q = {akey=0}
v ∈ V a b c d e f g
keyv 0
dist[v] − − − − − − −

15 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Steps 1 – 2

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

u← a; t1 ← keya = 0; x ∈ {b, c, d}
x← b: t2 = t1 + cost(a, b) = 2; Q = {a0, b2}
v ∈ V a b c d e f g
keyv 0 2
dist[v] − − − − − − −

16 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Step 3

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

u = a; t1 = keya = 0; x ∈ {b, c, d}
x← c: t2 = t1 + cost(a, c) = 3; Q = {a0, b2, c3}
v ∈ V a b c d e f g
keyv 0 2 3
dist[v] − − − − − − −

17 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Step 4

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

u = a; t1 = keya = 0; x ∈ {b, c, d}
x← d: t2 = t1 + cost(a, d) = 3; Q = {a0, b2, c3, d3}
v ∈ V a b c d e f g
keyv 0 2 3 3
dist[v] − − − − − − −

18 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Step 5

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

Completing the while-loop for u = a

dist[a]← t1 = 0; Q = {b2, c3, d3}
v ∈ V a b c d e f g
keyv 0 2 3 3
dist[v] 0 − − − − − −

19 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Steps 6 – 7

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

u← b; t1 ← keyb = 2; x ∈ {c, e}
x← c: t2 = t1 + cost(b, c) = 2 + 4 = 6; keyc = 3 < t2 = 6

v ∈ V a b c d e f g
keyv 0 2 3 3
dist[v] 0 − − − − − −

20 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Step 8

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

u = b; t1 = keyb = 2; x ∈ {c, e}
x← e: t2 = t1 + cost(b, e) = 2 + 3 = 5; Q = {b2, c3, d3, e5}
v ∈ V a b c d e f g
keyv 0 2 3 3 5
dist[v] 0 − − − − − −

21 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Step 9

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

Completing the while-loop for u = b

dist[b]← t1 = 2; Q = {c3, d3, e5}
v ∈ V a b c d e f g
keyv 0 2 3 3 5
dist[v] 0 2 − − − − −

22 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Steps 10 – 11

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

u← c; t1 ← keyc = 3; x ∈ {d, e, f}
x← d: t2 = t1 + cost(c, d) = 3 + 5 = 8; keyd = 3 < t2 = 8

v ∈ V a b c d e f g
keyv 0 2 3 3 5
dist[v] 0 2 − − − − −

23 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Step 12

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

u = c; t1 = keyc = 3; x ∈ {d, e, f}
x← e: t2 = t1 + cost(c, d) = 3 + 1 = 4; keye = 5 < t2 = 4; keye ← 4

v ∈ V a b c d e f g
keyv 0 2 3 3 4
dist[v] 0 2 − − − − −

24 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Step 13

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

u = c; t1 = keyc = 3; x ∈ {d, e, f}
x← f : t2 = t1 + cost(c, f) = 3 + 6 = 9; Q = {c3, d3, e4, f9}
v ∈ V a b c d e f g
keyv 0 2 3 3 4 9
dist[v] 0 2 − − − − −

25 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Step 14

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

Completing the while-loop for u = c

dist[c]← t1 = 3; Q = {d3, e4, f9}
v ∈ V a b c d e f g
keyv 0 2 3 3 4 9
dist[v] 0 2 3 − − − −

26 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Steps 15 – 16

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

u← d; t1 ← keyd = 3; x ∈ {f}
x← f : t2 = t1 + cost(d, f) = 3 + 7 = 10; keyf = 9 < t2 = 10

v ∈ V a b c d e f g
keyv 0 2 3 3 4 9
dist[v] 0 2 3 − − − −

27 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Step 17

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

Completing the while-loop for u = d

dist[d]← t1 = 3; Q = {e4, f9}
v ∈ V a b c d e f g
keyv 0 2 3 3 4 9
dist[v] 0 2 3 3 − − −

28 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Steps 18 – 19

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

u← e; t1 ← keye = 4; x ∈ {f}
x← f : t2 = t1 + cost(e, f) = 4 + 8 = 12; keyf = 9 < t2 = 12

v ∈ V a b c d e f g
keyv 0 2 3 3 4 9
dist[v] 0 2 3 3 − − −

29 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Step 20

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

Completing the while-loop for u = e

dist[e]← t1 = 4; Q = {f9}
v ∈ V a b c d e f g
keyv 0 2 3 3 4 9
dist[v] 0 2 3 3 4 − −

30 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Steps 21 – 22

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

u← f ; t1 ← keyf = 9; x ∈ {g}
x← g: t2 = t1 + cost(f, g) = 9 + 9 = 18; Q = {f9, g18}
v ∈ V a b c d e f g
keyv 0 2 3 3 4 9 18
dist[v] 0 2 3 3 4 − −

31 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Step 23

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

Completing the while-loop for u = f

dist[f ]← t1 = 9; Q = {g18}
v ∈ V a b c d e f g
keyv 0 2 3 3 4 9 18
dist[v] 0 2 3 3 4 9 −

32 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Dijkstra’s Algorithm: PFS Version: Steps 24 – 25

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

Completing the while-loop for u = g

dist[g]← t1 = 18; no adjacent verices for g; empty Q = {}
v ∈ V a b c d e f g
keyv 0 2 3 3 4 9 18
dist[v] 0 2 3 3 4 9 18

33 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

SSSP: Bellman-Ford Algorithm

algorithm Bellman-Ford( weighted digraph (G, c); node s )
array dist[n] = {∞,∞, . . .}
dist[s]← 0
for i from 0 to n− 1 do

for x ∈ V (G) do
for v ∈ V (G) do

dist[v]← min(dist[v], dist[x] + c(x, v))
end for

end for
end for
return dist

end

Time complexity – Θ(n3); unlike the Dijkstra’s algorithm, it handles negative
weight arcs (but no negative weight cycles making the SSSP senseless).

34 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

SSSP: Bellman-Ford Algorithm (Alternative Form)

algorithm Bellman-Ford( weighted digraph (G, c); node s )
array dist[n] = {∞,∞, . . .}
dist[s]← 0
for i from 0 to n− 1 do

for (x, v) ∈ E(G) do
dist[v]← min(dist[v], dist[x] + c(x, v))

end for
end for
return dist

end

Replacing the two nested for-loops by the nodes x, v ∈ V (G) with a single
for-loop by the arcs (x, v) ∈ E(G).

Time complexity: Θ(mn) using adjacency lists vs. Θ(n3) using an adjacency
matrix.

35 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Bellman-Ford Algorithm

Slower than Dijkstra’s algorithm when all arcs are nonnegative.

Basic idea as in Dijkstra’s: to find the single-source shortest paths
(SSSP) under progressively relaxing restrictions.

• Dikstra’s: one node a time based on their current distance
estimate.

• Bellman-Ford: all nodes at “level” 0, 1, . . . , n− 1 in turn.
• Level of a node v – the minimum possible number of arcs in a

minimum weight path to that node from the source s.

Theorem 6.9

If a graph G contains no negative weight cycles, then after the ith

iteration of the outer for-loop, the element dist[v] contains the
minimum weight of a path to v for all nodes v with level at most i.

36 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Proving Why Bellman-Ford Algorithm Works

Just as for Dijkstra’s, the update ensures dist[v] never increases.

Induction by the level i of the nodes:

• Base case: i = 0; the result is true due to initialisation:
dist[s] = 0; dist[v] =∞; v ∈ V \s.

• Induction hypothesis: dist[v]; v ∈ V , are true for i− 1.
• Induction step for a node v at level i:

• Due to no negative weight cycles, a min-weight s-to-v path, γ,
has i arcs.

• If y is the last node before v and γ1 the subpath to y, then
dist[y] ≤ |γ1| by the induction hypothesis.

• Thus by the update rule:

dist[v] ≤ dist[y] + c(y, v) ≤ |γ1|+ c(y, v) ≤ |γ|

as required at level i.

37 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Bellman-Ford Algorithm

a

b

c

d

e

3

-1

1

2

2

2

4

-2

6

-3

i dist[x]
a b c d e

0 0 ∞ ∞ ∞ ∞
1 0 3 −1 ∞ ∞
2 0 0 −1 3 5
3 0 0 −1 2 0
4 0 0 −1 2 −1

38 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Bellman-Ford Algorithm

a

b

c

d

e

3

-1

1

2

2

2

4

-2

6

-3

3

-1

∞

∞

i dist[x]
a b c d e

0 0 ∞ ∞ ∞ ∞
1 0 3 −1 ∞ ∞
2 0 0 −1 3 5
3 0 0 −1 2 0
4 0 0 −1 2 −1

38 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Bellman-Ford Algorithm

a

b

c

d

e

3

-1

1

2

2

2

4

-2

6

-3

0

-1

3

5

i dist[x]
a b c d e

0 0 ∞ ∞ ∞ ∞
1 0 3 −1 ∞ ∞
2 0 0 −1 3 5
3 0 0 −1 2 0
4 0 0 −1 2 −1

38 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Bellman-Ford Algorithm

a

b

c

d

e

3

-1

1

2

2

2

4

-2

6

-3

0

-1

2

-1

i dist[x]
a b c d e

0 0 ∞ ∞ ∞ ∞
1 0 3 −1 ∞ ∞
2 0 0 −1 3 5
3 0 0 −1 2 0
4 0 0 −1 2 −1

38 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Bellman-Ford Algorithm

a

b

c

d

e

3

-1

1

2

2

2

4

-2

6

-3

0

-1

2

-1

i dist[x]
a b c d e

0 0 ∞ ∞ ∞ ∞
1 0 3 −1 ∞ ∞
2 0 0 −1 3 5
3 0 0 −1 2 0
4 0 0 −1 2 −1

38 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Bellman-Ford Algorithm (Alternative Form)

Arc (x, v): a,b a,c b,a b,d c,b c,d c,e d,b d,c d,e
c(x, v): 3 −1 2 2 1 4 6 −2 2 −3

Iteration i = 0

x, v Distance d[v]← min{d[v], d[x] + c(x, v)} a b c d e
0 ∞ ∞ ∞ ∞

a,b d[b] ← min{∞, 0 + 3} = 3 0 3 ∞ ∞ ∞
a, c d[c] ← min{∞, 0− 1} = −1 0 3 −1 ∞ ∞
b, a d[a] ← min{0, 3 + 2} = 0 0 3 −1 ∞ ∞
b,d d[d] ← min{∞, 3 + 2} = 5 0 3 −1 5 ∞
c,b d[b] ← min{3, −1 + 1} = 0 0 0 −1 5 ∞
c,d d[d] ← min{5, −1 + 4} = 3 0 0 −1 3 ∞
c, e d[e] ← min{∞, −1 + 6} = 5 0 0 −1 3 5
d,b d[b] ← min{0, 3− 2} = 0 0 0 −1 3 5
d, c d[c] ← min{−1, 3 + 2} = −1 0 0 −1 3 5
d, e d[e] ← min{5, 3− 3} = 0 0 0 −1 3 0

39 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Bellman-Ford Algorithm (Alternative Form)

Arc (x, v): a,b a,c b,a b,d c,b c,d c,e d,b d,c d,e
c(x, v): 3 −1 2 2 1 4 6 −2 2 −3

Iteration i = 1

x, v Distance d[v]← min{d[v], d[x] + c(x, v)} a b c d e
0 0 −1 3 0

a,b d[b] ← min{0, 0 + 3} = 0 0 0 −1 3 0
a, c d[c] ← min{−1, 0− 1} = −1 0 0 −1 3 0
b, a d[a] ← min{0, 0 + 2} = 0 0 0 −1 3 0
b,d d[d] ← min{3, 0 + 2} = 2 0 0 −1 2 0
c,b d[b] ← min{0, −1 + 1} = 0 0 0 −1 2 0
c,d d[d] ← min{2, −1 + 4} = 2 0 0 −1 2 0
c, e d[e] ← min{0, −1 + 6} = 0 0 0 −1 2 0
d,b d[b] ← min{0, 2− 2} = 0 0 0 −1 2 0
d, c d[c] ← min{−1, 2 + 2} = −1 0 0 −1 2 0
d, e d[e] ← min{0, 2− 3} = −1 0 0 −1 2 −1

39 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Bellman-Ford Algorithm (Alternative Form)

Arc (x, v): a,b a,c b,a b,d c,b c,d c,e d,b d,c d,e
c(x, v): 3 −1 2 2 1 4 6 −2 2 −3

Iteration i = 2..4

x, v Distance d[v]← min{d[v], d[x] + c(x, v)} a b c d e
0 0 −1 2 −1

a,b d[b] ← min{0, 0 + 3} = 0 0 0 −1 2 −1
a, c d[c] ← min{−1, 0− 1} = −1 0 0 −1 2 −1
b, a d[a] ← min{0, 0 + 2} = 0 0 0 −1 2 −1
b,d d[d] ← min{2, 0 + 2} = 2 0 0 −1 2 −1
c,b d[b] ← min{0, −1 + 1} = 0 0 0 −1 2 −1
c,d d[d] ← min{2, −1 + 4} = 2 0 0 −1 2 −1
c, e d[e] ← min{−1, −1 + 6} = −1 0 0 −1 2 −1
d,b d[b] ← min{0, 3− 2} = 0 0 0 −1 2 −1
d, c d[c] ← min{−1, 3 + 2} = −1 0 0 −1 2 −1
d, e d[e] ← min{−1, 3− 3} = −1 0 0 −1 2 −1

39 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Comments on Bellman-Ford Algorithm

• This (non-greedy) algorithm handles negative weight arcs, but
not negative weight cycles.

• Running time with the two innermost nested for-loops:
O(n3).
• Runs slower than the Dijkstra’s algorithm since considers all

nodes at “level” i = 0, 1, . . . , n− 1, in turn.

• The alternative form where the two inner-most for-loops are
replaced with: for (u, v) ∈ E(V ) runs in time O(nm).
• The outer for-loop (by i) in this case can be terminated after

no distance changes during the iteration (e.g., after i = 2 in
the example on Slide 39).

• Bellman-Ford algorithm can be modified to detect negative
weight cycle (see Textbook, Exercise 6.3.4)

40 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

All Pairs Shortest Path (APSP) Problem

Given a weighted digraph (G, c), determine for each pair of nodes
u, v ∈ V (G) (the length of) a minimum weight path from u to v.

Convenient output: a distance matrix D =
[
D[u, v]

]
u,v∈V (G)

• Time complexity Θ(nAn,m) of computing the matrix D by
finding the single-source shortest paths (SSSP) from each
node as the source in turn.
• An=|V (G)|,m=|E(G)| – the complexity of the SSSP algorithm.

• The APSP complexity Θ(n3) for the adjacency matrix version
of the Dijkstra’s SSSP algorithm: An,m = n2.

• The APSP complexity Θ(n2m) for the Bellman-Ford SSSP
algorithm: An,m = mn.

41 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

All Pairs Shortest Path (APSP) Problem

Floyd’s algorithm – one of the known simpler algorithms for computing
the distance matrix (three nested for-loops; Θ(n3) time complexity):

1 Number all nodes (say, from 0 to n− 1).

2 At each step k, maintain the matrix of shortest distances from node
i to node j, not passing through nodes higher than k.

3 Update the matrix at each step to see whether the node k shortens
the current best distance.

An alternative to running the SSSP algorithm from each node.

• Better than the Dijkstra’s algorithm for dense graphs, probably not
for sparse ones.

• Unlike the Dijkstra’s algorithm, can handle negative costs.

• Based on Warshall’s algorithm (just tells whether there is a path from

node i to node j, not concerned with length).

42 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Floyd’s Algorithm

algorithm Floyd( weighted digraph (G, c) )
Initialisation: for u, v ∈ V (G) do D[u, v]← c(u, v) end for
for x ∈ V (G) do

for u ∈ V (G) do
for v ∈ V (G) do

D[u, v]← min{D[u, v], D[u, x] +D[x, v]}
end for

end for
end for

This algorithm is based on dynamic programming principles.

At the bottom of the outer for-x-loop, D[u, v] for each u, v ∈ V (G) is
the length of the shortest path from u to v passing through intermediate
nodes x having been seen in that loop.

43 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm

3

-1

1

2

2

2

4

-2

6

-3

0

1

2

3

4


0 3 −1 ∞ ∞
2 0 ∞ 2 ∞
∞ 1 0 4 6
∞ −2 2 0 −3
∞ ∞ ∞ ∞ 0


Adjacency/cost matrix c[u, v]

0

0

1

1

2

2

3

3

4

4

0

0

0

0

44 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm: x = 0

3

-1

1

2

2

2

4

-2

6

-3

0

1

2

3

4


0 3 −1 ∞ ∞
2 0 1 2 ∞
∞ 1 0 4 6
∞ −2 2 0 −3
∞ ∞ ∞ ∞ 0


Distance matrix D0[u, v]

0

0

1

1

2

2

3

3

4

4

D0[1, 2] = min{∞, 2c[1,0] − 1c[0,1]} = 1

0

0

0

45 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm: x = 1

3

-1

1

2

2

2

4

-2

6

-3

0

1

2

3

4


0 3 −1 5 ∞
2 0 1 2 ∞
3 1 0 3 6
0 −2 −1 0 −3
∞ ∞ ∞ ∞ 0


Distance matrix D1[u, v]

0

0

1

1

2

2

3

3

4

4

D1[0, 3] = min{∞, 3D0[0,1] + 2D0[1,3]} = 5

D1[2, 3] = min{4, 1D0[2,1] + 2D0[1,3]} = 3

D1[3, 2] = min{2,−2D0[3,1] + 1D0[1,2]} = −1

0

46 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm: x = 2

3

-1

1

2

2

2

4

-2

6

-3

0

1

2

3

4


0 0 −1 2 5
2 0 1 2 7
3 1 0 3 6

0 −2 −1 0 −3
∞ ∞ ∞ ∞ 0


Distance matrix D2[u, v]

0

0

1

1

2

2

3

3

4

4

D2[0, 1] = min{3,−1D1[0,2] + 1D1[2,1]} = 0

D2[0, 3] = min{5,−1D1[0,2] + 3D1[2,3]} = 2

D2[0, 4] = min{∞,−1D1[0,2] + 6D1[2,4]} = 5

D2[1, 4] = min{∞, 1D1[1,2] + 6D1[2,4]} = 7

47 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm: x = 3

3

-1

1

2

2

2

4

-2

6

-3

0

1

2

3

4


0 0 −1 2 −1
2 0 1 2 −1
3 1 0 3 0
0 −2 −1 0 −3

∞ ∞ ∞ ∞ 0


Distance matrix D3[u, v]

0

0

1

1

2

2

3

3

4

4

D3[0, 4] = min{5, 2D2[0,3] − 3D2[3,4]} = −1

D3[1, 4] = min{7, 2D1[1,3] − 3D1[3,4]} = −1

D3[2, 4] = min{6, 3D1[2,3] − 3D1[3,4]} = 0

0

48 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm: x = 4

3

-1

1

2

2

2

4

-2

6

-3

0

1

2

3

4


0 0 −1 2 −1
2 0 1 2 −1
3 1 0 3 0
0 −2 −1 0 −3
∞ ∞ ∞ ∞ 0


Final distance matrix D ≡ D4[u, v]

0

0

1

1

2

2

3

3

4

4

0

0

0

0

49 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Proving Why Floyd’s Algorithm Works

Theorem 6.12: At the bottom of the outer for-loop, for all nodes u and v,

D[u, v] contains the minimum length of all paths from u to v that are
restricted to using only intermediate nodes that have been seen in the
outer for-loop.

When algorithm terminates, all nodes have been seen and D[u, v] is the length
of the shortest u-to-v path.

Notation: Sk – the set of nodes seen after k passes through this loop; Sk-path

– one with all intermediate nodes in Sk; Dk – the corresponding value of D.

Induction on the outer for-loop:

• Base case: k = 0; S0 = ∅, and the result holds.

• Induction hypothesis: It holds after k ≥ 0 times through the loop.

• Inductive step: To show that Dk+1[u, v] after k + 1 passes
through this loop is the minimum length of an u-to-v Sk+1-path.

50 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Proving Why Floyd’s Algorithm Works

Inductive step:
Suppose that x is the last node seen in the loop, so Sk+1 = Sk

⋃{x}.
• Fix an arbitrary pair of nodes u, v ∈ V (G) and let L be the

min-length of an u-to-v Sk+1-path, so that obviously
L ≤ Dk+1[u, v].

• To show that also Dk+1[u, v] ≤ L, choose an u-to-v Sk+1-path γ of
length L. If x /∈ γ, the result follows from the induction hypothesis.

• If x ∈ γ, let γ1 and γ2 be, respectively, the u-to-x and x-to-v
subpaths. Then γ1 and γ2 are Sk-paths and by the inductive
hypothesis,

L ≥ |γ1|+ |γ2| ≥ Dk[u, x] +Dk[x, v] ≥ Dk+1[u, v]

Non-negativity of the weights is not used in the proof, and Floyd’s algorithm
works for negative weights (but negative weight cycles should not be present).

51 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Floyd’s Algorithm: Example 2

2

4

3

3 5

6

1

7

8

9

3

b

a

c

e

f

d

g

Computing all-pairs shortest paths

52 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Floyd’s Algorithm: Example 2 Initialisation

[
D[u, v]

]
u,v∈V (G)

←

Initialisation: c(u,v)]︷ ︸︸ ︷

0 2 3 3 ∞ ∞ ∞
2 0 4 ∞ 3 ∞ ∞
3 4 0 5 1 6 ∞
3 ∞ 5 0 ∞ 7 ∞
∞ 3 1 ∞ 0 8 ∞
∞ ∞ 6 7 8 0 9
∞ ∞ ∞ ∞ ∞ 9 0



a

b

c

d

e

f

g
a b c d e f g

for x ∈ V = {a, b, c, d, e, f, g} do
for u ∈ V = {a, b, c, d, e, f, g} do

for v ∈ V = {a, b, c, d, e, f, g} do
D[u, v]← min {D[u, v], D[u, x] +D[x, v]}

end for
end for

end for

53 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Floyd’s Algorithm: Example 2 x← a

a

a

b

c

d

e

f

g

a

b

c

d

e

f

g 

0 2 3 3 ∞ ∞ ∞
2 0 4 5 3 ∞ ∞
3 4 0 5 1 6 ∞
3 5 5 0 ∞ 7 ∞
∞ 3 1 ∞ 0 8 ∞
∞ ∞ 6 7 8 0 9
∞ ∞ ∞ ∞ ∞ 9 0


︸ ︷︷ ︸

D[u, v]← min {D[u, v], D[u, a] +D[a, v]} ;
(u, v) ∈ V 2

a

b

c

d

e

f

g

a b c d e f g

E.g.,

D[b, d] ← min{D[b, d], D[b, a] +D[a, d]}
= min{∞, 2 + 3} = 5

54 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Floyd’s Algorithm: Example 2 x← b

b

a

b

c

d

e

f

g

a

b

c

d

e

f

g 

0 2 3 3 5 ∞ ∞
2 0 4 5 3 ∞ ∞
3 4 0 5 1 6 ∞
3 5 5 0 8 7 ∞
5 3 1 8 0 8 ∞
∞ ∞ 6 7 8 0 9
∞ ∞ ∞ ∞ ∞ 9 0


︸ ︷︷ ︸

D[u, v]← min {D[u, v], D[u, b] +D[b, v]} ;
(u, v) ∈ V 2

a

b

c

d

e

f

g

a b c d e f g

E.g.,

D[a, e] ← min{D[a, e], D[a, b] +D[b, e]}
= min{∞, 2 + 3} = 5

55 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Floyd’s Algorithm: Example 2 x← c

c

a

b

c

d

e

f

g

a

b

c

d

e

f

g 

0 2 3 3 4 9 ∞
2 0 4 5 3 10 ∞
3 4 0 5 1 6 ∞
3 5 5 0 6 7 ∞
4 3 1 6 0 7 ∞
9 10 6 7 7 0 9
∞ ∞ ∞ ∞ ∞ 9 0


︸ ︷︷ ︸

D[u, v]← min {D[u, v], D[u, c] +D[c, v]} ;
(u, v) ∈ V 2

a

b

c

d

e

f

g

a b c d e f g

E.g.,

D[a, f ] ← min{D[a, f ], D[a, c] +D[c, f ]}
= min{∞, 3 + 6} = 9

56 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Floyd’s Algorithm: Example 2 x← d

d

a

b

c

d

e

f

g

a

b

c

d

e

f

g 

0 2 3 3 4 9 ∞
2 0 4 5 3 10 ∞
3 4 0 5 1 6 ∞
3 5 5 0 8 7 ∞
4 3 1 8 0 7 ∞
9 10 6 7 7 0 9
∞ ∞ ∞ ∞ ∞ 9 0


︸ ︷︷ ︸

D[u, v]← min {D[u, v], D[u, d] +D[d, v]} ;
(u, v) ∈ V 2

a

b

c

d

e

f

g

a b c d e f g

E.g.,

D[a, f ] ← min{D[a, f ], D[a, d] +D[d, f ]}
= min{9, 3 + 7} = 9

57 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Floyd’s Algorithm: Example 2 x← e

e

a

b

c

d

e

f

g

a

b

c

d

e

f

g 

0 2 3 3 4 9 ∞
2 0 4 5 3 10 ∞
3 4 0 5 1 6 ∞
3 5 5 0 8 7 ∞
4 3 1 8 0 7 ∞
9 10 6 7 7 0 9
∞ ∞ ∞ ∞ ∞ 9 0


︸ ︷︷ ︸

D[u, v]← min {D[u, v], D[u, e] +D[e, v]} ;
(u, v) ∈ V 2

a

b

c

d

e

f

g

a b c d e f g

E.g.,

D[b, f ] ← min{D[b, f ], D[b, e] +D[e, f ]}
= min{9, 3 + 7} = 9

58 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Floyd’s Algorithm: Example 2 x← f

f

a

b

c

d

e

f

g

a

b

c

d

e

f

g 

0 2 3 3 4 9 18
2 0 4 5 3 10 19
3 4 0 5 1 6 15
3 5 5 0 8 7 16
4 3 1 8 0 7 16
9 10 6 7 7 0 9
18 19 15 16 16 9 0


︸ ︷︷ ︸

D[u, v]← min {D[u, v], D[u, f ] +D[f, v]} ;
(u, v) ∈ V 2

a

b

c

d

e

f

g

a b c d e f g

E.g.,

D[a, g] ← min{D[a, g], D[a, f ] +D[f, g]}
= min{∞, 9 + 9} = 18

59 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Computing Actual Shortest Paths

• In addition to knowing the shortest distances, the shortest
paths are often to be reconstructed.

• The Floyd’s algorithm can be enhanced to compute also the
predecessor matrix Π = [πij ]

n,n
i,j=1,1 where vertex πi,j precedes

vertex j on a shortest path from vertex i; 1 ≤ i, j ≤ n.

Compute a sequence Π(0),Π(1), . . .Π(n),

where vertex π
(k)
i,j precedes the vertex j on a shortest path from

vertex i with all intermediate vertices in V(k) = {1, 2, . . . , k}.

For case of no intermediate vertices:

π
(0)
i,j =

{
NIL if i = j or c[i, j] =∞
i if i 6= j and c[i, j] <∞

60 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Computing Actual Shortest Paths

• In addition to knowing the shortest distances, the shortest
paths are often to be reconstructed.

• The Floyd’s algorithm can be enhanced to compute also the
predecessor matrix Π = [πij ]

n,n
i,j=1,1 where vertex πi,j precedes

vertex j on a shortest path from vertex i; 1 ≤ i, j ≤ n.

Compute a sequence Π(0),Π(1), . . .Π(n),

where vertex π
(k)
i,j precedes the vertex j on a shortest path from

vertex i with all intermediate vertices in V(k) = {1, 2, . . . , k}.

For case of no intermediate vertices:

π
(0)
i,j =

{
NIL if i = j or c[i, j] =∞
i if i 6= j and c[i, j] <∞

60 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Floyd’s Algorithm with Predecessors

algorithm FloydPred( weighted digraph (G, c) )

D ← c Create initial distance matrix from weights.

Π← Π(0) Initialize predecessors from c as in Slide 60.

for k from 1 to n do
for i from 1 to n do

for j from 1 to n do
if D[i, j] > D[i, k] +D[k, j] then

D[i, j]← D[i, k] +D[k, j]; Π[i, j]← Π[k, j]
end if

end for
end for

end for

61 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm with Predecessors

5 4

1 3

2

3

8

−4

7 1
4

−5

2

6

D(0) =


0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0


1

1

2

2

3

3

4

4

5

5

Π(0) =


NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL

4 NIL 4 NIL NIL

NIL NIL NIL 5 NIL


1

1

2

2

3

3

4

4

5

5

62 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm with Predecessors: k = 1

5 4

1 3

2

1

3

8

−4

7 1
4

−5

2

6

D(1) =


0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 5 −5 0 −2
∞ ∞ ∞ 6 0


1

1

2

2

3

3

4

4

5

5

Π(1) =


NIL 1 1 NIL 1
NIL NIL NIL 2 2
NIL 3 NIL NIL NIL

4 1 4 NIL 1
NIL NIL NIL 5 NIL


1

1

2

2

3

3

4

4

5

5

63 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm with Predecessors: k = 2

5 4

1 3

22

3

8

−4

7 1
4

−5

2

6

D(2) =


0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 −5 0 −2
∞ ∞ ∞ 6 0


1

1

2

2

3

3

4

4

5

5

Π(2) =


NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 1 4 NIL 1

NIL NIL NIL 5 NIL


1

1

2

2

3

3

4

4

5

5

64 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm with Predecessors: k = 3

5 4

1 3

2

3

3

8

−4

7 1
4

−5

2

6

D(3) =


0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
∞ ∞ ∞ 6 0


1

1

2

2

3

3

4

4

5

5

Π(3) =


NIL 1 1 2 1
NIL NIL NIL 2 2
NIL 3 NIL 2 2
4 3 4 NIL 1

NIL NIL NIL 5 NIL


1

1

2

2

3

3

4

4

5

5

65 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm with Predecessors: k = 4

5 4

1 3

2

4

3

8

−4

7 1
4

−5

2

6

D(4) =


0 3 −1 4 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0


1

1

2

2

3

3

4

4

5

5

Π(4) =


NIL 1 4 2 1
4 NIL 4 2 1
4 3 NIL 2 1
4 3 4 NIL 1
4 3 4 5 NIL


1

1

2

2

3

3

4

4

5

5

66 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating Floyd’s Algorithm with Predecessors: k = 5

5 4

1 3

2

5

3

8

−4

7 1
4

−5

2

6

D(5) =


0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0


1

1

2

2

3

3

4

4

5

5

Π(5) =


NIL 3 4 5 1
4 NIL 4 2 1
4 3 NIL 2 1
4 3 4 NIL 1
4 3 4 5 NIL


1

1

2

2

3

3

4

4

5

5

67 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Getting Shortest Paths from Π Matrix

The recursive algorithm using the predecessor matrix Π = Π(n) to
print the shortest path between vertices i and j:

algorithm PrintPath( Π, i, j )

if i = j then print i
else

if πi,j = NIL then print “no path from i to j”
else

PrintPath( Π, i, πi,j )
print j

end if
end if

68 / 69



Outline Shortest path Dijkstra Bellman-Ford All-pairs Floyd

Illustrating PrintPath Algorithm

Π(5) =


NIL 3 4 5 1
4 NIL 4 2 1
4 3 NIL 2 1
4 3 4 NIL 1
4 3 4 5 NIL


1

1

2

2

3

3

4

4

5

5

PrintPath( Π(5), 5, 3 )

→ PrintPath( Π(5), 5, π5,3 = 4)

→ PrintPath( Π(5), 5, π5,4 = 5)
print 5

print 4
print 3

PrintPath( Π(5), 1, 2 )

→ PrintPath( Π(5), 1, π1,2 = 3)

→ PrintPath( Π(5), 1, π1,3 = 4)

→ PrintPath( Π(5), 1, π1,4 = 5)

→ PrintPath( Π(5), 1, π1,5 = 1)
print 1

print 5
print 4

print 3
print 2

69 / 69



Single source shortest paths algorithms

Single source shortest paths algorithms



Shortest paths

Let G = (V ,E ) be a directed graph, w : E → R be a weight
function.
The weight of a path P = (v1, v2, . . . , vk) is the sum of the
weights of its edges: w(P) =

∑k
i=2 w(vi−1, vi ).

A shortest path from u to v is a path from u to v with
minimum weight. The shortest path is not necessarily unique.
δ(u, v) is the weight of a shortest path from u to v . If v is
not reachable from u then δ(u, v) =∞.

s

a b

c d

10

5

2 3 4

9

6

2

7

1

δ(s, b) = 9

δ(b, s) = 11

Single source shortest paths algorithms



Single-source shortest paths

Given a weighted graph G and a vertex s, the goal is to compute
δ(s, v) for every vertex v .

s

a b

c d

10

5

2 3 4

9

6

2

7

1

δ(s, s) = 0, δ(s, a) = 8, δ(s, b) = 9, δ(s, c) = 5, δ(s, d) = 7

Single source shortest paths algorithms



General structure for shortest paths algorithms

δ(s, v) = minu:(u,v)∈E δ(s, u) + w(u, v).

Store values v .d and v .π in each vertex.

v .d is the length of the shortest path discovered so far from s
to v (v .d ≥ δ(s, v)).

v .π is the vertex preceeding v on the shortest path discovered
so far from s to v .

When processing an edge (u, v), we update v .d due to the
newly discovered path s  u → v .

Relax(u, v ,w)

(1) if u.d + w(u, v) < v .d
(2) v .d ← u.d + w(u, v)
(3) v .π ← u

6
s u v2 3
0 2 6

Single source shortest paths algorithms



General structure for shortest paths algorithms

δ(s, v) = minu:(u,v)∈E δ(s, u) + w(u, v).

Store values v .d and v .π in each vertex.

v .d is the length of the shortest path discovered so far from s
to v (v .d ≥ δ(s, v)).

v .π is the vertex preceeding v on the shortest path discovered
so far from s to v .

When processing an edge (u, v), we update v .d due to the
newly discovered path s  u → v .

Relax(u, v ,w)

(1) if u.d + w(u, v) < v .d
(2) v .d ← u.d + w(u, v)
(3) v .π ← u

6
s u v2 3
0 2 5

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 ∞ ∞ ∞ ∞

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 ∞ ∞ ∞ ∞

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 ∞ ∞ ∞ ∞

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 ∞ ∞ ∞2

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 ∞ ∞2 6

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 ∞ ∞2 6

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 ∞2 6 6

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 2 6 6 4

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 2 6 6 4

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 2 6 5 4

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 2 6 5 4

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 2 6 5 3

Claim: When a vertex u is processed in line 3, u.d = δ(s, u).
Proof: Due to the topological order, we already called
Relax(x , u,w) for every edge (x , u) entering u.
By induction, when Relax(x , u,w) is called, x .d = δ(s, x).
Thus, u.d = minx :(x ,u)∈E δ(s, x) + w(x , u) = δ(s, u).

Single source shortest paths algorithms



Directed acyclic graphs

DAG-Shortest-Paths(G ,w , s) // weights can be negative

(1) Initialize(G , s)
(2) Topologically sort the vertices of G
(3) foreach u ∈ G .V in topologically sorted order
(4) foreach v ∈ G .Adj[u]
(5) Relax(u, v ,w)

Initialize(G , s)

(1) foreach v ∈ G .v
(2) v .d ←∞
(3) v .π ← NULL
(4) s.d ← 0

6 1
t s a b c d5 2 7 -1 -2

3 4 2
∞ 0 2 6 5 3

Line 1: Θ(V )
Line 2: Θ(V + E )
Lines 3–5: Θ(V + E )
Total time: Θ(V + E )

Single source shortest paths algorithms



Backward dynamic programming

DAG-Shortest-Paths(G ,w , s)

(1) Initialize(G , s)
(2) Initialize array AdjR

(3) foreach u ∈ G .V
(4) foreach v ∈ G .Adj[u]
(5) Add u to AdjR [v ]
(6) Topologically sort the vertices of G
(7) foreach v ∈ G .V in topologically sorted order
(8) foreach u ∈ AdjR [v ]
(9) Relax(u, v ,w)

6 1
t s a b c d5 2 7 -1 -2

3 4 2

Single source shortest paths algorithms



Problem variants

Variant 1: Given G , s compute the maximum weight of a path
from s to every vertex v .
Variant 2: Given a directed graph G with weights on the vertices
and a vertex s, compute the maximum weight of a path from s to
every vertex v .

Variant 1 can be solved by changing Relax(u, v ,w) to

(1) if v .d < u.d + w(u, v)
(2) v .d ← u.d + w(u, v)
(3) v .π ← u

Variant 2 can be solved by changing Relax(u, v ,w) to

(1) if v .d < u.d + w(v)
(2) v .d ← u.d + w(v)
(3) v .π ← u

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

0

Q : s a b c d

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

0

Q : a b c d

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

0

10

Q : a b c d

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

0

10

5

Q : a b c d

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

00

10

5

Q : a b d

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

00

8

5

Q : a b d

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

00

8 14

5

Q : a b d

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

00

8 14

5 7

Q : a b d

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

00

8 14

5 7

Q : a b

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

00

8 13

5 7

Q : a b

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

00

8 13

5 7

Q : b

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

00

8 9

5 7

Q : b

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

00

8 9

5 7

Q : ∅

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

s

a b

c d

10

5

2 3 4

9

6

2

7

1

00

8 9

5 7

Single source shortest paths algorithms



General graphs

Dijsktra(G ,w , s) // weights are non-negative

(1) Initialize(G , s)
(2) Build a priority queue Q on the vertices (keys are d values)
(3) while Q is not empty
(4) u ← ExtractMin(Q)
(5) foreach v ∈ G .Adj[u]
(6) Relax(u, v ,w)

Relax(u, v ,w)

(1) if u.d + w(u, v) < v .d
(2) DecreaseKey(Q, v , u.d + w(u, v))
(3) v .π ← u

Line 1: Θ(V )
Line 2: Θ(V )
Line 4: O(V logV )
Line 6: O(E logV )
Total: O((V + E ) logV )

Single source shortest paths algorithms



Correctness

Claim: During the algorithm, u.d = δ(s, u) for every u /∈ Q.

The claim is proved using induction on time.

Consider the time t just before a vertex u is removed from Q.

Let

P = a shortest path from s to u.

y = 1st vertex on P which is in Q.

x = the vertex preceding vertex on P (x /∈ Q).

P1 = prefix of P until y .

P2 = suffix of P from y .

s x y u

P1 P2
Single source shortest paths algorithms



Correctness

1. P1 is a shortest path from s to y .

2. By induction, x .d = δ(s, x) at the time x was removed from
Q.

3. After x was removed from Q, Relax(x , y ,w) is called.
From 1,2, y .d ≤ x .d + w(x , y) = δ(s, x) + w(x , y) = δ(s, y).

4. From 1, δ(s, y) = w(P1) ≤ w(P1) + w(P2) = w(P) = δ(s, u).

5. From 3,4, y .d ≤ δ(s, y) ≤ δ(s, u) ≤ u.d .

6. If y = u then y .d = u.d . Otherwise, since u is removed from
Q at time t, y .d ≥ u.d .

7. From 5,6, y .d = δ(s, y) = δ(s, u) = u.d .

s x y u

P1 P2
Single source shortest paths algorithms



ALGORITHM DESIGN TECHNIQUES   

Dynamic Programming: Matrix-Chain Multiplication – Elements of Dynamic 

Programming – Longest Common Subsequence- Greedy Algorithms: – Elements 

of the Greedy Strategy- An Activity-Selection Problem - Huffman Coding.  
 

Next →← Prev 

Dynamic Programming 

Dynamic programming is a technique that breaks the problems into sub-problems, and 

saves the result for future purposes so that we do not need to compute the result again. The 

subproblems are optimized to optimize the overall solution is known as optimal substructure 

property.  

The main use of dynamic programming is to solve optimization problems. Here, 

optimization problems mean that when we are trying to find out the minimum or the maximum 

solution of a problem. The dynamic programming guarantees to find the optimal solution of a 

problem if the solution exists. 

The definition of dynamic programming says that it is a technique for solving a complex 

problem by first breaking into a collection of simpler subproblems, solving each subproblem just 

once, and then storing their solutions to avoid repetitive computations. 

How does the dynamic programming approach work? 

The following are the steps that the dynamic programming follows: 

o It breaks down the complex problem into simpler subproblems. 

o It finds the optimal solution to these sub-problems. 

o It stores the results of subproblems (memoization). The process of storing the results of 

subproblems is known as memorization. 

o It reuses them so that same sub-problem is calculated more than once. 

o Finally, calculate the result of the complex problem. 

The above five steps are the basic steps for dynamic programming. The dynamic programming is 

applicable that are having properties such as: 

Those problems that are having overlapping subproblems and optimal substructures. Here, 

optimal substructure means that the solution of optimization problems can be obtained by simply 

combining the optimal solution of all the subproblems. 



In the case of dynamic programming, the space complexity would be increased as we are storing 

the intermediate results, but the time complexity would be decreased. 

 

 

Approaches of dynamic programming 

There are two approaches to dynamic programming: 

o Top-down approach 

o Bottom-up approach 

Top-down approach 

The top-down approach follows the memorization technique, while bottom-up approach follows 

the tabulation method. Here memorization is equal to the sum of recursion and caching. 

Recursion means calling the function itself, while caching means storing the intermediate results. 

Advantages 

o It is very easy to understand and implement. 

o It solves the subproblems only when it is required. 

o It is easy to debug. 

Disadvantages 

It uses the recursion technique that occupies more memory in the call stack. Sometimes when the 

recursion is too deep, the stack overflow condition will occur. 

It occupies more memory that degrades the overall performance. 

Let's understand dynamic programming through an example. 

1. int fib(int n)   

2. {   

3.    if(n<0)   

4.    error;   

5.  if(n==0)   



6.  return 0;   

7.  if(n==1)   

8. return 1;   

9. sum = fib(n-1) + fib(n-2);   

10. }   

In the above code, we have used the recursive approach to find out the Fibonacci series. 

When the value of 'n' increases, the function calls will also increase, and computations will also 

increase. In this case, the time complexity increases exponentially, and it becomes 2n. 

One solution to this problem is to use the dynamic programming approach. Rather than 

generating the recursive tree again and again, we can reuse the previously calculated value. If we 

use the dynamic programming approach, then the time complexity would be O(n). 

When we apply the dynamic programming approach in the implementation of the Fibonacci 

series, then the code would look like: 

1. static int count = 0;    

2. int fib(int n)   

3. {   

4. if(memo[n]!= NULL)   

5. return memo[n];   

6. count++;   

7.    if(n<0)   

8.    error;   

9.  if(n==0)   

10.  return 0;   

11.  if(n==1)   

12. return 1;   

13. sum = fib(n-1) + fib(n-2);   

14. memo[n] = sum;   

15. }   

In the above code, we have used the memorization technique in which we store the 

results in an array to reuse the values. This is also known as a top-down approach in which we 

move from the top and break the problem into sub-problems. 



Bottom-Up approach 

The bottom-up approach is also one of the techniques which can be used to implement 

the dynamic programming. It uses the tabulation technique to implement the dynamic 

programming approach. It solves the same kind of problems but it removes the recursion. If we 

remove the recursion, there is no stack overflow issue and no overhead of the recursive 

functions. In this tabulation technique, we solve the problems and store the results in a matrix. 

There are two ways of applying dynamic programming: 

o Top-Down 

o Bottom-Up 

The bottom-up is the approach used to avoid the recursion, thus saving the memory space. The 

bottom-up is an algorithm that starts from the beginning, whereas the recursive algorithm starts 

from the end and works backward. In the bottom-up approach, we start from the base case to find 

the answer for the end. As we know, the base cases in the Fibonacci series are 0 and 1. Since the 

bottom approach starts from the base cases, so we will start from 0 and 1. 

Key points 

o We solve all the smaller sub-problems that will be needed to solve the larger sub-problems then 

move to the larger problems using smaller sub-problems. 

o We use for loop to iterate over the sub-problems. 

o The bottom-up approach is also known as the tabulation or table filling method. 

Let's understand through an example. 

Suppose we have an array that has 0 and 1 values at a[0] and a[1] positions, respectively shown 

as below: 

 

Since the bottom-up approach starts from the lower values, so the values at a[0] and a[1] are 

added to find the value of a[2] shown as below: 



 

The value of a[3] will be calculated by adding a[1] and a[2], and it becomes 2 shown as below: 

 

The value of a[4] will be calculated by adding a[2] and a[3], and it becomes 3 shown as below: 

 

The value of a[5] will be calculated by adding the values of a[4] and a[3], and it becomes 5 

shown as below: 

 

The code for implementing the Fibonacci series using the bottom-up approach is given below: 

1. int fib(int n)   

2. {   

3.     int A[];   

4.     A[0] = 0, A[1] = 1;   

5.     for( i=2; i<=n; i++)   

6.     {   

7.          A[i] = A[i-1] + A[i-2]   

8.     }   



9.     return A[n];   

10. }   
 

In the above code, base cases are 0 and 1 and then we have used for loop to find other values of 

Fibonacci series. 

Let's understand through the diagrammatic representation. 

Initially, the first two values, i.e., 0 and 1 can be represented as: 

 

When i=2 then the values 0 and 1 are added shown as below: 

 

When i=3 then the values 1and 1 are added shown as below: 



 

When i=4 then the values 2 and 1 are added shown as below: 

 

When i=5, then the values 3 and 2 are added shown as below: 



 

In the above case, we are starting from the bottom and reaching to the top. 

 

 

Components of Dynamic Programming 

The major components in any Dynamic Programming solution are: 

1. Stages 

2. States and state variables 
3. State Transition 

4. Optimal Choice 

We now know how Dynamic Programming works, but how do we start building a Dynamic 

Programming solution? The major components needed to construct a Dynamic Programming 

solution are discussed below. 

Stages 

When a complex problem is divided into several subproblems, each subproblem forms a stage of 

the solution. After calculating the solution for each stage and choosing the best ones we get to 

the final optimized solution. 

For example, in the previous instance of the climbing stairs problem, we needed the minimum 

cost to reach the (i-1) th and the (i-2) th stair first. That means to find ans[n], we had to calculate 



the values of ans[n-1] and ans[n-2] first. Hence, here ans[n-1] and ans[n-2] are different stages 

whose solution we need to find to get to the value of ans[n] finally. 

States and State Variables 

Each subproblem can be associated with several states. States differ in their solutions because of 

different choices. A state for a subproblem is therefore defined more clearly based on a 

parameter, which is called the state variable. It is possible in some problems, that one than one 

variable is needed to define a state distinctly. In these cases, there are more than one state 

variables. 

For example, we could reach the nth stair by either jumping up from the (n-2)th stair or by 

climbing one step from the (n-1)th stair. Hence, these are the two states related to reaching 

the nth stair in minimum cost and the variable which is the stair number from which we are 

climbing up to the current stair, is the state variable that defines a state uniquely. 

State Transition 

State Transition simply refers to how one subproblem relates to other subproblems. By using 

this state transition, we calculate our end solution. 

For example, in the climbing stairs problem, the state transition was: 

ans[n] = cost[n] + min(ans[n-1],ans[n-2]) 

Here ans[n] represents the minimum cost to reach the nth stair. 

Using this state transition, we can know how different subproblems relate to each other, which 

can be used to compute the final optimal solution. 

Optimal Choice 

At each stage, we need to choose the option which leads to the most desirable solution. Choosing 

the most desirable option at every stage will eventually lead to an optimal solution in the end. 

For example, in the climbing stairs problem, we need to make an optimal choice based on 

whether we get a minimum cost by clmbing from the stair directly beneath the current one, or by 

jumping from two stairs below. We need to make this optimal choice at each stair, to reach to the 

final solution at the end. 

Elements Of Dynamic Programming 

Three elements of the Dynamic Programming algorithm are : 

1. Substructure 
2. Table Structure 



3. Bottom-Up Computation 

The elements in a Dynamic Programming Solution are discussed below: 

 To solve a given complex problem and to find its optimal solution, it is broken down into similar 

but smaller and easily computable problems called subproblems. Hence, the complete solution 

depends on many smaller problems and their solutions. We get to the final optimal solution after 

going through all subproblems and selecting the most optimal ones. This is the substructure 

element of any Dynamic Programming solution. 

 Any Dynamic Programming solution involves storing the optimal solutions of the subproblems so 

that they don't have to be computed again and again. To store these solutions a table structure is 

needed. So, for example arrays in C++ or ArrayList in Java can be used. By using this structured 

table, the solutions of previous subproblems are reused. 

 The solutions to subproblems need to be computed first to be reused again. This is called Bottom-

Up Computation because we start storing values from the bottom and then consequently upwards. 

The solutions to the smaller subproblems are combined to get the final solution to the original 

problem. 

 

Matrix Chain Multiplication 

It is a Method under Dynamic Programming in which previous output is taken as input for next. 

Here, Chain means one matrix's column is equal to the second matrix's row [always]. 

In general: 

If A = ⌊aij⌋ is a p x q matrix  

   B = ⌊bij⌋ is a q x r matrix 

   C = ⌊cij⌋ is a p x r matrix 

Then9M 

573 

Prime Ministers of India | List of Prime Minister of India (1947-2020) 

Given following matrices {A1,A2,A3,...An} and we have to perform the matrix multiplication, 

which can be accomplished by a series of matrix multiplications 



   A1 xA2 x,A3 x.....x An 

Matrix Multiplication operation is associative in nature rather commutative. By this, we 

mean that we have to follow the above matrix order for multiplication but we are free 

to parenthesize the above multiplication depending upon our need. 

In general, for 1≤ i≤ p and 1≤ j ≤ r 

 

It can be observed that the total entries in matrix 'C' is 'pr' as the matrix is of dimension p 

x r Also each entry takes O (q) times to compute, thus the total time to compute all possible 

entries for the matrix 'C' which is a multiplication of 'A' and 'B' is proportional to the product of 

the dimension p q r. 

It is also noticed that we can save the number of operations by reordering the parenthesis. 

Example1: Let us have 3 matrices, A1,A2,A3 of order (10 x 100), (100 x 5) and (5 x 50) 

respectively. 

Three Matrices can be multiplied in two ways: 

1. A1,(A2,A3): First multiplying(A2 and A3) then multiplying and resultant withA1. 

2. (A1,A2),A3: First multiplying(A1 and A2) then multiplying and resultant withA3. 

No of Scalar multiplication in Case 1 will be: 

 

 

1. (100 x 5 x 50) + (10 x 100 x 50) = 25000 + 50000 = 75000   

No of Scalar multiplication in Case 2 will be: 

 

 

 

1. (100 x 10 x 5) + (10 x 5 x 50) = 5000 + 2500 = 7500   

https://www.javatpoint.com/matrix-chain-multiplication
https://www.javatpoint.com/matrix-chain-multiplication
https://www.javatpoint.com/matrix-chain-multiplication
https://www.javatpoint.com/matrix-chain-multiplication


To find the best possible way to calculate the product, we could simply parenthesis the 

expression in every possible fashion and count each time how many scalar multiplication are 

required. 

Matrix Chain Multiplication Problem can be stated as "find the optimal parenthesization of a 

chain of matrices to be multiplied such that the number of scalar multiplication is minimized". 

Number of ways for parenthesizing the matrices: 

There are very large numbers of ways of parenthesizing these matrices. If there are n items, there 

are (n-1) ways in which the outer most pair of parenthesis can place. 

(A1) (A2,A3,A4,................An) 

Or (A1,A2)  (A3,A4 .................An) 

Or (A1,A2,A3)  (A4 ...............An) 

........................ 

 

Or(A1,A2,A3.............An-1) (An) 

It can be observed that after splitting the kth matrices, we are left with two parenthesized 

sequence of matrices: one consist 'k' matrices and another consist 'n-k' matrices. 

Now there are 'L' ways of parenthesizing the left sublist and 'R' ways of parenthesizing the right 

sublist then the Total will be L.R: 

 

Also p (n) = c (n-1) where c (n) is the nth Catalon number 

c (n) =  

On applying Stirling's formula we have 

c (n) = Ω  

Which shows that 4n grows faster, as it is an exponential function, then n1.5. 

 



Development of Dynamic Programming Algorithm 

1. Characterize the structure of an optimal solution. 

2. Define the value of an optimal solution recursively. 

3. Compute the value of an optimal solution in a bottom-up fashion. 

4. Construct the optimal solution from the computed information. 

Dynamic Programming Approach 

Let Ai,j be the result of multiplying matrices i through j. It can be seen that the dimension of 

Ai,j is pi-1 x pj matrix. 

Dynamic Programming solution involves breaking up the problems into subproblems whose 

solution can be combined to solve the global problem. 

At the greatest level of parenthesization, we multiply two matrices 

A1.....n=A1....k x Ak+1....n) 

Thus we are left with two questions: 

o How to split the sequence of matrices? 

o How to parenthesize the subsequence A1.....k andAk+1......n? 

One possible answer to the first question for finding the best value of 'k' is to check all possible 

choices of 'k' and consider the best among them. But that it can be observed that checking all 

possibilities will lead to an exponential number of total possibilities. It can also be noticed that 

there exists only O (n2 ) different sequence of matrices, in this way do not reach the exponential 

growth. 

Step1: Structure of an optimal parenthesization: Our first step in the dynamic paradigm is to 

find the optimal substructure and then use it to construct an optimal solution to the problem from 

an optimal solution to subproblems. 

Let Ai....j where i≤ j denotes the matrix that results from evaluating the product 

Ai Ai+1....Aj. 

If i < j then any parenthesization of the product Ai Ai+1 ......Aj must split that the product between 

Ak and Ak+1 for some integer k in the range i ≤ k ≤ j. That is for some value of k, we first 

compute the matrices Ai.....k & Ak+1....j and then multiply them together to produce the final 

product Ai....j. The cost of computing Ai....k plus the cost of computing Ak+1....j plus the cost of 

multiplying them together is the cost of parenthesization. 



Step 2: A Recursive Solution: Let m [i, j] be the minimum number of scalar multiplication 

needed to compute the matrixAi....j. 

If i=j the chain consist of just one matrix Ai....i=Ai so no scalar multiplication are necessary to 

compute the product. Thus m [i, j] = 0 for i= 1, 2, 3....n. 

If i<j we assume that to optimally parenthesize the product we split it between Ak and 

Ak+1 where i≤ k ≤j. Then m [i,j] equals the minimum cost for computing the subproducts 

Ai....k and Ak+1....j+ cost of multiplying them together. We know Ai has dimension pi-1 x pi, so 

computing the product Ai....k and Ak+1....jtakes pi-1 pk pj scalar multiplication, we obtain 

m [i,j] = m [i, k] + m [k + 1, j] + pi-1  pk pj 

There are only (j-1) possible values for 'k' namely k = i, i+1.....j-1. Since the optimal 

parenthesization must use one of these values for 'k' we need only check them all to find the best. 

So the minimum cost of parenthesizing the product Ai Ai+1......Aj becomes 

 

To construct an optimal solution, let us define s [i,j] to be the value of 'k' at which we can split 

the product Ai Ai+1 .....Aj To obtain an optimal parenthesization i.e. s [i, j] = k such that 

m [i,j] = m [i, k] + m [k + 1, j] + pi-1  pk pj 

Example of Matrix Chain Multiplication 

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 

x 3, 3 x 12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all 

i. 

 



Let us proceed with working away from the diagonal. We compute the optimal solution for the 

product of 2 matrices. 

 

Here P0 to P5 are Position and M1 to M5 are matrix of size (pi to pi-1) 

On the basis of sequence, we make a formula 

42.7M 
939 

Features of Java - Javatpoint 

 

In Dynamic Programming, initialization of every method done by '0'.So we initialize it by '0'.It 

will sort out diagonally. 

We have to sort out all the combination but the minimum output combination is taken into 

consideration. 

Calculation of Product of 2 matrices: 

1. m (1,2) = m1  x m2 

           = 4 x 10 x  10 x 3 

           = 4 x 10 x 3 = 120 

      

2. m (2, 3) = m2 x m3 

            = 10 x 3  x  3 x 12 

            = 10 x 3 x 12 = 360 

    

3. m (3, 4) = m3 x m4  

            = 3 x 12  x  12 x 20 

            = 3 x 12 x 20 = 720 

    

4. m (4,5) = m4 x m5 

           = 12 x 20  x  20 x 7 



           = 12 x 20 x 7 = 1680 

 

o We initialize the diagonal element with equal i,j value with '0'. 

o After that second diagonal is sorted out and we get all the values corresponded to it 

Now the third diagonal will be solved out in the same way. 

Now product of 3 matrices: 

M [1, 3] = M1 M2 M3 

1. There are two cases by which we can solve this multiplication: ( M1 x M2) + M3, M1+ 

(M2x M3) 

2. After solving both cases we choose the case in which minimum output is there. 

 

M [1, 3] =264 

As Comparing both output 264 is minimum in both cases so we insert 264 in table and ( M1 x 

M2) + M3 this combination is chosen for the output making. 

M [2, 4] = M2 M3 M4 

1. There are two cases by which we can solve this multiplication: (M2x M3)+M4, M2+(M3 x 

M4) 

2. After solving both cases we choose the case in which minimum output is there. 

 



M [2, 4] = 1320 

As Comparing both output 1320 is minimum in both cases so we insert 1320 in table and 

M2+(M3 x M4) this combination is chosen for the output making. 

M [3, 5] = M3  M4  M5 

1. There are two cases by which we can solve this multiplication: ( M3 x M4) + M5, M3+ ( 

M4xM5) 

2. After solving both cases we choose the case in which minimum output is there. 

 
M [3, 5] = 1140 

As Comparing both output 1140 is minimum in both cases so we insert 1140 in table and ( M3 x 

M4) + M5this combination is chosen for the output making. 

 

Now Product of 4 matrices: 

M [1, 4] = M1  M2 M3 M4 

There are three cases by which we can solve this multiplication: 

1. ( M1 x M2 x M3) M4 

2. M1 x(M2 x M3 x M4) 

3. (M1 xM2) x ( M3 x M4) 

After solving these cases we choose the case in which minimum output is there 

 



M [1, 4] =1080 

As comparing the output of different cases then '1080' is minimum output, so we insert 1080 in 

the table and (M1 xM2) x (M3 x M4) combination is taken out in output making, 

M [2, 5] = M2 M3 M4 M5 

There are three cases by which we can solve this multiplication: 

1. (M2 x M3 x M4)x M5 

2. M2 x( M3 x M4 x M5) 

3. (M2 x M3)x ( M4 x M5) 

After solving these cases we choose the case in which minimum output is there 

 
M [2, 5] = 1350 

As comparing the output of different cases then '1350' is minimum output, so we insert 1350 in 

the table and M2 x( M3 x M4 xM5)combination is taken out in output making. 

 

Now Product of 5 matrices: 

M [1, 5] = M1  M2 M3 M4 M5 

There are five cases by which we can solve this multiplication: 

1. (M1 x M2 xM3 x M4 )x M5 

2. M1 x( M2 xM3 x M4 xM5) 

3. (M1 x M2 xM3)x M4 xM5 



4. M1 x M2x(M3 x M4 xM5) 

After solving these cases we choose the case in which minimum output is there 

 
M [1, 5] = 1344 

As comparing the output of different cases then '1344' is minimum output, so we insert 1344 in 

the table and M1 x M2 x(M3 x M4 x M5)combination is taken out in output making. 

Final Output is: 

 

Step 3: Computing Optimal Costs: let us assume that matrix Ai has dimension pi-1x pi for i=1, 

2, 3....n. The input is a sequence (p0,p1,......pn) where length [p] = n+1. The procedure uses an 

auxiliary table m [1....n, 1.....n] for storing m [i, j] costs an auxiliary table s [1.....n, 1.....n] that 

record which index of k achieved the optimal costs in computing m [i, j]. 

The algorithm first computes m [i, j] ← 0 for i=1, 2, 3.....n, the minimum costs for the chain of 

length 1. 

MATRIX-CHAIN-ORDER (p) 

 

 1. n   length[p]-1 

 2. for i ← 1 to n 

 3. do m [i, i] ← 0 

 4. for l ← 2 to n    // l is the chain length 

 5. do for i ← 1 to n-l + 1 

 6. do j ← i+ l -1 

 7. m[i,j] ←  ∞ 

 8. for k  ← i to j-1 

 9. do q  ← m [i, k] + m [k + 1, j] + pi-1 pk pj  

 10. If q < m [i,j] 
 11. then m [i,j] ← q 

 12. s [i,j] ← k 



 13. return m and s.       

We will use table s to construct an optimal solution. 

Step 1: Constructing an Optimal Solution: 

PRINT-OPTIMAL-PARENS (s, i, j) 

 1. if i=j 

 2. then print "A" 

 3. else print "(" 

 4. PRINT-OPTIMAL-PARENS (s, i, s [i, j]) 

 5. PRINT-OPTIMAL-PARENS (s, s [i, j] + 1, j) 

 6. print ")" 

Analysis: There are three nested loops. Each loop executes a maximum n times. 

1. l, length, O (n) iterations. 

2. i, start, O (n) iterations. 

3. k, split point, O (n) iterations 

Total Complexity is: O (n3) 

Algorithm with Explained Example 

Question: P [7, 1, 5, 4, 2} 

Solution: Here, P is the array of a dimension of matrices. 

So here we will have 4 matrices: 

A17x1  A21x5  A35x4  A44x2 

i.e. 

First Matrix A1 have dimension 7 x 1 

Second Matrix A2 have dimension 1 x 5 

Third Matrix A3 have dimension 5 x 4 

Fourth Matrix A4 have dimension 4 x 2 

 

Let say, 

From P = {7, 1, 5, 4, 2} - (Given) 

And P is the Position 

p0 = 7, p1 =1, p2 = 5, p3 = 4, p4=2. 

Length of array P = number of elements in P 

∴length (p)= 5 



From step 3 

Follow the steps in Algorithm in Sequence 

According to Step 1 of Algorithm Matrix-Chain-Order 

Step 1: 

 n ← length [p]-1 

    Where n is the total number of elements 

     And length [p] = 5 

∴ n = 5 - 1 = 4 

n = 4  

Now we construct two tables m and s. 

Table m has dimension [1.....n, 1.......n] 

Table s has dimension [1.....n-1, 2.......n]  

 

 

Now, according to step 2 of Algorithm 



1. for i ← 1 to n   

2. this means: for i ← 1 to 4 (because n =4)   

3. for  i=1   

4. m [i, i]=0   

5. m [1, 1]=0   

6. Similarly for i = 2, 3, 4   

7. m [2, 2] = m [3,3] = m [4,4] = 0   

8. i.e. fill all the diagonal entries "0" in the table m   

9. Now,   

10. l ← 2 to n   

11. l ← 2 to 4    (because n =4 )   

Case 1: 

1. When l - 2 

    for (i ← 1 to n - l + 1) 

     i ← 1 to 4 - 2 + 1 

     i ← 1 to 3 

 

When i = 1 

  do   j ← i + l - 1 

          j ← 1 + 2 - 1 

          j ← 2 

     i.e. j = 2 

Now, m [i, j] ← ∞   

 i.e. m [1,2] ← ∞  

Put ∞ in m [1, 2] table 

   for k ← i to j-1 

        k ← 1 to 2 - 1 

        k ← 1 to 1 

            k = 1 

Now q ← m [i, k] + m [k + 1, j] + pi-1 pk pj 

   for l = 2 

        i = 1 

        j =2 

       k = 1 

     q ← m [1,1] + m [2,2] + p0x p1x p2 

             and m [1,1] = 0 

    for i ← 1 to 4 



     ∴ q ← 0 + 0 + 7 x 1 x 5 

     q ← 35 

We have m [i, j] = m [1, 2] = ∞  

Comparing q with m [1, 2] 

  q < m [i, j] 

  i.e. 35 < m [1, 2] 

  35 < ∞ 

  True 

 then, m [1, 2 ] ← 35  (∴ m [i,j] ← q) 

  s [1, 2] ← k 

 and the value of k = 1 

  s [1,2 ] ← 1 

Insert "1" at dimension s [1, 2] in table s. And 35 at m [1, 2] 

2. l remains 2 

    L = 2 

      i ← 1 to n - l + 1 

      i ← 1 to 4 - 2 + 1 

      i ← 1 to 3 

  for i = 1 done before 

  Now value of i becomes 2 

  i = 2 

j ←  i + l - 1 

   j ←  2 + 2 - 1 

   j ←  3 

  j = 3 

m [i , j]  ← ∞ 

i.e. m [2,3] ← ∞ 

 Initially insert ∞ at m [2, 3] 

Now, for k ← i to j - 1 

  k ← 2 to 3 - 1 

  k ← 2 to 2 

  i.e. k =2 

  Now, q ← m [i, k] + m [k + 1, j] + pi-1 pk pj 

  For l =2 

        i = 2 

        j = 3 

        k = 2 

  q ← m [2, 2] + m [3, 3] + p1x p2 x p3 

   q ← 0 + 0 + 1 x 5 x 4 

    q ← 20 

       Compare q with m [i ,j ] 



  If q < m [i,j] 

 i.e. 20 < m [2, 3] 

20 < ∞         

True 

Then m [i,j ] ← q 

      m [2, 3 ] ← 20 

and s [2, 3] ← k 

 and k = 2 

s [2,3] ← 2 

3. Now i become 3 

  i = 3 

  l = 2 

j ← i + l - 1 

j ← 3 + 2 - 1 

j ← 4 

j = 4 

Now, m [i, j ] ← ∞ 

          m [3,4 ] ← ∞ 

Insert ∞ at m [3, 4]  

  for k ← i to j - 1 

        k ← 3 to 4 - 1 

        k ← 3 to 3 

 i.e. k = 3 

Now, q ← m [i, k] + m [k + 1, j] + pi-1 pk pj 

i = 3 

    l = 2 

    j = 4 

    k = 3 

q ← m [3, 3] + m [4,4] + p2  x p3 x p4 

q ← 0 + 0 + 5 x 2 x 4 

q   40 

Compare q with m [i, j] 

  If q < m [i, j] 

     40 < m [3, 4] 

     40 < ∞  

  True 

Then, m [i,j] ← q 

       m [3,4] ← 40 

and s [3,4] ← k 

   s [3,4] ← 3 



Case 2: l becomes 3 

      L = 3 

       for i = 1 to n - l + 1 

            i = 1 to 4 - 3 + 1 

   i = 1 to 2 

When i = 1 

 j ← i + l - 1 

 j ← 1 + 3 - 1 

         j ← 3 

 j = 3 

Now, m [i,j]   ← ∞ 

          m [1, 3]  ←  ∞ 

for k ← i to j - 1 

     k ← 1 to 3 - 1 

     k ← 1 to 2 

Now we compare the value for both k=1 and k = 2. The minimum of two will be placed in m [i,j] 

or s [i,j] respectively. 

 

Now from above 

Value of q become minimum for k=1     

  ∴ m [i,j] ← q 

      m [1,3] ← 48 

Also m [i,j] > q 

i.e. 48 < ∞ 

∴ m [i , j] ← q 

   m [i, j] ← 48 

and s [i,j] ← k 

i.e. m [1,3] ← 48 



   s [1, 3] ←  1 

Now i become 2 

 i = 2 

  l = 3 

then j ← i + l -1 

    j ←  2 + 3 - 1 

    j ← 4 

    j = 4  

    so m [i,j] ← ∞ 

m [2,4] ← ∞ 

Insert initially ∞ at m [2, 4] 

      for k   ← i to j-1 

       k  ← 2 to 4 - 1 

       k  ← 2 to 3 

Here, also find the minimum value of m [i,j] for two values of k = 2 and k =3 

 

1. But 28 <     ∞   

2.  So m [i,j] ← q   

3.     And q  ← 28   

4. m [2, 4]  ← 28   

5. and   s [2, 4]  ← 3   

6. e. It means in s table at s [2,4] insert 3 and at m [2,4] insert 28.   

Case 3: l becomes 4 

L = 4 

    For i ← 1 to n-l + 1 



  i ← 1 to 4 - 4 + 1 

  i ← 1 

  i = 1 

 do j  ← i + l - 1 

      j ← 1 + 4 - 1 

      j ← 4 

     j = 4 

Now m [i,j]  ←  ∞ 

        m [1,4] ←  ∞ 

for k  ← i to j -1 

     k ← 1 to 4 - 1 

     k  ← 1 to 3 

When k = 1 

q  ←  m [i, k] + m [k + 1, j] + pi-1 pk pj                 

q  ← m [1,1] + m [2,4] + p0xp4x p1 

q ← 0 + 28 + 7 x 2 x 1 

q  ← 42 

Compare q and m [i, j] 

m [i,j] was ∞ 

i.e. m [1,4]  

if q < m [1,4] 

   42< ∞ 

    True  

Then m [i,j] ← q 

 m [1,4] ← 42 

and s [1,4]  1 ? k =1 

When k = 2 

 L = 4, i=1, j = 4 

q ← m [i, k] + m [k + 1, j] + pi-1 pk pj                 

q ← m [1, 2] + m [3,4] + p0 xp2 xp4 

q ← 35 + 40 + 7 x 5 x 2 

q  ← 145 

Compare q and m [i,j] 

Now m [i, j] 

      i.e. m [1,4] contains 42. 

So if q < m [1, 4] 

But 145 less than or not equal to m [1, 4] 

   So 145 less than or not equal to 42. 

So no change occurs. 

When k = 3 

 l = 4 

 i = 1 



 j = 4 

q  ←  m [i, k] + m [k + 1, j] + pi-1 pk pj                 

q ← m [1, 3] + m [4,4] + p0 xp3 x p4 

q ← 48 + 0 + 7 x 4 x 2 

q  ← 114 

Again q less than or not equal to m [i, j] 

 i.e. 114 less than or not equal to m [1, 4] 

        114 less than or not equal to 42 

So no change occurs. So the value of m [1, 4] remains 42. And value of s [1, 4] = 1 

Now we will make use of only s table to get an optimal solution. 



 

Longest Common Sequence (LCS) 

A subsequence of a given sequence is just the given sequence with some elements left out. 

Given two sequences X and Y, we say that the sequence Z is a common sequence of X and Y if 

Z is a subsequence of both X and Y. 

In the longest common subsequence problem, we are given two sequences X = (x1 x2....xm) and 

Y = (y1 y2 yn) and wish to find a maximum length common subsequence of X and Y. LCS 

Problem can be solved using dynamic programming. 



 

Characteristics of Longest Common Sequence 

A brute-force approach we find all the subsequences of X and check each subsequence to see if it 

is also a subsequence of Y, this approach requires exponential time making it impractical for the 

long sequence. 

Given a sequence X = (x1 x2.....xm) we define the ith prefix of X for i=0, 1, and 2...m as Xi= 

(x1 x2.....xi). For example: if X = (A, B, C, B, C, A, B, C) then X4= (A, B, C, B) 

Optimal Substructure of an LCS: Let X = (x1 x2....xm) and Y = (y1 y2.....) yn) be the sequences 

and let Z = (z1 z2......zk) be any LCS of X and Y. 

o If xm = yn, then zk=x_m=yn and Zk-1 is an LCS of Xm-1and Yn-1 

o If xm ≠ yn, then zk≠ xm implies that Z is an LCS of Xm-1and Y. 

o If xm ≠ yn, then zk≠yn implies that Z is an LCS of X and Yn-1 

Step 2: Recursive Solution: LCS has overlapping subproblems property because to find LCS of 

X and Y, we may need to find the LCS of Xm-1 and Yn-1. If xm ≠ yn, then we must solve two 

subproblems finding an LCS of X and Yn-1.Whenever of these LCS's longer is an LCS of x and 

y. But each of these subproblems has the subproblems of finding the LCS of Xm-1 and Yn-1. 

Let c [i,j] be the length of LCS of the sequence Xiand Yj.If either i=0 and j =0, one of the 

sequences has length 0, so the LCS has length 0. The optimal substructure of the LCS problem 

given the recurrence formula 

 

Step3: Computing the length of an LCS: let two sequences X = (x1 x2.....xm) and Y = (y1 y2..... 

yn) as inputs. It stores the c [i,j] values in the table c [0......m,0..........n].Table b [1..........m, 

1..........n] is maintained which help us to construct an optimal solution. c [m, n] contains the 

length of an LCS of X,Y. 

Algorithm of Longest Common Sequence 

LCS-LENGTH (X, Y) 

 1. m ← length [X]           

 2. n ← length [Y] 

 3. for i ← 1 to m 



 4. do c [i,0] ← 0 

 5. for j ← 0 to m 

 6. do c [0,j] ← 0 

 7. for i ← 1 to m 

 8. do for j ← 1 to n 

 9. do if xi= yj  

 10. then c [i,j] ← c [i-1,j-1] + 1  

 11. b [i,j] ← "↖" 

 12. else if c[i-1,j] ≥ c[i,j-1] 

 13. then c [i,j] ← c [i-1,j] 

 14. b [i,j] ← "↑" 

 15. else c [i,j] ← c [i,j-1] 

 16. b [i,j] ← "← " 

 17. return c and b. 

Example of Longest Common Sequence 

Example: Given two sequences X [1...m] and Y [1.....n]. Find the longest common subsequences 

to both. 

 

here X = (A,B,C,B,D,A,B) and Y = (B,D,C,A,B,A) 

     m = length [X] and n = length [Y] 

     m = 7 and n = 6 

Here x1= x [1] = A   y1= y [1] = B 

     x2= B  y2= D  

     x3= C  y3= C 

     x4= B  y4= A 

     x5= D  y5= B 

     x6= A  y6= A 

     x7= B 

Now fill the values of c [i, j] in m x n table 

Initially, for i=1 to 7 c [i, 0] = 0 

          For j = 0 to 6 c [0, j] = 0 

That is: 



 

Now for i=1 and j = 1 

 x1 and y1 we get x1 ≠ y1 i.e. A ≠ B 

And  c [i-1,j] = c [0, 1] = 0 

 c [i, j-1] = c [1,0 ] = 0 

That is, c [i-1,j]= c [i, j-1] so c [1, 1] = 0 and b [1, 1] = ' ↑  ' 

 

Now for i=1 and j = 2 

x1 and y2 we get x1 ≠ y2 i.e. A ≠ D 

 c [i-1,j] = c [0, 2] = 0 

 c [i, j-1] = c [1,1 ] = 0 

That is, c [i-1,j]= c [i, j-1] and c [1, 2] = 0 b [1, 2] = '  ↑  ' 

 

Now for i=1 and j = 3 

 x1 and y3 we get x1 ≠ y3 i.e. A ≠ C 

 c [i-1,j] = c [0, 3] = 0 

 c [i, j-1] = c [1,2 ] = 0 

so c [1,3] = 0     b [1,3] = ' ↑ ' 

 

Now for i=1 and j = 4 

 x1 and y4 we get. x1=y4 i.e A = A  

  c [1,4] = c [1-1,4-1] + 1 



     = c [0, 3] + 1 

      = 0 + 1 = 1 

 c [1,4] = 1 

 b [1,4] = '  ↖  ' 

 

Now for i=1 and j = 5 

           x1 and y5  we get x1 ≠ y5 

           c [i-1,j] = c [0, 5] = 0 

 c [i, j-1] = c [1,4 ] = 1 

Thus c [i, j-1] >  c [i-1,j] i.e. c [1, 5] = c [i, j-1] = 1. So b [1, 5] = '←' 

 

Now for i=1 and j = 6 

           x1 and y6   we get x1=y6 

                     c [1, 6] = c [1-1,6-1] + 1 

                              = c [0, 5] + 1 = 0 + 1 = 1 

     c [1,6] = 1 

     b [1,6] = '  ↖  ' 

 

Now for i=2 and j = 1 

 We get x2 and y1 B = B i.e.  x2= y1 

             c [2,1] = c [2-1,1-1] + 1 

                     = c [1, 0] + 1 



                     = 0 + 1 = 1    

             c [2, 1] = 1 and b [2, 1] = ' ↖ ' 

Similarly, we fill the all values of c [i, j] and we get 

 

Step 4: Constructing an LCS: The initial call is PRINT-LCS (b, X, X.length, Y.length) 

PRINT-LCS (b, x, i, j) 

 1. if i=0 or j=0 

 2. then return 

 3. if b [i,j] = ' ↖ ' 

 4. then PRINT-LCS (b,x,i-1,j-1) 

 5. print x_i 

 6. else if b [i,j] = '  ↑  ' 

 7. then PRINT-LCS (b,X,i-1,j) 

 8. else PRINT-LCS (b,X,i,j-1) 

Example: Determine the LCS of (1,0,0,1,0,1,0,1) and (0,1,0,1,1,0,1,1,0). 

Solution: let X = (1,0,0,1,0,1,0,1) and Y = (0,1,0,1,1,0,1,1,0). 



 

We are looking for c [8, 9]. The following table is built. 

 

From the table we can deduct that LCS = 6. There are several such sequences, for instance 

(1,0,0,1,1,0) (0,1,0,1,0,1) and (0,0,1,1,0,1) 

 

 

 

 

 

GREEDY ALGORITHMS 



An algorithm is designed to achieve optimum solution for a given problem. In greedy algorithm 

approach, decisions are made from the given solution domain. As being greedy, the closest 

solution that seems to provide an optimum solution is chosen. 

Greedy algorithms try to find a localized optimum solution, which may eventually lead to 

globally optimized solutions. However, generally greedy algorithms do not provide globally 

optimized solutions. 

Counting Coins 

This problem is to count to a desired value by choosing the least possible coins and the greedy 

approach forces the algorithm to pick the largest possible coin. If we are provided coins of ₹ 1, 

2, 5 and 10 and we are asked to count ₹ 18 then the greedy procedure will be − 

 1 − Select one ₹ 10 coin, the remaining count is 8 

 2 − Then select one ₹ 5 coin, the remaining count is 3 

 3 − Then select one ₹ 2 coin, the remaining count is 1 

 4 − And finally, the selection of one ₹ 1 coins solves the problem 

Though, it seems to be working fine, for this count we need to pick only 4 coins. But if we 

slightly change the problem then the same approach may not be able to produce the same 

optimum result. 

For the currency system, where we have coins of 1, 7, 10 value, counting coins for value 18 will 

be absolutely optimum but for count like 15, it may use more coins than necessary. For 

example, the greedy approach will use 10 + 1 + 1 + 1 + 1 + 1, total 6 coins. Whereas the same 

problem could be solved by using only 3 coins (7 + 7 + 1) 

Hence, we may conclude that the greedy approach picks an immediate optimized solution and 

may fail where global optimization is a major concern. 

Examples 

Most networking algorithms use the greedy approach. Here is a list of few of them − 

 Travelling Salesman Problem 

 Prim's Minimal Spanning Tree Algorithm 

 Kruskal's Minimal Spanning Tree Algorithm 

 Dijkstra's Minimal Spanning Tree Algorithm 

 Graph - Map Coloring 

 Graph - Vertex Cover 

 Knapsack Problem 

 Job Scheduling Problem 

There are lots of similar problems that uses the greedy approach to find an optimum solution. 



Components of Greedy Algorithm (Elements) 

The components that can be used in the greedy algorithm are: 

o Candidate set: A solution that is created from the set is known as a candidate set. 

o Selection function: This function is used to choose the candidate or subset which can be added in 

the solution. 

o Feasibility function: A function that is used to determine whether the candidate or subset can be 

used to contribute to the solution or not. 

o Objective function: A function is used to assign the value to the solution or the partial solution. 

o Solution function: This function is used to intimate whether the complete function has been 

reached or not. 

Pseudo code of Greedy Algorithm 

1. Algorithm Greedy (a, n)   

2. {   

3.    Solution : = 0;   

4.   for i = 0 to n do   

5.   {   

6.       x: = select(a);   

7.      if feasible(solution, x)   

8.     {   

9.         Solution: = union(solution , x)   

10.     }   

11.        return solution;   

12.   } }   

The above is the greedy algorithm. Initially, the solution is assigned with zero value. We pass the 

array and number of elements in the greedy algorithm. Inside the for loop, we select the element 

one by one and checks whether the solution is feasible or not. If the solution is feasible, then we 

perform the union. 

Let's understand through an example. 

Suppose there is a problem 'P'. I want to travel from A to B shown as below: 

P : A → B 



The problem is that we have to travel this journey from A to B. There are various solutions to go 

from A to B. We can go from A to B by walk, car, bike, train, aeroplane, etc. There is a 

constraint in the journey that we have to travel this journey within 12 hrs. If I go by train or 

aeroplane then only, I can cover this distance within 12 hrs. There are many solutions to this 

problem but there are only two solutions that satisfy the constraint. 

If we say that we have to cover the journey at the minimum cost. This means that we have to 

travel this distance as minimum as possible, so this problem is known as a minimization 

problem. Till now, we have two feasible solutions, i.e., one by train and another one by air. Since 

travelling by train will lead to the minimum cost so it is an optimal solution. An optimal solution 

is also the feasible solution, but providing the best result so that solution is the optimal solution 

with the minimum cost. There would be only one optimal solution. 

The problem that requires either minimum or maximum result then that problem is known as an 

optimization problem. Greedy method is one of the strategies used for solving the optimization 

problems. 

Disadvantages of using Greedy algorithm 

Greedy algorithm makes decisions based on the information available at each phase without 

considering the broader problem. So, there might be a possibility that the greedy solution does 

not give the best solution for every problem. 

It follows the local optimum choice at each stage with a intend of finding the global optimum. 

Let's understand through an example. 

Consider the graph which is given below: 

 

We have to travel from the source to the destination at the minimum cost. Since we have three 

feasible solutions having cost paths as 10, 20, and 5. 5 is the minimum cost path so it is the 

optimal solution. This is the local optimum, and in this way, we find the local optimum at each 

stage in order to calculate the global optimal solution. 



An Activity Selection Problem 

The activity selection problem is a mathematical optimization problem. Our first illustration is 

the problem of scheduling a resource among several challenge activities. We find a greedy 

algorithm provides a well designed and simple method for selecting a maximum- size set of 

manually compatible activities. 

Suppose S = {1, 2....n} is the set of n proposed activities. The activities share resources which 

can be used by only one activity at a time, e.g., Tennis Court, Lecture Hall, etc. Each Activity "i" 

has start time si and a finish time fi, where si ≤fi. If selected activity "i" take place meanwhile 

the half-open time interval [si,fi). Activities i and j are compatible if the intervals (si, fi) and [si, 

fi) do not overlap (i.e. i and j are compatible if si ≥fi or si ≥fi). The activity-selection problem 

chosen the maximum- size set of mutually consistent activities. 

Algorithm Of Greedy- Activity Selector: 
GREEDY- ACTIVITY SELECTOR (s, f) 

1. n ← length [s] 

2. A ← {1} 

3. j ← 1. 

4. for i ← 2 to n 

5. do if si ≥ fi 

6. then A ← A ∪ {i} 

7. j ← i 

8. return A 

Example: Given 10 activities along with their start and end time as 

S = (A1 A2 A3 A4 A5 A6 A7 A8 A9 A10) 

Si = (1,2,3,4,7,8,9,9,11,12) 

fi = (3,5,4,7,10,9,11,13,12,14) 

Compute a schedule where the greatest number of activities takes place. 

Solution: The solution to the above Activity scheduling problem using a greedy strategy is 

illustrated below: 

Arranging the activities in increasing order of end time 



 

 

Now, schedule A1 

Next schedule A3 as A1 and A3 are non-interfering. 

Next skip A2 as it is interfering. 

Next, schedule A4 as A1 A3 and A4 are non-interfering, then next, schedule A6 as A1 A3 A4 and 

A6 are non-interfering. 

Skip A5 as it is interfering. 

Next, schedule A7 as A1 A3 A4 A6 and A7 are non-interfering. 

Next, schedule A9 as A1 A3 A4 A6 A7 and A9 are non-interfering. 

Skip A8 as it is interfering. 



Next, schedule A10 as A1 A3 A4 A6 A7 A9 and A10 are non-interfering. 

Thus the final Activity schedule is: 

 

Huffman Codes 

o (i) Data can be encoded efficiently using Huffman Codes. 

o (ii) It is a widely used and beneficial technique for compressing data. 

o (iii) Huffman's greedy algorithm uses a table of the frequencies of occurrences of each 

character to build up an optimal way of representing each character as a binary string. 

Suppose we have 105 characters in a data file. Normal Storage: 8 bits per character (ASCII) - 8 x 

105 bits in a file. But we want to compress the file and save it compactly. Suppose only six 

characters appear in the file: 

 

How can we represent the data in a Compact way? 

(i) Fixed length Code: Each letter represented by an equal number of bits. With a fixed length 

code, at least 3 bits per character: 

For example: 

M 

Ps Concepts in Java 

a   000 

 

b   001 

 

c   010 

 

d   011 

 

e   100 

 

f   101 



For a file with 105 characters, we need 3 x 105 bits. 

(ii) A variable-length code: It can do considerably better than a fixed-length code, by giving 

many characters short code words and infrequent character long codewords. 

For example: 

  a       0 

 

  b      101 

 

  c      100 

 

  d      111 

 

  e      1101 

 

  f      1100 

Number of bits = (45 x 1 + 13 x 3 + 12 x 3 + 16 x 3 + 9 x 4 + 5 x 4) x 1000 

= 2.24 x 105bits 

Thus, 224,000 bits to represent the file, a saving of approximately 25%.This is an optimal 

character code for this file. 

Prefix Codes: 

The prefixes of an encoding of one character must not be equal to complete encoding of another 

character, e.g., 1100 and 11001 are not valid codes because 1100 is a prefix of some other code 

word is called prefix codes. 

Prefix codes are desirable because they clarify encoding and decoding. Encoding is always 

simple for any binary character code; we concatenate the code words describing each character 

of the file. Decoding is also quite comfortable with a prefix code. Since no codeword is a prefix 

of any other, the codeword that starts with an encoded data is unambiguous. 

Greedy Algorithm for constructing a Huffman Code: 

Huffman invented a greedy algorithm that creates an optimal prefix code called a Huffman Code. 



 

The algorithm builds the tree T analogous to the optimal code in a bottom-up manner. 

It starts with a set of |C| leaves (C is the number of characters) and performs |C| - 1 

'merging' operations to create the final tree. In the Huffman algorithm 'n' denotes the 

quantity of a set of characters, z indicates the parent node, and x & y are the left & right 

child of z respectively. 

Algorithm of Huffman Code 

Huffman (C) 

1. n=|C| 

2. Q ← C 

3. for i=1 to n-1 

4. do 

5. z= allocate-Node () 

6. x=  left[z]=Extract-Min(Q) 

7. y= right[z] =Extract-Min(Q) 

8. f [z]=f[x]+f[y] 

9. Insert (Q, z) 

10. return Extract-Min (Q) 

Example: Find an optimal Huffman Code for the following set of frequencies: 

1. a: 50   b: 25   c: 15   d: 40   e: 75   

Solution: 



 

i.e. 



 

Again for i=2 



 

 



 

Similarly, we apply the same process we get 



 



 

Thus, the final output is: 



 



UNIT V 

NP-COMPLETENESS 

A problem is in the class NPC if it is in NP and is as hard as any problem in NP. A 

problem is NP-hard if all problems in NP are polynomial time reducible to it, even though it 

may not be in NP itself. 

 

If a polynomial time algorithm exists for any of these problems, all problems in NP 

would be polynomial time solvable. These problems are called NP-complete. The phenomenon 

of NP-completeness is important for both theoretical and practical reasons. 

Definition of NP-Completeness 

A language B is NP-complete if it satisfies two conditions 

 B is in NP 

 Every A in NP is polynomial time reducible to B. 

If a language satisfies the second property, but not necessarily the first one, the 

language B is known as NP-Hard. Informally, a search problem B is NP-Hard if there exists 

some NP-Complete problem A that Turing reduces to B. 

The problem in NP-Hard cannot be solved in polynomial time, until P = NP. If a problem is 

proved to be NPC, there is no need to waste time on trying to find an efficient algorithm for it. 

Instead, we can focus on design approximation algorithm. 

POLYNOMIAL TIME: 

NP class contains P class as a subset. NP problems being hard to solve. 

Definition of P class Problem: - The set of decision-based problems come into the division of P 

Problems who can be solved or produced an output within polynomial time. P problems being 

easy to solve 

NP COMPLETE AND NP HARD   

NP-Completeness: Polynomial Time – Polynomial-Time Verification – NP- 

Completeness and Reducibility – NP-Completeness Proofs – NP-Complete 

Problems.  



Definition of Polynomial time: - If we produce an output according to the given input within a 

specific amount of time such as within a minute, hours. This is known as Polynomial time. 

Definition of Non-Polynomial time: - If we produce an output according to the given input but 

there are no time constraints is known as Non-Polynomial time. But yes output will produce but 

time is not fixed yet.:00/04:47 

Definition of Decision Based Problem: - A problem is called a decision problem if its output is 

a simple "yes" or "no" (or you may need this of this as true/false, 0/1, accept/reject.) We will 

phrase many optimization problems as decision problems. For example, Greedy method, D.P., 

given a graph G= (V, E) if there exists any Hamiltonian cycle. 

Definition of NP-hard class: - Here you to satisfy the following points to come into the division 

of NP-hard 

1. If we can solve this problem in polynomial time, then we can solve all NP problems in 

polynomial time 

2. If you convert the issue into one form to another form within the polynomial time 

Definition of NP-complete class: - A problem is in NP-complete, if 

1. It is in NP 

2. It is NP-hard 

Pictorial representation of all NP classes which includes NP, NP-hard, and NP-complete 

 

NP-Complete Problems 

Following are some NP-Complete problems, for which no polynomial time algorithm is known. 

 Determining whether a graph has a Hamiltonian cycle 

 Determining whether a Boolean formula is satisfiable, etc. 



NP-Hard Problems 

The following problems are NP-Hard 

 The circuit-satisfiability problem 

 Set Cover 

 Vertex Cover 

 Travelling Salesman Problem 

In this context, now we will discuss TSP is NP-Complete 

TSP is NP-Complete 

The traveling salesman problem consists of a salesman and a set of cities. The salesman has to 

visit each one of the cities starting from a certain one and returning to the same city. The 

challenge of the problem is that the traveling salesman wants to minimize the total length of the 

trip 

POLYNOMIAL TIME VERIFICATION 

Before talking about the class of NP-complete problems, it is essential to introduce the notion of 

a verification algorithm. 

Many problems are hard to solve, but they have the property that it easy to authenticate the 

solution if one is provided. 

Hamiltonian cycle problem:- 

Consider the Hamiltonian cycle problem. Given an undirected graph G, does G have a cycle that 

visits each vertex exactly once? There is no known polynomial time algorithm for this dispute. 
Note: - It means you can't build a Hamiltonian cycle in a graph with a polynomial time even if 

there is no specific path is given for the Hamiltonian cycle with the particular vertex, yet you 

can't verify the Hamiltonian cycle within the polynomial time 

 

Fig: Hamiltonian Cycle 



ava Program for Beginners 

Let us understand that a graph did have a Hamiltonian cycle. It would be easy for someone to 

convince of this. They would similarly say: "the period is hv3, v7, v1....v13i. 

We could then inspect the graph and check that this is indeed a legal cycle and that it visits all of 

the vertices of the graph exactly once. Thus, even though we know of no efficient way to solve 

the Hamiltonian cycle problem, there is a beneficial way to verify that a given cycle is indeed a 

Hamiltonian cycle. 

Note:-For the verification in the Polynomial-time of an undirected Hamiltonian cycle graph G. There 

must be exact/specific/definite path must be given of Hamiltonian cycle then you can verify in the 

polynomial time. 

Definition of Certificate: - A piece of information which contains in the given path of a vertex 

is known as certificate 

Relation of P and NP classes 

1. P contains in NP 

2. P=NP 

1. Observe that P contains in NP. In other words, if we can solve a problem in polynomial time, we 

can indeed verify the solution in polynomial time. More formally, we do not need to see a 

certificate (there is no need to specify the vertex/intermediate of the specific path) to solve the 

problem; we can explain it in polynomial time anyway. 

2. However, it is not known whether P = NP. It seems you can verify and produce an output of the 

set of decision-based problems in NP classes in a polynomial time which is impossible because 

according to the definition of NP classes you can verify the solution within the polynomial time. 

So this relation can never be held. 

NP-COMPLETENESS AND REDUCIBILITY 

A decision problem L is NP-Hard if 

L' ≤p L for all L' ϵ NP. 

Definition: L is NP-complete if 

1. L ϵ NP and 



2. L' ≤ p L for some known NP-complete problem L.' Given this formal definition, the complexity 

classes are: 

P: is the set of decision problems that are solvable in polynomial time. 

NP: is the set of decision problems that can be verified in polynomial time. 

NP-Hard: L is NP-hard if for all L' ϵ NP, L' ≤p L. Thus if we can solve L in polynomial time, 

we can solve all NP problems in polynomial time. 

NP-Complete L is NP-complete if 

1. L ϵ NP and 

2. L is NP-hard 

If any NP-complete problem is solvable in polynomial time, then every NP-Complete problem is 

also solvable in polynomial time. Conversely, if we can prove that any NP-Complete problem 

cannot be solved in polynomial time, every NP-Complete problem cannot be solvable in 

polynomial time. 

Reductions: 

The class NP-complete (NPC) problems consist of a set of decision problems (a subset of 

class NP) that no one knows how to solve efficiently. But if there were a polynomial solution for 

even a single NP-complete problem, then every problem in NPC will be solvable in polynomial 

time. For this, we need the concept of reductions. 

Suppose there are two problems, A and B. You know that it is impossible to solve 

problem A in polynomial time. You want to prove that B cannot be explained in polynomial 

time. We want to show that (A ∉ P) => (B ∉ P) 

Consider an example to illustrate reduction: The following problem is well-known to be 

NPC: 

3-color: Given a graph G, can each of its vertices be labeled with one of 3 different 

colors such that two adjacent vertices do not have the same label (color). 

Coloring arises in various partitioning issues where there is a constraint that two objects 

cannot be assigned to the same set of partitions. The phrase "coloring" comes from the original 

application which was in map drawing. Two countries that contribute a common border should 

be colored with different colors. 



It is well known that planar graphs can be colored (maps) with four colors. There exists a 

polynomial time algorithm for this. But deciding whether this can be done with 3 colors is hard, 

and there is no polynomial time algorithm for it. 

 

Fig: Example of 3-colorable and non-3-colorable graphs. 

Polynomial Time Reduction: 

We say that Decision Problem L1 is Polynomial time Reducible to decision Problem L2 (L1≤p L2) 

if there is a polynomial time computation function f such that of all x, xϵL1 if and only if xϵL2 

 

NP-COMPLETENESS PROOFS  

To prove TSP is NP-Complete, first we have to prove that TSP belongs to NP. In TSP, 

we find a tour and check that the tour contains each vertex once. Then the total cost of the edges 

of the tour is calculated. Finally, we check if the cost is minimum. This can be completed in 

polynomial time. Thus TSP belongs to NP. 

Secondly, we have to prove that TSP is NP-hard. To prove this, one way is to show 

that Hamiltonian cycle ≤p TSP (as we know that the Hamiltonian cycle problem is 

NPcomplete). 

Assume G = (V, E) to be an instance of Hamiltonian cycle. 

Hence, an instance of TSP is constructed. We create the complete graph G' = (V, E'), where 

E′={(i,j):i,j∈Vandi≠jE′={(i,j):i,j∈Vandi≠j 

Thus, the cost function is defined as follows − 

t(i,j)={01if(i,j)∈Eotherwiset(i,j)={0if(i,j)∈E1otherwise 



Now, suppose that a Hamiltonian cycle h exists in G. It is clear that the cost of each edge 

in h is 0 in G' as each edge belongs to E. Therefore, h has a cost of 0 in G'. Thus, if graph G has 

a Hamiltonian cycle, then graph G' has a tour of 0 cost. 

Conversely, we assume that G' has a tour h' of cost at most 0. The cost of edges 

in E' are 0 and 1 by definition. Hence, each edge must have a cost of 0 as the cost of h' is 0. We 

therefore conclude that h' contains only edges in E. 

We have thus proven that G has a Hamiltonian cycle, if and only if G' has a tour of cost 

at most 0. TSP is NP-complete 

NP-COMPLETE PROBLEMS 

A problem is called NP (nondeterministic polynomial) if its solution can be guessed and 

verified in polynomial time; nondeterministic means that no particular rule is followed to make the guess. 

If a problem is NP and all other NP problems are polynomial-time reducible to it, the problem is NP-

complete. 

NP problem: - Suppose a DECISION-BASED problem is provided in which a set of inputs/high 

inputs you can get high output. 

Criteria to come either in NP-hard or NP-complete. 

1. The point to be noted here, the output is already given, and you can verify the output/solution 

within the polynomial time but can't produce an output/solution in polynomial time. 

2. Here we need the concept of reduction because when you can't produce an output of the problem 

according to the given input then in case you have to use an emphasis on the concept of reduction 

in which you can convert one problem into another problem. 

Note1:- If you satisfy both points then your problem comes into the category of NP-complete class 

Note2:- If you satisfy the only 2nd points then your problem comes into the category of NP-hard 

class 

So according to the given decision-based NP problem, you can decide in the form of yes or no. 

If, yes then you have to do verify and convert into another problem via reduction concept. If you 

are being performed, both then decision-based NP problems are in NP compete. 

 



 

16 

 

Kelli A. Houston,  “Object Oriented Analysis & Design with Applications, Third Edition, 

Pearson Education,2010 

5. Roger S. Pressman, “Software Engineering: A Practitioner’s Approach, Tata McGraw-Hill 

Education, 8th Edition, 2015 

CO-PO Mapping 

CO POs 

PO1 PO2 PO3 PO4 PO5 PO6 

1 2 1 3 3 2 2 

2 2 1 3 2 2 2 

3 2 1 3 3 2 2 

4 2 1 3 3 1 2 

5 2 1 3 3 3 2 

6 1 1 3 2 2 2 

Avg 1.83 1 3 2.66 2 2 

 

 

MC4103 PYTHON PROGRAMMING L T  P C 

3  0  0 3 

COURSE OBJECTIVES: 

 To develop Python programs with conditionals, loops and functions.  

 To use Python data structures – lists, tuples, dictionaries.  

 To do input/output with files in Python  

 To use modules, packages and frameworks in python   

 To define a class with attributes and methods in python 

 

UNIT I BASICS OF PYTHON              9 

Introduction to Python Programming – Python Interpreter and Interactive Mode– Variables and 

Identifiers – Arithmetic Operators – Values and Types – Statements. Operators – Boolean Values 

– Operator  Precedence – Expression – Conditionals: If-Else Constructs – Loop 

Structures/Iterative Statements – While Loop – For Loop – Break Statement-Continue statement – 

Function Call and Returning Values – Parameter Passing – Local and Global Scope – Recursive 

Functions 

 

UNIT II DATA TYPES IN PYTHON 9 

Lists, Tuples, Sets, Strings, Dictionary, Modules: Module Loading and Execution – Packages – 

Making  Your Own Module – The Python Standard Libraries.  

 

UNIT III FILE HANDLING AND EXCEPTION HANDLING 8 

Files: Introduction – File Path – Opening and Closing Files – Reading and Writing Files –File 

Position –Exception: Errors and Exceptions, Exception Handling, Multiple Exceptions  

 

UNIT IV MODULES, PACKAGES AND FRAMEWORKS 10 

Modules: Introduction – Module Loading and Execution – Packages – Making Your Own Module – 

The Python Libraries for data processing, data mining and visualization- NUMPY, Pandas, 

Matplotlib, Plotly-Frameworks- -Django, Flask, Web2Py 



 

17 

 

 

UNIT V OBJECT ORIENTED PROGRAMMING IN PYTHON 9 

Creating a Class, Class methods, Class Inheritance, Encapsulation, Polymorphism, class method 

vs. static methods, Python object persistence. 

 

SUGGESTED ACTIVITIES: 

1. Display a multiplication Table Both players are given the same string, S ; Both players 

have to make substrings using the letters of the string S.  

2. Player A has to make words starting with consonants. Player B has to make words starting 

with vowels. The game ends when both players have made all possible substrings. Do 

Scoring 

3. Write a function definition for JTOI() in Python that would display the corrected version of 

entire content of the file .TXT (has wrongly alphabet J in place of alphabet I ) with all the 

alphabets "J" to be displayed as an alphabet "I" on screen. 

4. Consider a CSV file of profit of 10 items in monthly sales of a year . Read this file using 

Pandas or NumPy or using the in-built matplotlib function. Perform the following task. 

 

5. Read Total profit of all months and show it using a line plot  

Read all product sales data and show it using a multi-line plot  

Read each item sales data of each month and show it using a scatter plot  

Read each item product sales data and show it using the bar chart  

Read sales data of bathing soap of all months and show it using a bar chart.  

Calculate total sale data an year for each product and show it using a Pie chart 

6. Create a Python class called Bank Account which represents a bank account, having as 

attributes: account Number (numeric type), name (name of the account owner as string 

type), balance. Create a constructor with parameters: account Number, name, balance. 

Create a Deposit() method which manages the deposit actions. Create a Withdrawal() 

method which manages withdrawals actions 

 

COURSE OUTCOMES: 

On completion of the course the student would be able to : 

CO1: Develop algorithmic solutions to simple computational problems  

CO2: Represent compound data using Python lists, tuples and dictionaries.   

CO3: Read and write data from/to files in Python Programs  

CO4: Structure simple Python programs using libraries, modules etc.  

CO5: Structure a program by bundling related properties and behaviors into individual objects. 

 

TOTAL : 45 PERIODS 

REFERENCES 

1. Reema Thareja, “Python Programming using Problem Solving Approach”, Oxford University 

Press, First edition, 2017 

2. Allen B. Downey, “Think Python: How to Think Like a Computer Scientist”, Second Edition, 

Shroff, O‘Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/ 

3. Guido van Rossum, Fred L. Drake Jr., “An Introduction to Python – Revised and Updated for 

Python 3.2, Network Theory Ltd., First edition, 2011 

4. John V Guttag, “Introduction to Computation and Programming Using Python”, Revised and 

Expanded Edition, MIT Press, 2013 

5. Charles Dierbach, “Introduction to Computer Science using Python”, Wiley India Edition, First 

Edition, 2016 







Think	Python
Second	Edition

Allen	B.	Downey





Think	Python

by	Allen	B.	Downey

Copyright	©	2016	Allen	Downey.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editor:	Meghan	Blanchette

Production	Editor:	Kristen	Brown

Copyeditor:	Nan	Reinhardt

Proofreader:	Amanda	Kersey

Indexer:	Allen	Downey

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Rebecca	Demarest

August	2012:	First	Edition

December	2015:	Second	Edition

http://safaribooksonline.com


Revision	History	for	the	Second	Edition
2015-11-20:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491939369	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Think	Python,	the
cover	image	of	a	Carolina	parrot,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
author	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

Think	Python	is	available	under	the	Creative	Commons	Attribution-NonCommercial	3.0
Unported	License.	The	author	maintains	an	online	version	at
http://greenteapress.com/thinkpython2/.

978-1-491-93936-9

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491939369
http://greenteapress.com/thinkpython2/




Preface



The	Strange	History	of	This	Book
In	January	1999	I	was	preparing	to	teach	an	introductory	programming	class	in	Java.	I	had
taught	it	three	times	and	I	was	getting	frustrated.	The	failure	rate	in	the	class	was	too	high
and,	even	for	students	who	succeeded,	the	overall	level	of	achievement	was	too	low.

One	of	the	problems	I	saw	was	the	books.	They	were	too	big,	with	too	much	unnecessary
detail	about	Java,	and	not	enough	high-level	guidance	about	how	to	program.	And	they	all
suffered	from	the	trapdoor	effect:	they	would	start	out	easy,	proceed	gradually,	and	then
somewhere	around	Chapter	5	the	bottom	would	fall	out.	The	students	would	get	too	much
new	material,	too	fast,	and	I	would	spend	the	rest	of	the	semester	picking	up	the	pieces.

Two	weeks	before	the	first	day	of	classes,	I	decided	to	write	my	own	book.	My	goals
were:

Keep	it	short.	It	is	better	for	students	to	read	10	pages	than	not	read	50	pages.

Be	careful	with	vocabulary.	I	tried	to	minimize	jargon	and	define	each	term	at	first	use.

Build	gradually.	To	avoid	trapdoors,	I	took	the	most	difficult	topics	and	split	them	into
a	series	of	small	steps.

Focus	on	programming,	not	the	programming	language.	I	included	the	minimum	useful
subset	of	Java	and	left	out	the	rest.

I	needed	a	title,	so	on	a	whim	I	chose	How	to	Think	Like	a	Computer	Scientist.

My	first	version	was	rough,	but	it	worked.	Students	did	the	reading,	and	they	understood
enough	that	I	could	spend	class	time	on	the	hard	topics,	the	interesting	topics	and	(most
important)	letting	the	students	practice.

I	released	the	book	under	the	GNU	Free	Documentation	License,	which	allows	users	to
copy,	modify,	and	distribute	the	book.

What	happened	next	is	the	cool	part.	Jeff	Elkner,	a	high	school	teacher	in	Virginia,
adopted	my	book	and	translated	it	into	Python.	He	sent	me	a	copy	of	his	translation,	and	I
had	the	unusual	experience	of	learning	Python	by	reading	my	own	book.	As	Green	Tea
Press,	I	published	the	first	Python	version	in	2001.

In	2003	I	started	teaching	at	Olin	College	and	I	got	to	teach	Python	for	the	first	time.	The
contrast	with	Java	was	striking.	Students	struggled	less,	learned	more,	worked	on	more
interesting	projects,	and	generally	had	a	lot	more	fun.

Since	then	I’ve	continued	to	develop	the	book,	correcting	errors,	improving	some	of	the
examples	and	adding	material,	especially	exercises.

The	result	is	this	book,	now	with	the	less	grandiose	title	Think	Python.	Some	of	the
changes	are:

I	added	a	section	about	debugging	at	the	end	of	each	chapter.	These	sections	present



general	techniques	for	finding	and	avoiding	bugs,	and	warnings	about	Python	pitfalls.

I	added	more	exercises,	ranging	from	short	tests	of	understanding	to	a	few	substantial
projects.	Most	exercises	include	a	link	to	my	solution.

I	added	a	series	of	case	studies	—	longer	examples	with	exercises,	solutions,	and
discussion.

I	expanded	the	discussion	of	program	development	plans	and	basic	design	patterns.

I	added	appendices	about	debugging	and	analysis	of	algorithms.

The	second	edition	of	Think	Python	has	these	new	features:

The	book	and	all	supporting	code	have	been	updated	to	Python	3.

I	added	a	few	sections,	and	more	details	on	the	Web,	to	help	beginners	get	started
running	Python	in	a	browser,	so	you	don’t	have	to	deal	with	installing	Python	until	you
want	to.

For	“The	turtle	Module”	I	switched	from	my	own	turtle	graphics	package,	called
Swampy,	to	a	more	standard	Python	module,	turtle,	which	is	easier	to	install	and
more	powerful.

I	added	a	new	chapter	called	“The	Goodies”,	which	introduces	some	additional	Python
features	that	are	not	strictly	necessary,	but	sometimes	handy.

I	hope	you	enjoy	working	with	this	book,	and	that	it	helps	you	learn	to	program	and	think
like	a	computer	scientist,	at	least	a	little	bit.

—	Allen	B.	Downey

Olin	College



Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Bold

Indicates	terms	defined	in	the	Glossary.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.



Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
http://www.greenteapress.com/thinkpython2/code.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered
with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to
contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For
example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not
require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books
does	require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example
code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“Think	Python,	2nd	Edition,	by	Allen	B.
Downey	(O’Reilly).	Copyright	2016	Allen	Downey,	978-1-4919-3936-9.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

http://www.greenteapress.com/thinkpython2/code
mailto:permissions@oreilly.com


Safari®	Books	Online
Safari	Books	Online	(www.safaribooksonline.com)	is	an	on-demand	digital	library	that
delivers	expert	content	in	both	book	and	video	form	from	the	world’s	leading	authors	in
technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,	and
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
http://www.safaribooksonline.com/explore/
http://www.safaribooksonline.com/pricing/
http://www.safaribooksonline.com/enterprise/
http://www.safaribooksonline.com/government/
http://www.safaribooksonline.com/academic-public-library/
http://www.safaribooksonline.com/our-library/
http://www.safaribooksonline.com/


How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/think-python_2E.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/think-python_2E
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Acknowledgments
Many	thanks	to	Jeff	Elkner,	who	translated	my	Java	book	into	Python,	which	got	this
project	started	and	introduced	me	to	what	has	turned	out	to	be	my	favorite	language.

Thanks	also	to	Chris	Meyers,	who	contributed	several	sections	to	How	to	Think	Like	a
Computer	Scientist.

Thanks	to	the	Free	Software	Foundation	for	developing	the	GNU	Free	Documentation
License,	which	helped	make	my	collaboration	with	Jeff	and	Chris	possible,	and	Creative
Commons	for	the	license	I	am	using	now.

Thanks	to	the	editors	at	Lulu	who	worked	on	How	to	Think	Like	a	Computer	Scientist.

Thanks	to	the	editors	at	O’Reilly	Media	who	worked	on	Think	Python.

Thanks	to	all	the	students	who	worked	with	earlier	versions	of	this	book	and	all	the
contributors	(listed	below)	who	sent	in	corrections	and	suggestions.



Contributor	List
More	than	100	sharp-eyed	and	thoughtful	readers	have	sent	in	suggestions	and	corrections
over	the	past	few	years.	Their	contributions,	and	enthusiasm	for	this	project,	have	been	a
huge	help.

If	you	have	a	suggestion	or	correction,	please	send	email	to	feedback@thinkpython.com.	If
I	make	a	change	based	on	your	feedback,	I	will	add	you	to	the	contributor	list	(unless	you
ask	to	be	omitted).

If	you	include	at	least	part	of	the	sentence	the	error	appears	in,	that	makes	it	easy	for	me	to
search.	Page	and	section	numbers	are	fine,	too,	but	not	quite	as	easy	to	work	with.	Thanks!

Lloyd	Hugh	Allen	sent	in	a	correction	to	Section	8.4.

Yvon	Boulianne	sent	in	a	correction	of	a	semantic	error	in	Chapter	5.

Fred	Bremmer	submitted	a	correction	in	Section	2.1.

Jonah	Cohen	wrote	the	Perl	scripts	to	convert	the	LaTeX	source	for	this	book	into
beautiful	HTML.

Michael	Conlon	sent	in	a	grammar	correction	in	Chapter	2	and	an	improvement	in	style
in	Chapter	1,	and	he	initiated	discussion	on	the	technical	aspects	of	interpreters.

Benoit	Girard	sent	in	a	correction	to	a	humorous	mistake	in	Section	5.6.

Courtney	Gleason	and	Katherine	Smith	wrote	horsebet.py,	which	was	used	as	a	case
study	in	an	earlier	version	of	the	book.	Their	program	can	now	be	found	on	the
website.

Lee	Harr	submitted	more	corrections	than	we	have	room	to	list	here,	and	indeed	he
should	be	listed	as	one	of	the	principal	editors	of	the	text.

James	Kaylin	is	a	student	using	the	text.	He	has	submitted	numerous	corrections.

David	Kershaw	fixed	the	broken	catTwice	function	in	Section	3.10.

Eddie	Lam	has	sent	in	numerous	corrections	to	Chapters	1,	2,	and	3.	He	also	fixed	the
Makefile	so	that	it	creates	an	index	the	first	time	it	is	run	and	helped	us	set	up	a
versioning	scheme.

Man-Yong	Lee	sent	in	a	correction	to	the	example	code	in	Section	2.4.

David	Mayo	pointed	out	that	the	word	“unconsciously”	in	Chapter	1	needed	to	be
changed	to	“subconsciously”.

Chris	McAloon	sent	in	several	corrections	to	Sections	3.9	and	3.10.



Matthew	J.	Moelter	has	been	a	long-time	contributor	who	sent	in	numerous	corrections
and	suggestions	to	the	book.

Simon	Dicon	Montford	reported	a	missing	function	definition	and	several	typos	in
Chapter	3.	He	also	found	errors	in	the	increment	function	in	Chapter	13.

John	Ouzts	corrected	the	definition	of	“return	value”	in	Chapter	3.

Kevin	Parks	sent	in	valuable	comments	and	suggestions	as	to	how	to	improve	the
distribution	of	the	book.

David	Pool	sent	in	a	typo	in	the	glossary	of	Chapter	1,	as	well	as	kind	words	of
encouragement.

Michael	Schmitt	sent	in	a	correction	to	the	chapter	on	files	and	exceptions.

Robin	Shaw	pointed	out	an	error	in	Section	13.1,	where	the	printTime	function	was
used	in	an	example	without	being	defined.

Paul	Sleigh	found	an	error	in	Chapter	7	and	a	bug	in	Jonah	Cohen’s	Perl	script	that
generates	HTML	from	LaTeX.

Craig	T.	Snydal	is	testing	the	text	in	a	course	at	Drew	University.	He	has	contributed
several	valuable	suggestions	and	corrections.

Ian	Thomas	and	his	students	are	using	the	text	in	a	programming	course.	They	are	the
first	ones	to	test	the	chapters	in	the	latter	half	of	the	book,	and	they	have	made
numerous	corrections	and	suggestions.

Keith	Verheyden	sent	in	a	correction	in	Chapter	3.

Peter	Winstanley	let	us	know	about	a	longstanding	error	in	our	Latin	in	Chapter	3.

Chris	Wrobel	made	corrections	to	the	code	in	the	chapter	on	file	I/O	and	exceptions.

Moshe	Zadka	has	made	invaluable	contributions	to	this	project.	In	addition	to	writing
the	first	draft	of	the	chapter	on	Dictionaries,	he	provided	continual	guidance	in	the
early	stages	of	the	book.

Christoph	Zwerschke	sent	several	corrections	and	pedagogic	suggestions,	and
explained	the	difference	between	gleich	and	selbe.

James	Mayer	sent	us	a	whole	slew	of	spelling	and	typographical	errors,	including	two
in	the	contributor	list.

Hayden	McAfee	caught	a	potentially	confusing	inconsistency	between	two	examples.

Angel	Arnal	is	part	of	an	international	team	of	translators	working	on	the	Spanish



version	of	the	text.	He	has	also	found	several	errors	in	the	English	version.

Tauhidul	Hoque	and	Lex	Berezhny	created	the	illustrations	in	Chapter	1	and	improved
many	of	the	other	illustrations.

Dr.	Michele	Alzetta	caught	an	error	in	Chapter	8	and	sent	some	interesting	pedagogic
comments	and	suggestions	about	Fibonacci	and	Old	Maid.

Andy	Mitchell	caught	a	typo	in	Chapter	1	and	a	broken	example	in	Chapter	2.

Kalin	Harvey	suggested	a	clarification	in	Chapter	7	and	caught	some	typos.

Christopher	P.	Smith	caught	several	typos	and	helped	us	update	the	book	for	Python
2.2.

David	Hutchins	caught	a	typo	in	the	Foreword.

Gregor	Lingl	is	teaching	Python	at	a	high	school	in	Vienna,	Austria.	He	is	working	on	a
German	translation	of	the	book,	and	he	caught	a	couple	of	bad	errors	in	Chapter	5.

Julie	Peters	caught	a	typo	in	the	Preface.

Florin	Oprina	sent	in	an	improvement	in	makeTime,	a	correction	in	printTime,	and	a
nice	typo.

D.	J.	Webre	suggested	a	clarification	in	Chapter	3.

Ken	found	a	fistful	of	errors	in	Chapters	8,	9	and	11.

Ivo	Wever	caught	a	typo	in	Chapter	5	and	suggested	a	clarification	in	Chapter	3.

Curtis	Yanko	suggested	a	clarification	in	Chapter	2.

Ben	Logan	sent	in	a	number	of	typos	and	problems	with	translating	the	book	into
HTML.

Jason	Armstrong	saw	the	missing	word	in	Chapter	2.

Louis	Cordier	noticed	a	spot	in	Chapter	16	where	the	code	didn’t	match	the	text.

Brian	Cain	suggested	several	clarifications	in	Chapters	2	and	3.

Rob	Black	sent	in	a	passel	of	corrections,	including	some	changes	for	Python	2.2.

Jean-Philippe	Rey	at	Ecole	Centrale	Paris	sent	a	number	of	patches,	including	some
updates	for	Python	2.2	and	other	thoughtful	improvements.

Jason	Mader	at	George	Washington	University	made	a	number	of	useful	suggestions
and	corrections.



Jan	Gundtofte-Bruun	reminded	us	that	“a	error”	is	an	error.

Abel	David	and	Alexis	Dinno	reminded	us	that	the	plural	of	“matrix”	is	“matrices”,	not
“matrixes”.	This	error	was	in	the	book	for	years,	but	two	readers	with	the	same	initials
reported	it	on	the	same	day.	Weird.

Charles	Thayer	encouraged	us	to	get	rid	of	the	semicolons	we	had	put	at	the	ends	of
some	statements	and	to	clean	up	our	use	of	“argument”	and	“parameter”.

Roger	Sperberg	pointed	out	a	twisted	piece	of	logic	in	Chapter	3.

Sam	Bull	pointed	out	a	confusing	paragraph	in	Chapter	2.

Andrew	Cheung	pointed	out	two	instances	of	“use	before	def”.

C.	Corey	Capel	spotted	a	missing	word	and	a	typo	in	Chapter	4.

Alessandra	helped	clear	up	some	Turtle	confusion.

Wim	Champagne	found	a	braino	in	a	dictionary	example.

Douglas	Wright	pointed	out	a	problem	with	floor	division	in	arc.

Jared	Spindor	found	some	jetsam	at	the	end	of	a	sentence.

Lin	Peiheng	sent	a	number	of	very	helpful	suggestions.

Ray	Hagtvedt	sent	in	two	errors	and	a	not-quite-error.

Torsten	Hübsch	pointed	out	an	inconsistency	in	Swampy.

Inga	Petuhhov	corrected	an	example	in	Chapter	14.

Arne	Babenhauserheide	sent	several	helpful	corrections.

Mark	E.	Casida	is	is	good	at	spotting	repeated	words.

Scott	Tyler	filled	in	a	that	was	missing.	And	then	sent	in	a	heap	of	corrections.

Gordon	Shephard	sent	in	several	corrections,	all	in	separate	emails.

Andrew	Turner	spotted	an	error	in	Chapter	8.

Adam	Hobart	fixed	a	problem	with	floor	division	in	arc.

Daryl	Hammond	and	Sarah	Zimmerman	pointed	out	that	I	served	up	math.pi	too	early.
And	Zim	spotted	a	typo.

George	Sass	found	a	bug	in	a	Debugging	section.



Brian	Bingham	suggested	Exercise	11-5.

Leah	Engelbert-Fenton	pointed	out	that	I	used	tuple	as	a	variable	name,	contrary	to
my	own	advice.	And	then	found	a	bunch	of	typos	and	a	“use	before	def”.

Joe	Funke	spotted	a	typo.

Chao-chao	Chen	found	an	inconsistency	in	the	Fibonacci	example.

Jeff	Paine	knows	the	difference	between	space	and	spam.

Lubos	Pintes	sent	in	a	typo.

Gregg	Lind	and	Abigail	Heithoff	suggested	Exercise	14-3.

Max	Hailperin	has	sent	in	a	number	of	corrections	and	suggestions.	Max	is	one	of	the
authors	of	the	extraordinary	Concrete	Abstractions	(Course	Technology,	1998),	which
you	might	want	to	read	when	you	are	done	with	this	book.

Chotipat	Pornavalai	found	an	error	in	an	error	message.

Stanislaw	Antol	sent	a	list	of	very	helpful	suggestions.

Eric	Pashman	sent	a	number	of	corrections	for	Chapters	4–11.

Miguel	Azevedo	found	some	typos.

Jianhua	Liu	sent	in	a	long	list	of	corrections.

Nick	King	found	a	missing	word.

Martin	Zuther	sent	a	long	list	of	suggestions.

Adam	Zimmerman	found	an	inconsistency	in	my	instance	of	an	“instance”	and	several
other	errors.

Ratnakar	Tiwari	suggested	a	footnote	explaining	degenerate	triangles.

Anurag	Goel	suggested	another	solution	for	is_abecedarian	and	sent	some	additional
corrections.	And	he	knows	how	to	spell	Jane	Austen.

Kelli	Kratzer	spotted	one	of	the	typos.

Mark	Griffiths	pointed	out	a	confusing	example	in	Chapter	3.

Roydan	Ongie	found	an	error	in	my	Newton’s	method.

Patryk	Wolowiec	helped	me	with	a	problem	in	the	HTML	version.



Mark	Chonofsky	told	me	about	a	new	keyword	in	Python	3.

Russell	Coleman	helped	me	with	my	geometry.

Wei	Huang	spotted	several	typographical	errors.

Karen	Barber	spotted	the	the	oldest	typo	in	the	book.

Nam	Nguyen	found	a	typo	and	pointed	out	that	I	used	the	Decorator	pattern	but	didn’t
mention	it	by	name.

Stéphane	Morin	sent	in	several	corrections	and	suggestions.

Paul	Stoop	corrected	a	typo	in	uses_only.

Eric	Bronner	pointed	out	a	confusion	in	the	discussion	of	the	order	of	operations.

Alexandros	Gezerlis	set	a	new	standard	for	the	number	and	quality	of	suggestions	he
submitted.	We	are	deeply	grateful!

Gray	Thomas	knows	his	right	from	his	left.

Giovanni	Escobar	Sosa	sent	a	long	list	of	corrections	and	suggestions.

Alix	Etienne	fixed	one	of	the	URLs.

Kuang	He	found	a	typo.

Daniel	Neilson	corrected	an	error	about	the	order	of	operations.

Will	McGinnis	pointed	out	that	polyline	was	defined	differently	in	two	places.

Swarup	Sahoo	spotted	a	missing	semicolon.

Frank	Hecker	pointed	out	an	exercise	that	was	under-specified,	and	some	broken	links.

Animesh	B	helped	me	clean	up	a	confusing	example.

Martin	Caspersen	found	two	round-off	errors.

Gregor	Ulm	sent	several	corrections	and	suggestions.

Dimitrios	Tsirigkas	suggested	I	clarify	an	exercise.

Carlos	Tafur	sent	a	page	of	corrections	and	suggestions.

Martin	Nordsletten	found	a	bug	in	an	exercise	solution.

Lars	O.D.	Christensen	found	a	broken	reference.



Victor	Simeone	found	a	typo.

Sven	Hoexter	pointed	out	that	a	variable	named	input	shadows	a	build-in	function.

Viet	Le	found	a	typo.

Stephen	Gregory	pointed	out	the	problem	with	cmp	in	Python	3.

Matthew	Shultz	let	me	know	about	a	broken	link.

Lokesh	Kumar	Makani	let	me	know	about	some	broken	links	and	some	changes	in
error	messages.

Ishwar	Bhat	corrected	my	statement	of	Fermat’s	last	theorem.

Brian	McGhie	suggested	a	clarification.

Andrea	Zanella	translated	the	book	into	Italian,	and	sent	a	number	of	corrections	along
the	way.

Many,	many	thanks	to	Melissa	Lewis	and	Luciano	Ramalho	for	excellent	comments
and	suggestions	on	the	second	edition.

Thanks	to	Harry	Percival	from	PythonAnywhere	for	his	help	getting	people	started
running	Python	in	a	browser.

Xavier	Van	Aubel	made	several	useful	corrections	in	the	second	edition.





Chapter	1.	The	Way	of	the	Program

The	goal	of	this	book	is	to	teach	you	to	think	like	a	computer	scientist.	This	way	of
thinking	combines	some	of	the	best	features	of	mathematics,	engineering,	and	natural
science.	Like	mathematicians,	computer	scientists	use	formal	languages	to	denote	ideas
(specifically	computations).	Like	engineers,	they	design	things,	assembling	components
into	systems	and	evaluating	tradeoffs	among	alternatives.	Like	scientists,	they	observe	the
behavior	of	complex	systems,	form	hypotheses,	and	test	predictions.

The	single	most	important	skill	for	a	computer	scientist	is	problem	solving.	Problem
solving	means	the	ability	to	formulate	problems,	think	creatively	about	solutions,	and
express	a	solution	clearly	and	accurately.	As	it	turns	out,	the	process	of	learning	to
program	is	an	excellent	opportunity	to	practice	problem-solving	skills.	That’s	why	this
chapter	is	called	“The	Way	of	the	Program”.

On	one	level,	you	will	be	learning	to	program,	a	useful	skill	by	itself.	On	another	level,
you	will	use	programming	as	a	means	to	an	end.	As	we	go	along,	that	end	will	become
clearer.



What	Is	a	Program?
A	program	is	a	sequence	of	instructions	that	specifies	how	to	perform	a	computation.	The
computation	might	be	something	mathematical,	such	as	solving	a	system	of	equations	or
finding	the	roots	of	a	polynomial,	but	it	can	also	be	a	symbolic	computation,	such	as
searching	and	replacing	text	in	a	document	or	something	graphical,	like	processing	an
image	or	playing	a	video.

The	details	look	different	in	different	languages,	but	a	few	basic	instructions	appear	in	just
about	every	language:

input:

Get	data	from	the	keyboard,	a	file,	the	network,	or	some	other	device.

output:

Display	data	on	the	screen,	save	it	in	a	file,	send	it	over	the	network,	etc.

math:

Perform	basic	mathematical	operations	like	addition	and	multiplication.

conditional	execution:

Check	for	certain	conditions	and	run	the	appropriate	code.

repetition:

Perform	some	action	repeatedly,	usually	with	some	variation.

Believe	it	or	not,	that’s	pretty	much	all	there	is	to	it.	Every	program	you’ve	ever	used,	no
matter	how	complicated,	is	made	up	of	instructions	that	look	pretty	much	like	these.	So
you	can	think	of	programming	as	the	process	of	breaking	a	large,	complex	task	into
smaller	and	smaller	subtasks	until	the	subtasks	are	simple	enough	to	be	performed	with
one	of	these	basic	instructions.



Running	Python
One	of	the	challenges	of	getting	started	with	Python	is	that	you	might	have	to	install
Python	and	related	software	on	your	computer.	If	you	are	familiar	with	your	operating
system,	and	especially	if	you	are	comfortable	with	the	command-line	interface,	you	will
have	no	trouble	installing	Python.	But	for	beginners,	it	can	be	painful	to	learn	about
system	administration	and	programming	at	the	same	time.

To	avoid	that	problem,	I	recommend	that	you	start	out	running	Python	in	a	browser.	Later,
when	you	are	comfortable	with	Python,	I’ll	make	suggestions	for	installing	Python	on
your	computer.

There	are	a	number	of	web	pages	you	can	use	to	run	Python.	If	you	already	have	a
favorite,	go	ahead	and	use	it.	Otherwise	I	recommend	PythonAnywhere.	I	provide	detailed
instructions	for	getting	started	at	http://tinyurl.com/thinkpython2e.

There	are	two	versions	of	Python,	called	Python	2	and	Python	3.	They	are	very	similar,	so
if	you	learn	one,	it	is	easy	to	switch	to	the	other.	In	fact,	there	are	only	a	few	differences
you	will	encounter	as	a	beginner.	This	book	is	written	for	Python	3,	but	I	include	some
notes	about	Python	2.

The	Python	interpreter	is	a	program	that	reads	and	executes	Python	code.	Depending	on
your	environment,	you	might	start	the	interpreter	by	clicking	on	an	icon,	or	by	typing
python	on	a	command	line.	When	it	starts,	you	should	see	output	like	this:

Python	3.4.0	(default,	Jun	19	2015,	14:20:21)	

[GCC	4.8.2]	on	linux

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

The	first	three	lines	contain	information	about	the	interpreter	and	the	operating	system	it’s
running	on,	so	it	might	be	different	for	you.	But	you	should	check	that	the	version	number,
which	is	3.4.0	in	this	example,	begins	with	3,	which	indicates	that	you	are	running
Python	3.	If	it	begins	with	2,	you	are	running	(you	guessed	it)	Python	2.

The	last	line	is	a	prompt	that	indicates	that	the	interpreter	is	ready	for	you	to	enter	code.	If
you	type	a	line	of	code	and	hit	Enter,	the	interpreter	displays	the	result:

>>>	1	+	1

2

Now	you’re	ready	to	get	started.	From	here	on,	I	assume	that	you	know	how	to	start	the
Python	interpreter	and	run	code.

http://tinyurl.com/thinkpython2e


The	First	Program
Traditionally,	the	first	program	you	write	in	a	new	language	is	called	“Hello,	World!”
because	all	it	does	is	display	the	words	“Hello,	World!”	In	Python,	it	looks	like	this:

>>>	print('Hello,	World!')

This	is	an	example	of	a	print	statement,	although	it	doesn’t	actually	print	anything	on
paper.	It	displays	a	result	on	the	screen.	In	this	case,	the	result	is	the	words

Hello,	World!

The	quotation	marks	in	the	program	mark	the	beginning	and	end	of	the	text	to	be
displayed;	they	don’t	appear	in	the	result.

The	parentheses	indicate	that	print	is	a	function.	We’ll	get	to	functions	in	Chapter	3.

In	Python	2,	the	print	statement	is	slightly	different;	it	is	not	a	function,	so	it	doesn’t	use
parentheses.

>>>	print	'Hello,	World!'

This	distinction	will	make	more	sense	soon,	but	that’s	enough	to	get	started.



Arithmetic	Operators
After	“Hello,	World”,	the	next	step	is	arithmetic.	Python	provides	operators,	which	are
special	symbols	that	represent	computations	like	addition	and	multiplication.

The	operators	+,	-,	and	*	perform	addition,	subtraction,	and	multiplication,	as	in	the
following	examples:

>>>	40	+	2

42

>>>	43	-	1

42

>>>	6	*	7

42

The	operator	/	performs	division:

>>>	84	/	2

42.0

You	might	wonder	why	the	result	is	42.0	instead	of	42.	I’ll	explain	in	the	next	section.

Finally,	the	operator	**	performs	exponentiation;	that	is,	it	raises	a	number	to	a	power:

>>>	6**2	+	6

42

In	some	other	languages,	^	is	used	for	exponentiation,	but	in	Python	it	is	a	bitwise	operator
called	XOR.	If	you	are	not	familiar	with	bitwise	operators,	the	result	will	surprise	you:

>>>	6	^	2

4

I	won’t	cover	bitwise	operators	in	this	book,	but	you	can	read	about	them	at
http://wiki.python.org/moin/BitwiseOperators.

http://wiki.python.org/moin/BitwiseOperators


Values	and	Types
A	value	is	one	of	the	basic	things	a	program	works	with,	like	a	letter	or	a	number.	Some
values	we	have	seen	so	far	are	2,	42.0,	and	'Hello,	World!'

These	values	belong	to	different	types:	2	is	an	integer,	42.0	is	a	floating-point	number,
and	'Hello,	World!'	is	a	string,	so-called	because	the	letters	it	contains	are	strung
together.

If	you	are	not	sure	what	type	a	value	has,	the	interpreter	can	tell	you:

>>>	type(2)

<class	'int'>

>>>	type(42.0)

<class	'float'>

>>>	type('Hello,	World!')

<class	'str'>

In	these	results,	the	word	“class”	is	used	in	the	sense	of	a	category;	a	type	is	a	category	of
values.

Not	surprisingly,	integers	belong	to	the	type	int,	strings	belong	to	str,	and	floating-point
numbers	belong	to	float.

What	about	values	like	'2'	and	'42.0'?	They	look	like	numbers,	but	they	are	in	quotation
marks	like	strings:

>>>	type('2')

<class	'str'>

>>>	type('42.0')

<class	'str'>

They’re	strings.

When	you	type	a	large	integer,	you	might	be	tempted	to	use	commas	between	groups	of
digits,	as	in	1,000,000.	This	is	not	a	legal	integer	in	Python,	but	it	is	legal:

>>>	1,000,000

(1,	0,	0)

That’s	not	what	we	expected	at	all!	Python	interprets	1,000,000	as	a	comma-separated
sequence	of	integers.	We’ll	learn	more	about	this	kind	of	sequence	later.



Formal	and	Natural	Languages
Natural	languages	are	the	languages	people	speak,	such	as	English,	Spanish,	and	French.
They	were	not	designed	by	people	(although	people	try	to	impose	some	order	on	them);
they	evolved	naturally.

Formal	languages	are	languages	that	are	designed	by	people	for	specific	applications.	For
example,	the	notation	that	mathematicians	use	is	a	formal	language	that	is	particularly
good	at	denoting	relationships	among	numbers	and	symbols.	Chemists	use	a	formal
language	to	represent	the	chemical	structure	of	molecules.	And	most	importantly:

Programming	languages	are	formal	languages	that	have	been	designed	to	express
computations.

Formal	languages	tend	to	have	strict	syntax	rules	that	govern	the	structure	of	statements.
For	example,	in	mathematics	the	statement	 	has	correct	syntax,	but	

	does	not.	In	chemistry	H2O	is	a	syntactically	correct	formula,	but	2Zz	is
not.

Syntax	rules	come	in	two	flavors,	pertaining	to	tokens	and	structure.	Tokens	are	the	basic
elements	of	the	language,	such	as	words,	numbers,	and	chemical	elements.	One	of	the
problems	with	 	is	that	 	is	not	a	legal	token	in	mathematics	(at	least	as	far
as	I	know).	Similarly,	2Zz	is	not	legal	because	there	is	no	element	with	the	abbreviation	Zz.

The	second	type	of	syntax	rule	pertains	to	the	way	tokens	are	combined.	The	equation	
	is	illegal	because	even	though	+	and	=	are	legal	tokens,	you	can’t	have	one

right	after	the	other.	Similarly,	in	a	chemical	formula	the	subscript	comes	after	the	element
name,	not	before.

This	is	@	well-structured	Engli$h	sentence	with	invalid	t*kens	in	it.	This	sentence	all
valid	tokens	has,	but	invalid	structure	with.

When	you	read	a	sentence	in	English	or	a	statement	in	a	formal	language,	you	have	to
figure	out	the	structure	(although	in	a	natural	language	you	do	this	subconsciously).	This
process	is	called	parsing.

Although	formal	and	natural	languages	have	many	features	in	common	—	tokens,
structure,	and	syntax	—	there	are	some	differences:

ambiguity:

Natural	languages	are	full	of	ambiguity,	which	people	deal	with	by	using	contextual
clues	and	other	information.	Formal	languages	are	designed	to	be	nearly	or
completely	unambiguous,	which	means	that	any	statement	has	exactly	one	meaning,
regardless	of	context.

redundancy:



In	order	to	make	up	for	ambiguity	and	reduce	misunderstandings,	natural	languages
employ	lots	of	redundancy.	As	a	result,	they	are	often	verbose.	Formal	languages	are
less	redundant	and	more	concise.

literalness:

Natural	languages	are	full	of	idiom	and	metaphor.	If	I	say,	“The	penny	dropped”,
there	is	probably	no	penny	and	nothing	dropping	(this	idiom	means	that	someone
understood	something	after	a	period	of	confusion).	Formal	languages	mean	exactly
what	they	say.

Because	we	all	grow	up	speaking	natural	languages,	it	is	sometimes	hard	to	adjust	to
formal	languages.	The	difference	between	formal	and	natural	language	is	like	the
difference	between	poetry	and	prose,	but	more	so:

Poetry:

Words	are	used	for	their	sounds	as	well	as	for	their	meaning,	and	the	whole	poem
together	creates	an	effect	or	emotional	response.	Ambiguity	is	not	only	common	but
often	deliberate.

Prose:

The	literal	meaning	of	words	is	more	important,	and	the	structure	contributes	more
meaning.	Prose	is	more	amenable	to	analysis	than	poetry	but	still	often	ambiguous.

Programs:

The	meaning	of	a	computer	program	is	unambiguous	and	literal,	and	can	be
understood	entirely	by	analysis	of	the	tokens	and	structure.

Formal	languages	are	more	dense	than	natural	languages,	so	it	takes	longer	to	read	them.
Also,	the	structure	is	important,	so	it	is	not	always	best	to	read	from	top	to	bottom,	left	to
right.	Instead,	learn	to	parse	the	program	in	your	head,	identifying	the	tokens	and
interpreting	the	structure.	Finally,	the	details	matter.	Small	errors	in	spelling	and
punctuation,	which	you	can	get	away	with	in	natural	languages,	can	make	a	big	difference
in	a	formal	language.



Debugging
Programmers	make	mistakes.	For	whimsical	reasons,	programming	errors	are	called	bugs
and	the	process	of	tracking	them	down	is	called	debugging.

Programming,	and	especially	debugging,	sometimes	brings	out	strong	emotions.	If	you	are
struggling	with	a	difficult	bug,	you	might	feel	angry,	despondent,	or	embarrassed.

There	is	evidence	that	people	naturally	respond	to	computers	as	if	they	were	people.	When
they	work	well,	we	think	of	them	as	teammates,	and	when	they	are	obstinate	or	rude,	we
respond	to	them	the	same	way	we	respond	to	rude,	obstinate	people	(Reeves	and	Nass,
The	Media	Equation:	How	People	Treat	Computers,	Television,	and	New	Media	Like	Real
People	and	Places).

Preparing	for	these	reactions	might	help	you	deal	with	them.	One	approach	is	to	think	of
the	computer	as	an	employee	with	certain	strengths,	like	speed	and	precision,	and
particular	weaknesses,	like	lack	of	empathy	and	inability	to	grasp	the	big	picture.

Your	job	is	to	be	a	good	manager:	find	ways	to	take	advantage	of	the	strengths	and
mitigate	the	weaknesses.	And	find	ways	to	use	your	emotions	to	engage	with	the	problem,
without	letting	your	reactions	interfere	with	your	ability	to	work	effectively.

Learning	to	debug	can	be	frustrating,	but	it	is	a	valuable	skill	that	is	useful	for	many
activities	beyond	programming.	At	the	end	of	each	chapter	there	is	a	section,	like	this	one,
with	my	suggestions	for	debugging.	I	hope	they	help!



Glossary
problem	solving:

The	process	of	formulating	a	problem,	finding	a	solution,	and	expressing	it.

high-level	language:

A	programming	language	like	Python	that	is	designed	to	be	easy	for	humans	to	read
and	write.

low-level	language:

A	programming	language	that	is	designed	to	be	easy	for	a	computer	to	run;	also
called	“machine	language”	or	“assembly	language”.

portability:

A	property	of	a	program	that	can	run	on	more	than	one	kind	of	computer.

interpreter:

A	program	that	reads	another	program	and	executes	it.

prompt:

Characters	displayed	by	the	interpreter	to	indicate	that	it	is	ready	to	take	input	from
the	user.

program:

A	set	of	instructions	that	specifies	a	computation.

print	statement:

An	instruction	that	causes	the	Python	interpreter	to	display	a	value	on	the	screen.

operator:

A	special	symbol	that	represents	a	simple	computation	like	addition,	multiplication,
or	string	concatenation.

value:

One	of	the	basic	units	of	data,	like	a	number	or	string,	that	a	program	manipulates.

type:

A	category	of	values.	The	types	we	have	seen	so	far	are	integers	(type	int),	floating-
point	numbers	(type	float),	and	strings	(type	str).

integer:

A	type	that	represents	whole	numbers.

floating-point:

A	type	that	represents	numbers	with	fractional	parts.

string:



A	type	that	represents	sequences	of	characters.

natural	language:

Any	one	of	the	languages	that	people	speak	that	evolved	naturally.

formal	language:

Any	one	of	the	languages	that	people	have	designed	for	specific	purposes,	such	as
representing	mathematical	ideas	or	computer	programs;	all	programming	languages
are	formal	languages.

token:

One	of	the	basic	elements	of	the	syntactic	structure	of	a	program,	analogous	to	a
word	in	a	natural	language.

syntax:

The	rules	that	govern	the	structure	of	a	program.

parse:

To	examine	a	program	and	analyze	the	syntactic	structure.

bug:

An	error	in	a	program.

debugging:

The	process	of	finding	and	correcting	bugs.



Exercises
Exercise	1-1.

It	is	a	good	idea	to	read	this	book	in	front	of	a	computer	so	you	can	try	out	the	examples	as
you	go.

Whenever	you	are	experimenting	with	a	new	feature,	you	should	try	to	make	mistakes.
For	example,	in	the	“Hello,	world!”	program,	what	happens	if	you	leave	out	one	of	the
quotation	marks?	What	if	you	leave	out	both?	What	if	you	spell	print	wrong?

This	kind	of	experiment	helps	you	remember	what	you	read;	it	also	helps	when	you	are
programming,	because	you	get	to	know	what	the	error	messages	mean.	It	is	better	to	make
mistakes	now	and	on	purpose	than	later	and	accidentally.

1.	 In	a	print	statement,	what	happens	if	you	leave	out	one	of	the	parentheses,	or	both?

2.	 If	you	are	trying	to	print	a	string,	what	happens	if	you	leave	out	one	of	the	quotation
marks,	or	both?

3.	 You	can	use	a	minus	sign	to	make	a	negative	number	like	-2.	What	happens	if	you
put	a	plus	sign	before	a	number?	What	about	2++2?

4.	 In	math	notation,	leading	zeros	are	okay,	as	in	02.	What	happens	if	you	try	this	in
Python?

5.	 What	happens	if	you	have	two	values	with	no	operator	between	them?

Exercise	1-2.

Start	the	Python	interpreter	and	use	it	as	a	calculator.

1.	 How	many	seconds	are	there	in	42	minutes	42	seconds?

2.	 How	many	miles	are	there	in	10	kilometers?	Hint:	there	are	1.61	kilometers	in	a
mile.

3.	 If	you	run	a	10	kilometer	race	in	42	minutes	42	seconds,	what	is	your	average	pace
(time	per	mile	in	minutes	and	seconds)?	What	is	your	average	speed	in	miles	per
hour?





Chapter	2.	Variables,	Expressions	and
Statements

One	of	the	most	powerful	features	of	a	programming	language	is	the	ability	to	manipulate
variables.	A	variable	is	a	name	that	refers	to	a	value.



Assignment	Statements
An	assignment	statement	creates	a	new	variable	and	gives	it	a	value:

>>>	message	=	'And	now	for	something	completely	different'

>>>	n	=	17

>>>	pi	=	3.141592653589793

This	example	makes	three	assignments.	The	first	assigns	a	string	to	a	new	variable	named
message;	the	second	gives	the	integer	17	to	n;	the	third	assigns	the	(approximate)	value	of
π	to	pi.

A	common	way	to	represent	variables	on	paper	is	to	write	the	name	with	an	arrow
pointing	to	its	value.	This	kind	of	figure	is	called	a	state	diagram	because	it	shows	what
state	each	of	the	variables	is	in	(think	of	it	as	the	variable’s	state	of	mind).	Figure	2-1
shows	the	result	of	the	previous	example.

Figure	2-1.	State	diagram.



Variable	Names
Programmers	generally	choose	names	for	their	variables	that	are	meaningful	—	they
document	what	the	variable	is	used	for.

Variable	names	can	be	as	long	as	you	like.	They	can	contain	both	letters	and	numbers,	but
they	can’t	begin	with	a	number.	It	is	legal	to	use	uppercase	letters,	but	it	is	conventional	to
use	only	lowercase	for	variables	names.

The	underscore	character,	_,	can	appear	in	a	name.	It	is	often	used	in	names	with	multiple
words,	such	as	your_name	or	airspeed_of_unladen_swallow.

If	you	give	a	variable	an	illegal	name,	you	get	a	syntax	error:

>>>	76trombones	=	'big	parade'

SyntaxError:	invalid	syntax

>>>	more@	=	1000000

SyntaxError:	invalid	syntax

>>>	class	=	'Advanced	Theoretical	Zymurgy'

SyntaxError:	invalid	syntax

76trombones	is	illegal	because	it	begins	with	a	number.	more@	is	illegal	because	it	contains
an	illegal	character,	@.	But	what’s	wrong	with	class?

It	turns	out	that	class	is	one	of	Python’s	keywords.	The	interpreter	uses	keywords	to
recognize	the	structure	of	the	program,	and	they	cannot	be	used	as	variable	names.

Python	3	has	these	keywords:

False						class						finally				is									return

None							continue			for								lambda					try

True							def								from							nonlocal			while

and								del								global					not								with

as									elif							if									or									yield

assert					else							import					pass

break						except					in									raise

You	don’t	have	to	memorize	this	list.	In	most	development	environments,	keywords	are
displayed	in	a	different	color;	if	you	try	to	use	one	as	a	variable	name,	you’ll	know.



Expressions	and	Statements
An	expression	is	a	combination	of	values,	variables,	and	operators.	A	value	all	by	itself	is
considered	an	expression,	and	so	is	a	variable,	so	the	following	are	all	legal	expressions:

>>>	42

42

>>>	n

17

>>>	n	+	25

42

When	you	type	an	expression	at	the	prompt,	the	interpreter	evaluates	it,	which	means	that
it	finds	the	value	of	the	expression.	In	this	example,	n	has	the	value	17	and	n	+	25	has	the
value	42.

A	statement	is	a	unit	of	code	that	has	an	effect,	like	creating	a	variable	or	displaying	a
value.

>>>	n	=	17

>>>	print(n)

The	first	line	is	an	assignment	statement	that	gives	a	value	to	n.	The	second	line	is	a	print
statement	that	displays	the	value	of	n.

When	you	type	a	statement,	the	interpreter	executes	it,	which	means	that	it	does	whatever
the	statement	says.	In	general,	statements	don’t	have	values.



Script	Mode
So	far	we	have	run	Python	in	interactive	mode,	which	means	that	you	interact	directly
with	the	interpreter.	Interactive	mode	is	a	good	way	to	get	started,	but	if	you	are	working
with	more	than	a	few	lines	of	code,	it	can	be	clumsy.

The	alternative	is	to	save	code	in	a	file	called	a	script	and	then	run	the	interpreter	in	script
mode	to	execute	the	script.	By	convention,	Python	scripts	have	names	that	end	with	.py.

If	you	know	how	to	create	and	run	a	script	on	your	computer,	you	are	ready	to	go.
Otherwise	I	recommend	using	PythonAnywhere	again.	I	have	posted	instructions	for
running	in	script	mode	at	http://tinyurl.com/thinkpython2e.

Because	Python	provides	both	modes,	you	can	test	bits	of	code	in	interactive	mode	before
you	put	them	in	a	script.	But	there	are	differences	between	interactive	mode	and	script
mode	that	can	be	confusing.

For	example,	if	you	are	using	Python	as	a	calculator,	you	might	type:

>>>	miles	=	26.2

>>>	miles	*	1.61

42.182

The	first	line	assigns	a	value	to	miles,	but	it	has	no	visible	effect.	The	second	line	is	an
expression,	so	the	interpreter	evaluates	it	and	displays	the	result.	It	turns	out	that	a
marathon	is	about	42	kilometers.

But	if	you	type	the	same	code	into	a	script	and	run	it,	you	get	no	output	at	all.	In	script
mode	an	expression,	all	by	itself,	has	no	visible	effect.	Python	actually	evaluates	the
expression,	but	it	doesn’t	display	the	value	unless	you	tell	it	to:

miles	=	26.2

print(miles	*	1.61)

This	behavior	can	be	confusing	at	first.

A	script	usually	contains	a	sequence	of	statements.	If	there	is	more	than	one	statement,	the
results	appear	one	at	a	time	as	the	statements	execute.

For	example,	the	script

print(1)

x	=	2

print(x)

produces	the	output

1

2

The	assignment	statement	produces	no	output.

http://tinyurl.com/thinkpython2e


To	check	your	understanding,	type	the	following	statements	in	the	Python	interpreter	and
see	what	they	do:

5

x	=	5

x	+	1

Now	put	the	same	statements	in	a	script	and	run	it.	What	is	the	output?	Modify	the	script
by	transforming	each	expression	into	a	print	statement	and	then	run	it	again.



Order	of	Operations
When	an	expression	contains	more	than	one	operator,	the	order	of	evaluation	depends	on
the	order	of	operations.	For	mathematical	operators,	Python	follows	mathematical
convention.	The	acronym	PEMDAS	is	a	useful	way	to	remember	the	rules:

Parentheses	have	the	highest	precedence	and	can	be	used	to	force	an	expression	to
evaluate	in	the	order	you	want.	Since	expressions	in	parentheses	are	evaluated	first,	2	*
(3-1)	is	4,	and	(1+1)**(5-2)	is	8.	You	can	also	use	parentheses	to	make	an	expression
easier	to	read,	as	in	(minute	*	100)	/	60,	even	if	it	doesn’t	change	the	result.

Exponentiation	has	the	next	highest	precedence,	so	1	+	2**3	is	9,	not	27,	and	2	*
3**2	is	18,	not	36.

Multiplication	and	Division	have	higher	precedence	than	Addition	and	Subtraction.	So
2*3-1	is	5,	not	4,	and	6+4/2	is	8,	not	5.

Operators	with	the	same	precedence	are	evaluated	from	left	to	right	(except
exponentiation).	So	in	the	expression	degrees	/	2	*	pi,	the	division	happens	first	and
the	result	is	multiplied	by	pi.	To	divide	by	 ,	you	can	use	parentheses	or	write
degrees	/	2	/	pi.

I	don’t	work	very	hard	to	remember	the	precedence	of	operators.	If	I	can’t	tell	by	looking
at	the	expression,	I	use	parentheses	to	make	it	obvious.



String	Operations
In	general,	you	can’t	perform	mathematical	operations	on	strings,	even	if	the	strings	look
like	numbers,	so	the	following	are	illegal:

'2'-'1'				'eggs'/'easy'				'third'*'a	charm'

But	there	are	two	exceptions,	+	and	*.

The	+	operator	performs	string	concatenation,	which	means	it	joins	the	strings	by	linking
them	end-to-end.	For	example:

>>>	first	=	'throat'

>>>	second	=	'warbler'

>>>	first	+	second

throatwarbler

The	*	operator	also	works	on	strings;	it	performs	repetition.	For	example,	'Spam'*3	is
'SpamSpamSpam'.	If	one	of	the	values	is	a	string,	the	other	has	to	be	an	integer.

This	use	of	+	and	*	makes	sense	by	analogy	with	addition	and	multiplication.	Just	as	4*3	is
equivalent	to	4+4+4,	we	expect	'Spam'*3	to	be	the	same	as	'Spam'+'Spam'+'Spam',	and	it
is.	On	the	other	hand,	there	is	a	significant	way	in	which	string	concatenation	and
repetition	are	different	from	integer	addition	and	multiplication.	Can	you	think	of	a
property	that	addition	has	that	string	concatenation	does	not?



Comments
As	programs	get	bigger	and	more	complicated,	they	get	more	difficult	to	read.	Formal
languages	are	dense,	and	it	is	often	difficult	to	look	at	a	piece	of	code	and	figure	out	what
it	is	doing,	or	why.

For	this	reason,	it	is	a	good	idea	to	add	notes	to	your	programs	to	explain	in	natural
language	what	the	program	is	doing.	These	notes	are	called	comments,	and	they	start	with
the	#	symbol:

#	compute	the	percentage	of	the	hour	that	has	elapsed

percentage	=	(minute	*	100)	/	60

In	this	case,	the	comment	appears	on	a	line	by	itself.	You	can	also	put	comments	at	the	end
of	a	line:

percentage	=	(minute	*	100)	/	60					#	percentage	of	an	hour

Everything	from	the	#	to	the	end	of	the	line	is	ignored	—	it	has	no	effect	on	the	execution
of	the	program.

Comments	are	most	useful	when	they	document	non-obvious	features	of	the	code.	It	is
reasonable	to	assume	that	the	reader	can	figure	out	what	the	code	does;	it	is	more	useful	to
explain	why.

This	comment	is	redundant	with	the	code	and	useless:

v	=	5					#	assign	5	to	v

This	comment	contains	useful	information	that	is	not	in	the	code:

v	=	5					#	velocity	in	meters/second.

Good	variable	names	can	reduce	the	need	for	comments,	but	long	names	can	make
complex	expressions	hard	to	read,	so	there	is	a	trade-off.



Debugging
Three	kinds	of	errors	can	occur	in	a	program:	syntax	errors,	runtime	errors,	and	semantic
errors.	It	is	useful	to	distinguish	between	them	in	order	to	track	them	down	more	quickly.

Syntax	error:

“Syntax”	refers	to	the	structure	of	a	program	and	the	rules	about	that	structure.	For
example,	parentheses	have	to	come	in	matching	pairs,	so	(1	+	2)	is	legal,	but	8)	is	a
syntax	error.

If	there	is	a	syntax	error	anywhere	in	your	program,	Python	displays	an	error	message
and	quits,	and	you	will	not	be	able	to	run	the	program.	During	the	first	few	weeks	of
your	programming	career,	you	might	spend	a	lot	of	time	tracking	down	syntax	errors.
As	you	gain	experience,	you	will	make	fewer	errors	and	find	them	faster.

Runtime	error:

The	second	type	of	error	is	a	runtime	error,	so	called	because	the	error	does	not
appear	until	after	the	program	has	started	running.	These	errors	are	also	called
exceptions	because	they	usually	indicate	that	something	exceptional	(and	bad)	has
happened.

Runtime	errors	are	rare	in	the	simple	programs	you	will	see	in	the	first	few	chapters,
so	it	might	be	a	while	before	you	encounter	one.

Semantic	error:

The	third	type	of	error	is	“semantic”,	which	means	related	to	meaning.	If	there	is	a
semantic	error	in	your	program,	it	will	run	without	generating	error	messages,	but	it
will	not	do	the	right	thing.	It	will	do	something	else.	Specifically,	it	will	do	what	you
told	it	to	do.

Identifying	semantic	errors	can	be	tricky	because	it	requires	you	to	work	backward
by	looking	at	the	output	of	the	program	and	trying	to	figure	out	what	it	is	doing.



Glossary
variable:

A	name	that	refers	to	a	value.

assignment:

A	statement	that	assigns	a	value	to	a	variable.

state	diagram:

A	graphical	representation	of	a	set	of	variables	and	the	values	they	refer	to.

keyword:

A	reserved	word	that	is	used	to	parse	a	program;	you	cannot	use	keywords	like	if,
def,	and	while	as	variable	names.

operand:

One	of	the	values	on	which	an	operator	operates.

expression:

A	combination	of	variables,	operators,	and	values	that	represents	a	single	result.

evaluate:

To	simplify	an	expression	by	performing	the	operations	in	order	to	yield	a	single
value.

statement:

A	section	of	code	that	represents	a	command	or	action.	So	far,	the	statements	we	have
seen	are	assignments	and	print	statements.

execute:

To	run	a	statement	and	do	what	it	says.

interactive	mode:

A	way	of	using	the	Python	interpreter	by	typing	code	at	the	prompt.

script	mode:

A	way	of	using	the	Python	interpreter	to	read	code	from	a	script	and	run	it.

script:

A	program	stored	in	a	file.

order	of	operations:

Rules	governing	the	order	in	which	expressions	involving	multiple	operators	and
operands	are	evaluated.

concatenate:

To	join	two	operands	end-to-end.



comment:

Information	in	a	program	that	is	meant	for	other	programmers	(or	anyone	reading	the
source	code)	and	has	no	effect	on	the	execution	of	the	program.

syntax	error:

An	error	in	a	program	that	makes	it	impossible	to	parse	(and	therefore	impossible	to
interpret).

exception:

An	error	that	is	detected	while	the	program	is	running.

semantics:

The	meaning	of	a	program.

semantic	error:

An	error	in	a	program	that	makes	it	do	something	other	than	what	the	programmer
intended.



Exercises
Exercise	2-1.

Repeating	my	advice	from	the	previous	chapter,	whenever	you	learn	a	new	feature,	you
should	try	it	out	in	interactive	mode	and	make	errors	on	purpose	to	see	what	goes	wrong.

We’ve	seen	that	n	=	42	is	legal.	What	about	42	=	n?

How	about	x	=	y	=	1?

In	some	languages	every	statement	ends	with	a	semicolon,	;.	What	happens	if	you	put
a	semicolon	at	the	end	of	a	Python	statement?

What	if	you	put	a	period	at	the	end	of	a	statement?

In	math	notation	you	can	multiply	x	and	y	like	this:	 .	What	happens	if	you	try	that	in
Python?

Exercise	2-2.

Practice	using	the	Python	interpreter	as	a	calculator:

1.	 The	volume	of	a	sphere	with	radius	r	is	 .	What	is	the	volume	of	a	sphere	with
radius	5?

2.	 Suppose	the	cover	price	of	a	book	is	$24.95,	but	bookstores	get	a	40%	discount.
Shipping	costs	$3	for	the	first	copy	and	75	cents	for	each	additional	copy.	What	is
the	total	wholesale	cost	for	60	copies?

3.	 If	I	leave	my	house	at	6:52	am	and	run	1	mile	at	an	easy	pace	(8:15	per	mile),	then	3
miles	at	tempo	(7:12	per	mile)	and	1	mile	at	an	easy	pace	again,	what	time	do	I	get
home	for	breakfast?





Chapter	3.	Functions

In	the	context	of	programming,	a	function	is	a	named	sequence	of	statements	that
performs	a	computation.	When	you	define	a	function,	you	specify	the	name	and	the
sequence	of	statements.	Later,	you	can	“call”	the	function	by	name.



Function	Calls
We	have	already	seen	one	example	of	a	function	call:

>>>	type(42)

<class	'int'>

The	name	of	the	function	is	type.	The	expression	in	parentheses	is	called	the	argument	of
the	function.	The	result,	for	this	function,	is	the	type	of	the	argument.

It	is	common	to	say	that	a	function	“takes”	an	argument	and	“returns”	a	result.	The	result
is	also	called	the	return	value.

Python	provides	functions	that	convert	values	from	one	type	to	another.	The	int	function
takes	any	value	and	converts	it	to	an	integer,	if	it	can,	or	complains	otherwise:

>>>	int('32')

32

>>>	int('Hello')

ValueError:	invalid	literal	for	int():	Hello

int	can	convert	floating-point	values	to	integers,	but	it	doesn’t	round	off;	it	chops	off	the
fraction	part:

>>>	int(3.99999)

3

>>>	int(-2.3)

-2

float	converts	integers	and	strings	to	floating-point	numbers:

>>>	float(32)

32.0

>>>	float('3.14159')

3.14159

Finally,	str	converts	its	argument	to	a	string:

>>>	str(32)

'32'

>>>	str(3.14159)

'3.14159'



Math	Functions
Python	has	a	math	module	that	provides	most	of	the	familiar	mathematical	functions.	A
module	is	a	file	that	contains	a	collection	of	related	functions.

Before	we	can	use	the	functions	in	a	module,	we	have	to	import	it	with	an	import
statement:

>>>	import	math

This	statement	creates	a	module	object	named	math.	If	you	display	the	module	object,
you	get	some	information	about	it:

>>>	math

<module	'math'	(built-in)>

The	module	object	contains	the	functions	and	variables	defined	in	the	module.	To	access
one	of	the	functions,	you	have	to	specify	the	name	of	the	module	and	the	name	of	the
function,	separated	by	a	dot	(also	known	as	a	period).	This	format	is	called	dot	notation.

>>>	ratio	=	signal_power	/	noise_power

>>>	decibels	=	10	*	math.log10(ratio)

>>>	radians	=	0.7

>>>	height	=	math.sin(radians)

The	first	example	uses	math.log10	to	compute	a	signal-to-noise	ratio	in	decibels
(assuming	that	signal_power	and	noise_power	are	defined).	The	math	module	also
provides	log,	which	computes	logarithms	base	e.

The	second	example	finds	the	sine	of	radians.	The	name	of	the	variable	is	a	hint	that	sin
and	the	other	trigonometric	functions	(cos,	tan,	etc.)	take	arguments	in	radians.	To	convert
from	degrees	to	radians,	divide	by	180	and	multiply	by	π:

>>>	degrees	=	45

>>>	radians	=	degrees	/	180.0	*	math.pi

>>>	math.sin(radians)

0.707106781187

The	expression	math.pi	gets	the	variable	pi	from	the	math	module.	Its	value	is	a	floating-
point	approximation	of	π,	accurate	to	about	15	digits.

If	you	know	trigonometry,	you	can	check	the	previous	result	by	comparing	it	to	the	square
root	of	2	divided	by	2:

>>>	math.sqrt(2)	/	2.0

0.707106781187



Composition
So	far,	we	have	looked	at	the	elements	of	a	program	—	variables,	expressions,	and
statements	—	in	isolation,	without	talking	about	how	to	combine	them.

One	of	the	most	useful	features	of	programming	languages	is	their	ability	to	take	small
building	blocks	and	compose	them.	For	example,	the	argument	of	a	function	can	be	any
kind	of	expression,	including	arithmetic	operators:

x	=	math.sin(degrees	/	360.0	*	2	*	math.pi)

And	even	function	calls:

x	=	math.exp(math.log(x+1))

Almost	anywhere	you	can	put	a	value,	you	can	put	an	arbitrary	expression,	with	one
exception:	the	left	side	of	an	assignment	statement	has	to	be	a	variable	name.	Any	other
expression	on	the	left	side	is	a	syntax	error	(we	will	see	exceptions	to	this	rule	later).

>>>	minutes	=	hours	*	60																	#	right

>>>	hours	*	60	=	minutes																	#	wrong!

SyntaxError:	can't	assign	to	operator



Adding	New	Functions
So	far,	we	have	only	been	using	the	functions	that	come	with	Python,	but	it	is	also
possible	to	add	new	functions.	A	function	definition	specifies	the	name	of	a	new	function
and	the	sequence	of	statements	that	run	when	the	function	is	called.

Here	is	an	example:

def	print_lyrics():

				print("I'm	a	lumberjack,	and	I'm	okay.")

				print("I	sleep	all	night	and	I	work	all	day.")

def	is	a	keyword	that	indicates	that	this	is	a	function	definition.	The	name	of	the	function
is	print_lyrics.	The	rules	for	function	names	are	the	same	as	for	variable	names:	letters,
numbers	and	underscore	are	legal,	but	the	first	character	can’t	be	a	number.	You	can’t	use
a	keyword	as	the	name	of	a	function,	and	you	should	avoid	having	a	variable	and	a
function	with	the	same	name.

The	empty	parentheses	after	the	name	indicate	that	this	function	doesn’t	take	any
arguments.

The	first	line	of	the	function	definition	is	called	the	header;	the	rest	is	called	the	body.
The	header	has	to	end	with	a	colon	and	the	body	has	to	be	indented.	By	convention,
indentation	is	always	four	spaces.	The	body	can	contain	any	number	of	statements.

The	strings	in	the	print	statements	are	enclosed	in	double	quotes.	Single	quotes	and	double
quotes	do	the	same	thing;	most	people	use	single	quotes	except	in	cases	like	this	where	a
single	quote	(which	is	also	an	apostrophe)	appears	in	the	string.

All	quotation	marks	(single	and	double)	must	be	“straight	quotes”,	usually	located	next	to
Enter	on	the	keyboard.	“Curly	quotes”,	like	the	ones	in	this	sentence,	are	not	legal	in
Python.

If	you	type	a	function	definition	in	interactive	mode,	the	interpreter	prints	dots	(...)	to	let
you	know	that	the	definition	isn’t	complete:

>>>	def	print_lyrics():

...					print("I'm	a	lumberjack,	and	I'm	okay.")

...					print("I	sleep	all	night	and	I	work	all	day.")

...

To	end	the	function,	you	have	to	enter	an	empty	line.

Defining	a	function	creates	a	function	object,	which	has	type	function:

>>>	print(print_lyrics)

<function	print_lyrics	at	0xb7e99e9c>

>>>	type(print_lyrics)

<class	'function'>

The	syntax	for	calling	the	new	function	is	the	same	as	for	built-in	functions:



>>>	print_lyrics()

I'm	a	lumberjack,	and	I'm	okay.

I	sleep	all	night	and	I	work	all	day.

Once	you	have	defined	a	function,	you	can	use	it	inside	another	function.	For	example,	to
repeat	the	previous	refrain,	we	could	write	a	function	called	repeat_lyrics:

def	repeat_lyrics():

				print_lyrics()

				print_lyrics()

And	then	call	repeat_lyrics:

>>>	repeat_lyrics()

I'm	a	lumberjack,	and	I'm	okay.

I	sleep	all	night	and	I	work	all	day.

I'm	a	lumberjack,	and	I'm	okay.

I	sleep	all	night	and	I	work	all	day.

But	that’s	not	really	how	the	song	goes.



Definitions	and	Uses
Pulling	together	the	code	fragments	from	the	previous	section,	the	whole	program	looks
like	this:

def	print_lyrics():

				print("I'm	a	lumberjack,	and	I'm	okay.")

				print("I	sleep	all	night	and	I	work	all	day.")

def	repeat_lyrics():

				print_lyrics()

				print_lyrics()

repeat_lyrics()

This	program	contains	two	function	definitions:	print_lyrics	and	repeat_lyrics.
Function	definitions	get	executed	just	like	other	statements,	but	the	effect	is	to	create
function	objects.	The	statements	inside	the	function	do	not	run	until	the	function	is	called,
and	the	function	definition	generates	no	output.

As	you	might	expect,	you	have	to	create	a	function	before	you	can	run	it.	In	other	words,
the	function	definition	has	to	run	before	the	function	gets	called.

As	an	exercise,	move	the	last	line	of	this	program	to	the	top,	so	the	function	call	appears
before	the	definitions.	Run	the	program	and	see	what	error	message	you	get.

Now	move	the	function	call	back	to	the	bottom	and	move	the	definition	of	print_lyrics
after	the	definition	of	repeat_lyrics.	What	happens	when	you	run	this	program?



Flow	of	Execution
To	ensure	that	a	function	is	defined	before	its	first	use,	you	have	to	know	the	order
statements	run	in,	which	is	called	the	flow	of	execution.

Execution	always	begins	at	the	first	statement	of	the	program.	Statements	are	run	one	at	a
time,	in	order	from	top	to	bottom.

Function	definitions	do	not	alter	the	flow	of	execution	of	the	program,	but	remember	that
statements	inside	the	function	don’t	run	until	the	function	is	called.

A	function	call	is	like	a	detour	in	the	flow	of	execution.	Instead	of	going	to	the	next
statement,	the	flow	jumps	to	the	body	of	the	function,	runs	the	statements	there,	and	then
comes	back	to	pick	up	where	it	left	off.

That	sounds	simple	enough,	until	you	remember	that	one	function	can	call	another.	While
in	the	middle	of	one	function,	the	program	might	have	to	run	the	statements	in	another
function.	Then,	while	running	that	new	function,	the	program	might	have	to	run	yet
another	function!

Fortunately,	Python	is	good	at	keeping	track	of	where	it	is,	so	each	time	a	function
completes,	the	program	picks	up	where	it	left	off	in	the	function	that	called	it.	When	it	gets
to	the	end	of	the	program,	it	terminates.

In	summary,	when	you	read	a	program,	you	don’t	always	want	to	read	from	top	to	bottom.
Sometimes	it	makes	more	sense	if	you	follow	the	flow	of	execution.



Parameters	and	Arguments
Some	of	the	functions	we	have	seen	require	arguments.	For	example,	when	you	call
math.sin	you	pass	a	number	as	an	argument.	Some	functions	take	more	than	one
argument:	math.pow	takes	two,	the	base	and	the	exponent.

Inside	the	function,	the	arguments	are	assigned	to	variables	called	parameters.	Here	is	a
definition	for	a	function	that	takes	an	argument:

def	print_twice(bruce):

				print(bruce)

				print(bruce)

This	function	assigns	the	argument	to	a	parameter	named	bruce.	When	the	function	is
called,	it	prints	the	value	of	the	parameter	(whatever	it	is)	twice.

This	function	works	with	any	value	that	can	be	printed:

>>>	print_twice('Spam')

Spam

Spam

>>>	print_twice(42)

42

42

>>>	print_twice(math.pi)

3.14159265359

3.14159265359

The	same	rules	of	composition	that	apply	to	built-in	functions	also	apply	to	programmer-
defined	functions,	so	we	can	use	any	kind	of	expression	as	an	argument	for	print_twice:

>>>	print_twice('Spam	'*4)

Spam	Spam	Spam	Spam

Spam	Spam	Spam	Spam

>>>	print_twice(math.cos(math.pi))

-1.0

-1.0

The	argument	is	evaluated	before	the	function	is	called,	so	in	the	examples	the	expressions
'Spam	'*4	and	math.cos(math.pi)	are	only	evaluated	once.

You	can	also	use	a	variable	as	an	argument:

>>>	michael	=	'Eric,	the	half	a	bee.'

>>>	print_twice(michael)

Eric,	the	half	a	bee.

Eric,	the	half	a	bee.

The	name	of	the	variable	we	pass	as	an	argument	(michael)	has	nothing	to	do	with	the
name	of	the	parameter	(bruce).	It	doesn’t	matter	what	the	value	was	called	back	home	(in
the	caller);	here	in	print_twice,	we	call	everybody	bruce.



Variables	and	Parameters	Are	Local
When	you	create	a	variable	inside	a	function,	it	is	local,	which	means	that	it	only	exists
inside	the	function.	For	example:

def	cat_twice(part1,	part2):

				cat	=	part1	+	part2

				print_twice(cat)

This	function	takes	two	arguments,	concatenates	them,	and	prints	the	result	twice.	Here	is
an	example	that	uses	it:

>>>	line1	=	'Bing	tiddle	'

>>>	line2	=	'tiddle	bang.'

>>>	cat_twice(line1,	line2)

Bing	tiddle	tiddle	bang.

Bing	tiddle	tiddle	bang.

When	cat_twice	terminates,	the	variable	cat	is	destroyed.	If	we	try	to	print	it,	we	get	an
exception:

>>>	print(cat)

NameError:	name	'cat'	is	not	defined

Parameters	are	also	local.	For	example,	outside	print_twice,	there	is	no	such	thing	as
bruce.



Stack	Diagrams
To	keep	track	of	which	variables	can	be	used	where,	it	is	sometimes	useful	to	draw	a	stack
diagram.	Like	state	diagrams,	stack	diagrams	show	the	value	of	each	variable,	but	they
also	show	the	function	each	variable	belongs	to.

Each	function	is	represented	by	a	frame.	A	frame	is	a	box	with	the	name	of	a	function
beside	it	and	the	parameters	and	variables	of	the	function	inside	it.	The	stack	diagram	for
the	previous	example	is	shown	in	Figure	3-1.

Figure	3-1.	Stack	diagram.

The	frames	are	arranged	in	a	stack	that	indicates	which	function	called	which,	and	so	on.
In	this	example,	print_twice	was	called	by	cat_twice,	and	cat_twice	was	called	by
__main__,	which	is	a	special	name	for	the	topmost	frame.	When	you	create	a	variable
outside	of	any	function,	it	belongs	to	__main__.

Each	parameter	refers	to	the	same	value	as	its	corresponding	argument.	So,	part1	has	the
same	value	as	line1,	part2	has	the	same	value	as	line2,	and	bruce	has	the	same	value	as
cat.

If	an	error	occurs	during	a	function	call,	Python	prints	the	name	of	the	function,	the	name
of	the	function	that	called	it,	and	the	name	of	the	function	that	called	that,	all	the	way	back
to	__main__.

For	example,	if	you	try	to	access	cat	from	within	print_twice,	you	get	a	NameError:

Traceback	(innermost	last):

		File	"test.py",	line	13,	in	__main__

				cat_twice(line1,	line2)

		File	"test.py",	line	5,	in	cat_twice

				print_twice(cat)

		File	"test.py",	line	9,	in	print_twice



				print(cat)

NameError:	name	'cat'	is	not	defined

This	list	of	functions	is	called	a	traceback.	It	tells	you	what	program	file	the	error
occurred	in,	and	what	line,	and	what	functions	were	executing	at	the	time.	It	also	shows
the	line	of	code	that	caused	the	error.

The	order	of	the	functions	in	the	traceback	is	the	same	as	the	order	of	the	frames	in	the
stack	diagram.	The	function	that	is	currently	running	is	at	the	bottom.



Fruitful	Functions	and	Void	Functions
Some	of	the	functions	we	have	used,	such	as	the	math	functions,	return	results;	for	lack	of
a	better	name,	I	call	them	fruitful	functions.	Other	functions,	like	print_twice,	perform
an	action	but	don’t	return	a	value.	They	are	called	void	functions.

When	you	call	a	fruitful	function,	you	almost	always	want	to	do	something	with	the	result;
for	example,	you	might	assign	it	to	a	variable	or	use	it	as	part	of	an	expression:

x	=	math.cos(radians)

golden	=	(math.sqrt(5)	+	1)	/	2

When	you	call	a	function	in	interactive	mode,	Python	displays	the	result:

>>>	math.sqrt(5)

2.2360679774997898

But	in	a	script,	if	you	call	a	fruitful	function	all	by	itself,	the	return	value	is	lost	forever!

math.sqrt(5)

This	script	computes	the	square	root	of	5,	but	since	it	doesn’t	store	or	display	the	result,	it
is	not	very	useful.

Void	functions	might	display	something	on	the	screen	or	have	some	other	effect,	but	they
don’t	have	a	return	value.	If	you	assign	the	result	to	a	variable,	you	get	a	special	value
called	None:

>>>	result	=	print_twice('Bing')

Bing

Bing

>>>	print(result)

None

The	value	None	is	not	the	same	as	the	string	'None'.	It	is	a	special	value	that	has	its	own
type:

>>>	print(type(None))

<class	'NoneType'>

The	functions	we	have	written	so	far	are	all	void.	We	will	start	writing	fruitful	functions	in
a	few	chapters.



Why	Functions?
It	may	not	be	clear	why	it	is	worth	the	trouble	to	divide	a	program	into	functions.	There
are	several	reasons:

Creating	a	new	function	gives	you	an	opportunity	to	name	a	group	of	statements,	which
makes	your	program	easier	to	read	and	debug.

Functions	can	make	a	program	smaller	by	eliminating	repetitive	code.	Later,	if	you
make	a	change,	you	only	have	to	make	it	in	one	place.

Dividing	a	long	program	into	functions	allows	you	to	debug	the	parts	one	at	a	time	and
then	assemble	them	into	a	working	whole.

Well-designed	functions	are	often	useful	for	many	programs.	Once	you	write	and
debug	one,	you	can	reuse	it.



Debugging
One	of	the	most	important	skills	you	will	acquire	is	debugging.	Although	it	can	be
frustrating,	debugging	is	one	of	the	most	intellectually	rich,	challenging,	and	interesting
parts	of	programming.

In	some	ways	debugging	is	like	detective	work.	You	are	confronted	with	clues	and	you
have	to	infer	the	processes	and	events	that	led	to	the	results	you	see.

Debugging	is	also	like	an	experimental	science.	Once	you	have	an	idea	about	what	is
going	wrong,	you	modify	your	program	and	try	again.	If	your	hypothesis	was	correct,	you
can	predict	the	result	of	the	modification,	and	you	take	a	step	closer	to	a	working	program.
If	your	hypothesis	was	wrong,	you	have	to	come	up	with	a	new	one.	As	Sherlock	Holmes
pointed	out,	“When	you	have	eliminated	the	impossible,	whatever	remains,	however
improbable,	must	be	the	truth.”	(A.	Conan	Doyle,	The	Sign	of	Four).

For	some	people,	programming	and	debugging	are	the	same	thing.	That	is,	programming
is	the	process	of	gradually	debugging	a	program	until	it	does	what	you	want.	The	idea	is
that	you	should	start	with	a	working	program	and	make	small	modifications,	debugging
them	as	you	go.

For	example,	Linux	is	an	operating	system	that	contains	millions	of	lines	of	code,	but	it
started	out	as	a	simple	program	Linus	Torvalds	used	to	explore	the	Intel	80386	chip.
According	to	Larry	Greenfield,	“One	of	Linus’s	earlier	projects	was	a	program	that	would
switch	between	printing	AAAA	and	BBBB.	This	later	evolved	to	Linux.”	(The	Linux
Users’	Guide	Beta	Version	1).



Glossary
function:

A	named	sequence	of	statements	that	performs	some	useful	operation.	Functions	may
or	may	not	take	arguments	and	may	or	may	not	produce	a	result.

function	definition:

A	statement	that	creates	a	new	function,	specifying	its	name,	parameters,	and	the
statements	it	contains.

function	object:

A	value	created	by	a	function	definition.	The	name	of	the	function	is	a	variable	that
refers	to	a	function	object.

header:

The	first	line	of	a	function	definition.

body:

The	sequence	of	statements	inside	a	function	definition.

parameter:

A	name	used	inside	a	function	to	refer	to	the	value	passed	as	an	argument.

function	call:

A	statement	that	runs	a	function.	It	consists	of	the	function	name	followed	by	an
argument	list	in	parentheses.

argument:

A	value	provided	to	a	function	when	the	function	is	called.	This	value	is	assigned	to
the	corresponding	parameter	in	the	function.

local	variable:

A	variable	defined	inside	a	function.	A	local	variable	can	only	be	used	inside	its
function.

return	value:

The	result	of	a	function.	If	a	function	call	is	used	as	an	expression,	the	return	value	is
the	value	of	the	expression.

fruitful	function:

A	function	that	returns	a	value.

void	function:

A	function	that	always	returns	None.

None:



A	special	value	returned	by	void	functions.

module:

A	file	that	contains	a	collection	of	related	functions	and	other	definitions.

import	statement:

A	statement	that	reads	a	module	file	and	creates	a	module	object.

module	object:

A	value	created	by	an	import	statement	that	provides	access	to	the	values	defined	in
a	module.

dot	notation:

The	syntax	for	calling	a	function	in	another	module	by	specifying	the	module	name
followed	by	a	dot	(period)	and	the	function	name.

composition:

Using	an	expression	as	part	of	a	larger	expression,	or	a	statement	as	part	of	a	larger
statement.

flow	of	execution:

The	order	statements	run	in.

stack	diagram:

A	graphical	representation	of	a	stack	of	functions,	their	variables,	and	the	values	they
refer	to.

frame:

A	box	in	a	stack	diagram	that	represents	a	function	call.	It	contains	the	local	variables
and	parameters	of	the	function.

traceback:

A	list	of	the	functions	that	are	executing,	printed	when	an	exception	occurs.



Exercises
Exercise	3-1.

Write	a	function	named	right_justify	that	takes	a	string	named	s	as	a	parameter	and
prints	the	string	with	enough	leading	spaces	so	that	the	last	letter	of	the	string	is	in	column
70	of	the	display:
>>>	right_justify('monty')

																																																																	monty

Hint:	Use	string	concatenation	and	repetition.	Also,	Python	provides	a	built-in	function
called	len	that	returns	the	length	of	a	string,	so	the	value	of	len('monty')	is	5.

Exercise	3-2.

A	function	object	is	a	value	you	can	assign	to	a	variable	or	pass	as	an	argument.	For
example,	do_twice	is	a	function	that	takes	a	function	object	as	an	argument	and	calls	it
twice:
def	do_twice(f):

				f()

				f()

Here’s	an	example	that	uses	do_twice	to	call	a	function	named	print_spam	twice:
def	print_spam():

				print('spam')

do_twice(print_spam)

1.	 Type	this	example	into	a	script	and	test	it.

2.	 Modify	do_twice	so	that	it	takes	two	arguments,	a	function	object	and	a	value,	and
calls	the	function	twice,	passing	the	value	as	an	argument.

3.	 Copy	the	definition	of	print_twice	from	earlier	in	this	chapter	to	your	script.

4.	 Use	the	modified	version	of	do_twice	to	call	print_twice	twice,	passing	'spam'	as
an	argument.

5.	 Define	a	new	function	called	do_four	that	takes	a	function	object	and	a	value	and
calls	the	function	four	times,	passing	the	value	as	a	parameter.	There	should	be	only
two	statements	in	the	body	of	this	function,	not	four.

Solution:	http://thinkpython2.com/code/do_four.py.

Exercise	3-3.

Note:	This	exercise	should	be	done	using	only	the	statements	and	other	features	we	have
learned	so	far.

1.	 Write	a	function	that	draws	a	grid	like	the	following:
+	-	-	-	-	+	-	-	-	-	+

|									|									|

|									|									|

|									|									|

|									|									|

http://thinkpython2.com/code/do_four.py


+	-	-	-	-	+	-	-	-	-	+

|									|									|

|									|									|

|									|									|

|									|									|

+	-	-	-	-	+	-	-	-	-	+

Hint:	to	print	more	than	one	value	on	a	line,	you	can	print	a	comma-separated
sequence	of	values:
print('+',	'-')

By	default,	print	advances	to	the	next	line,	but	you	can	override	that	behavior	and
put	a	space	at	the	end,	like	this:
print('+',	end='	')

print('-')

The	output	of	these	statements	is	'+	-'.	
A	print	statement	with	no	argument	ends	the	current	line	and	goes	to	the	next	line.

2.	 Write	a	function	that	draws	a	similar	grid	with	four	rows	and	four	columns.

Solution:	http://thinkpython2.com/code/grid.py.	Credit:	This	exercise	is	based	on	an
exercise	in	Oualline,	Practical	C	Programming,	Third	Edition,	O’Reilly	Media,	1997.

http://thinkpython2.com/code/grid.py




Chapter	4.	Case	Study:	Interface	Design

This	chapter	presents	a	case	study	that	demonstrates	a	process	for	designing	functions	that
work	together.

It	introduces	the	turtle	module,	which	allows	you	to	create	images	using	turtle	graphics.
The	turtle	module	is	included	in	most	Python	installations,	but	if	you	are	running	Python
using	PythonAnywhere,	you	won’t	be	able	to	run	the	turtle	examples	(at	least	you	couldn’t
when	I	wrote	this).

If	you	have	already	installed	Python	on	your	computer,	you	should	be	able	to	run	the
examples.	Otherwise,	now	is	a	good	time	to	install.	I	have	posted	instructions	at
http://tinyurl.com/thinkpython2e.

Code	examples	from	this	chapter	are	available	from
http://thinkpython2.com/code/polygon.py.

http://tinyurl.com/thinkpython2e
http://thinkpython2.com/code/polygon.py


The	turtle	Module
To	check	whether	you	have	the	turtle	module,	open	the	Python	interpreter	and	type:

>>>	import	turtle

>>>	bob	=	turtle.Turtle()

When	you	run	this	code,	it	should	create	a	new	window	with	a	small	arrow	that	represents
the	turtle.	Close	the	window.

Create	a	file	named	mypolygon.py	and	type	in	the	following	code:

import	turtle

bob	=	turtle.Turtle()

print(bob)

turtle.mainloop()

The	turtle	module	(with	a	lowercase	t)	provides	a	function	called	Turtle	(with	an
uppercase	T)	that	creates	a	Turtle	object,	which	we	assign	to	a	variable	named	bob.
Printing	bob	displays	something	like:

<turtle.Turtle	object	at	0xb7bfbf4c>

This	means	that	bob	refers	to	an	object	with	type	Turtle	as	defined	in	module	turtle.

mainloop	tells	the	window	to	wait	for	the	user	to	do	something,	although	in	this	case
there’s	not	much	for	the	user	to	do	except	close	the	window.

Once	you	create	a	Turtle,	you	can	call	a	method	to	move	it	around	the	window.	A	method
is	similar	to	a	function,	but	it	uses	slightly	different	syntax.	For	example,	to	move	the
turtle	forward:

bob.fd(100)

The	method,	fd,	is	associated	with	the	turtle	object	we’re	calling	bob.	Calling	a	method	is
like	making	a	request:	you	are	asking	bob	to	move	forward.

The	argument	of	fd	is	a	distance	in	pixels,	so	the	actual	size	depends	on	your	display.

Other	methods	you	can	call	on	a	Turtle	are	bk	to	move	backward,	lt	for	left	turn,	and	rt
right	turn.	The	argument	for	lt	and	rt	is	an	angle	in	degrees.

Also,	each	Turtle	is	holding	a	pen,	which	is	either	down	or	up;	if	the	pen	is	down,	the
Turtle	leaves	a	trail	when	it	moves.	The	methods	pu	and	pd	stand	for	“pen	up”	and	“pen
down”.

To	draw	a	right	angle,	add	these	lines	to	the	program	(after	creating	bob	and	before	calling
mainloop):

bob.fd(100)



bob.lt(90)

bob.fd(100)

When	you	run	this	program,	you	should	see	bob	move	east	and	then	north,	leaving	two
line	segments	behind.

Now	modify	the	program	to	draw	a	square.	Don’t	go	on	until	you’ve	got	it	working!



Simple	Repetition
Chances	are	you	wrote	something	like	this:

bob.fd(100)

bob.lt(90)

bob.fd(100)

bob.lt(90)

bob.fd(100)

bob.lt(90)

bob.fd(100)

We	can	do	the	same	thing	more	concisely	with	a	for	statement.	Add	this	example	to
mypolygon.py	and	run	it	again:

for	i	in	range(4):

				print('Hello!')

You	should	see	something	like	this:

Hello!

Hello!

Hello!

Hello!

This	is	the	simplest	use	of	the	for	statement;	we	will	see	more	later.	But	that	should	be
enough	to	let	you	rewrite	your	square-drawing	program.	Don’t	go	on	until	you	do.

Here	is	a	for	statement	that	draws	a	square:

for	i	in	range(4):

				bob.fd(100)

				bob.lt(90)

The	syntax	of	a	for	statement	is	similar	to	a	function	definition.	It	has	a	header	that	ends
with	a	colon	and	an	indented	body.	The	body	can	contain	any	number	of	statements.

A	for	statement	is	also	called	a	loop	because	the	flow	of	execution	runs	through	the	body
and	then	loops	back	to	the	top.	In	this	case,	it	runs	the	body	four	times.

This	version	is	actually	a	little	different	from	the	previous	square-drawing	code	because	it
makes	another	turn	after	drawing	the	last	side	of	the	square.	The	extra	turn	takes	more
time,	but	it	simplifies	the	code	if	we	do	the	same	thing	every	time	through	the	loop.	This
version	also	has	the	effect	of	leaving	the	turtle	back	in	the	starting	position,	facing	in	the
starting	direction.



Exercises
The	following	is	a	series	of	exercises	using	TurtleWorld.	They	are	meant	to	be	fun,	but
they	have	a	point,	too.	While	you	are	working	on	them,	think	about	what	the	point	is.

The	following	sections	have	solutions	to	the	exercises,	so	don’t	look	until	you	have
finished	(or	at	least	tried).

1.	 Write	a	function	called	square	that	takes	a	parameter	named	t,	which	is	a	turtle.	It
should	use	the	turtle	to	draw	a	square.	
Write	a	function	call	that	passes	bob	as	an	argument	to	square,	and	then	run	the
program	again.

2.	 Add	another	parameter,	named	length,	to	square.	Modify	the	body	so	length	of	the
sides	is	length,	and	then	modify	the	function	call	to	provide	a	second	argument.	Run
the	program	again.	Test	your	program	with	a	range	of	values	for	length.

3.	 Make	a	copy	of	square	and	change	the	name	to	polygon.	Add	another	parameter
named	n	and	modify	the	body	so	it	draws	an	n-sided	regular	polygon.
Hint:	The	exterior	angles	of	an	n-sided	regular	polygon	are	360/n	degrees.

4.	 Write	a	function	called	circle	that	takes	a	turtle,	t,	and	radius,	r,	as	parameters	and
that	draws	an	approximate	circle	by	calling	polygon	with	an	appropriate	length	and
number	of	sides.	Test	your	function	with	a	range	of	values	of	r.
Hint:	figure	out	the	circumference	of	the	circle	and	make	sure	that	length	*	n	=
circumference.

5.	 Make	a	more	general	version	of	circle	called	arc	that	takes	an	additional	parameter
angle,	which	determines	what	fraction	of	a	circle	to	draw.	angle	is	in	units	of
degrees,	so	when	angle=360,	arc	should	draw	a	complete	circle.



Encapsulation
The	first	exercise	asks	you	to	put	your	square-drawing	code	into	a	function	definition	and
then	call	the	function,	passing	the	turtle	as	a	parameter.	Here	is	a	solution:

def	square(t):

				for	i	in	range(4):

								t.fd(100)

								t.lt(90)

square(bob)

The	innermost	statements,	fd	and	lt,	are	indented	twice	to	show	that	they	are	inside	the
for	loop,	which	is	inside	the	function	definition.	The	next	line,	square(bob),	is	flush	with
the	left	margin,	which	indicates	the	end	of	both	the	for	loop	and	the	function	definition.

Inside	the	function,	t	refers	to	the	same	turtle	bob,	so	t.lt(90)	has	the	same	effect	as
bob.lt(90).	In	that	case,	why	not	call	the	parameter	bob?	The	idea	is	that	t	can	be	any
turtle,	not	just	bob,	so	you	could	create	a	second	turtle	and	pass	it	as	an	argument	to
square:

alice	=	Turtle()

square(alice)

Wrapping	a	piece	of	code	up	in	a	function	is	called	encapsulation.	One	of	the	benefits	of
encapsulation	is	that	it	attaches	a	name	to	the	code,	which	serves	as	a	kind	of
documentation.	Another	advantage	is	that	if	you	reuse	the	code,	it	is	more	concise	to	call	a
function	twice	than	to	copy	and	paste	the	body!



Generalization
The	next	step	is	to	add	a	length	parameter	to	square.	Here	is	a	solution:

def	square(t,	length):

				for	i	in	range(4):

								t.fd(length)

								t.lt(90)

square(bob,	100)

Adding	a	parameter	to	a	function	is	called	generalization	because	it	makes	the	function
more	general:	in	the	previous	version,	the	square	is	always	the	same	size;	in	this	version	it
can	be	any	size.

The	next	step	is	also	a	generalization.	Instead	of	drawing	squares,	polygon	draws	regular
polygons	with	any	number	of	sides.	Here	is	a	solution:

def	polygon(t,	n,	length):

				angle	=	360	/	n

				for	i	in	range(n):

								t.fd(length)

								t.lt(angle)

polygon(bob,	7,	70)

This	example	draws	a	7-sided	polygon	with	side	length	70.

If	you	are	using	Python	2,	the	value	of	angle	might	be	off	because	of	integer	division.	A
simple	solution	is	to	compute	angle	=	360.0	/	n.	Because	the	numerator	is	a	floating-
point	number,	the	result	is	floating	point.

When	a	function	has	more	than	a	few	numeric	arguments,	it	is	easy	to	forget	what	they
are,	or	what	order	they	should	be	in.	In	that	case	it	is	often	a	good	idea	to	include	the
names	of	the	parameters	in	the	argument	list:

polygon(bob,	n=7,	length=70)

These	are	called	keyword	arguments	because	they	include	the	parameter	names	as
“keywords”	(not	to	be	confused	with	Python	keywords	like	while	and	def).

This	syntax	makes	the	program	more	readable.	It	is	also	a	reminder	about	how	arguments
and	parameters	work:	when	you	call	a	function,	the	arguments	are	assigned	to	the
parameters.



Interface	Design
The	next	step	is	to	write	circle,	which	takes	a	radius,	r,	as	a	parameter.	Here	is	a	simple
solution	that	uses	polygon	to	draw	a	50-sided	polygon:

import	math

def	circle(t,	r):

				circumference	=	2	*	math.pi	*	r

				n	=	50

				length	=	circumference	/	n

				polygon(t,	n,	length)

The	first	line	computes	the	circumference	of	a	circle	with	radius	r	using	the	formula	 .
Since	we	use	math.pi,	we	have	to	import	math.	By	convention,	import	statements	are
usually	at	the	beginning	of	the	script.

n	is	the	number	of	line	segments	in	our	approximation	of	a	circle,	so	length	is	the	length
of	each	segment.	Thus,	polygon	draws	a	50-sided	polygon	that	approximates	a	circle	with
radius	r.

One	limitation	of	this	solution	is	that	n	is	a	constant,	which	means	that	for	very	big	circles,
the	line	segments	are	too	long,	and	for	small	circles,	we	waste	time	drawing	very	small
segments.	One	solution	would	be	to	generalize	the	function	by	taking	n	as	a	parameter.
This	would	give	the	user	(whoever	calls	circle)	more	control,	but	the	interface	would	be
less	clean.

The	interface	of	a	function	is	a	summary	of	how	it	is	used:	what	are	the	parameters?	What
does	the	function	do?	And	what	is	the	return	value?	An	interface	is	“clean”	if	it	allows	the
caller	to	do	what	they	want	without	dealing	with	unnecessary	details.

In	this	example,	r	belongs	in	the	interface	because	it	specifies	the	circle	to	be	drawn.	n	is
less	appropriate	because	it	pertains	to	the	details	of	how	the	circle	should	be	rendered.

Rather	than	clutter	up	the	interface,	it	is	better	to	choose	an	appropriate	value	of	n
depending	on	circumference:

def	circle(t,	r):

				circumference	=	2	*	math.pi	*	r

				n	=	int(circumference	/	3)	+	1

				length	=	circumference	/	n

				polygon(t,	n,	length)

Now	the	number	of	segments	is	an	integer	near	circumference/3,	so	the	length	of	each
segment	is	approximately	3,	which	is	small	enough	that	the	circles	look	good,	but	big
enough	to	be	efficient,	and	acceptable	for	any	size	circle.



Refactoring
When	I	wrote	circle,	I	was	able	to	reuse	polygon	because	a	many-sided	polygon	is	a
good	approximation	of	a	circle.	But	arc	is	not	as	cooperative;	we	can’t	use	polygon	or
circle	to	draw	an	arc.

One	alternative	is	to	start	with	a	copy	of	polygon	and	transform	it	into	arc.	The	result
might	look	like	this:

def	arc(t,	r,	angle):

				arc_length	=	2	*	math.pi	*	r	*	angle	/	360

				n	=	int(arc_length	/	3)	+	1

				step_length	=	arc_length	/	n

				step_angle	=	angle	/	n

				

				for	i	in	range(n):

								t.fd(step_length)

								t.lt(step_angle)

The	second	half	of	this	function	looks	like	polygon,	but	we	can’t	reuse	polygon	without
changing	the	interface.	We	could	generalize	polygon	to	take	an	angle	as	a	third	argument,
but	then	polygon	would	no	longer	be	an	appropriate	name!	Instead,	let’s	call	the	more
general	function	polyline:

def	polyline(t,	n,	length,	angle):

				for	i	in	range(n):

								t.fd(length)

								t.lt(angle)

Now	we	can	rewrite	polygon	and	arc	to	use	polyline:

def	polygon(t,	n,	length):

				angle	=	360.0	/	n

				polyline(t,	n,	length,	angle)

def	arc(t,	r,	angle):

				arc_length	=	2	*	math.pi	*	r	*	angle	/	360

				n	=	int(arc_length	/	3)	+	1

				step_length	=	arc_length	/	n

				step_angle	=	float(angle)	/	n

				polyline(t,	n,	step_length,	step_angle)

Finally,	we	can	rewrite	circle	to	use	arc:

def	circle(t,	r):

				arc(t,	r,	360)

This	process	—	rearranging	a	program	to	improve	interfaces	and	facilitate	code	reuse	—	is
called	refactoring.	In	this	case,	we	noticed	that	there	was	similar	code	in	arc	and
polygon,	so	we	“factored	it	out”	into	polyline.

If	we	had	planned	ahead,	we	might	have	written	polyline	first	and	avoided	refactoring,
but	often	you	don’t	know	enough	at	the	beginning	of	a	project	to	design	all	the	interfaces.
Once	you	start	coding,	you	understand	the	problem	better.	Sometimes	refactoring	is	a	sign



that	you	have	learned	something.



A	Development	Plan
A	development	plan	is	a	process	for	writing	programs.	The	process	we	used	in	this	case
study	is	“encapsulation	and	generalization”.	The	steps	of	this	process	are:

1.	 Start	by	writing	a	small	program	with	no	function	definitions.

2.	 Once	you	get	the	program	working,	identify	a	coherent	piece	of	it,	encapsulate	the
piece	in	a	function	and	give	it	a	name.

3.	 Generalize	the	function	by	adding	appropriate	parameters.

4.	 Repeat	steps	1–3	until	you	have	a	set	of	working	functions.	Copy	and	paste	working
code	to	avoid	retyping	(and	re-debugging).

5.	 Look	for	opportunities	to	improve	the	program	by	refactoring.	For	example,	if	you
have	similar	code	in	several	places,	consider	factoring	it	into	an	appropriately
general	function.

This	process	has	some	drawbacks	—	we	will	see	alternatives	later	—	but	it	can	be	useful	if
you	don’t	know	ahead	of	time	how	to	divide	the	program	into	functions.	This	approach
lets	you	design	as	you	go	along.



docstring
A	docstring	is	a	string	at	the	beginning	of	a	function	that	explains	the	interface	(“doc”	is
short	for	“documentation”).	Here	is	an	example:

def	polyline(t,	n,	length,	angle):

				"""Draws	n	line	segments	with	the	given	length	and

				angle	(in	degrees)	between	them.		t	is	a	turtle.

				"""				

				for	i	in	range(n):

								t.fd(length)

								t.lt(angle)

By	convention,	all	docstrings	are	triple-quoted	strings,	also	known	as	multiline	strings
because	the	triple	quotes	allow	the	string	to	span	more	than	one	line.

It	is	terse,	but	it	contains	the	essential	information	someone	would	need	to	use	this
function.	It	explains	concisely	what	the	function	does	(without	getting	into	the	details	of
how	it	does	it).	It	explains	what	effect	each	parameter	has	on	the	behavior	of	the	function
and	what	type	each	parameter	should	be	(if	it	is	not	obvious).

Writing	this	kind	of	documentation	is	an	important	part	of	interface	design.	A	well-
designed	interface	should	be	simple	to	explain;	if	you	have	a	hard	time	explaining	one	of
your	functions,	maybe	the	interface	could	be	improved.



Debugging
An	interface	is	like	a	contract	between	a	function	and	a	caller.	The	caller	agrees	to	provide
certain	parameters	and	the	function	agrees	to	do	certain	work.

For	example,	polyline	requires	four	arguments:	t	has	to	be	a	Turtle;	n	has	to	be	an
integer;	length	should	be	a	positive	number;	and	angle	has	to	be	a	number,	which	is
understood	to	be	in	degrees.

These	requirements	are	called	preconditions	because	they	are	supposed	to	be	true	before
the	function	starts	executing.	Conversely,	conditions	at	the	end	of	the	function	are
postconditions.	Postconditions	include	the	intended	effect	of	the	function	(like	drawing
line	segments)	and	any	side	effects	(like	moving	the	Turtle	or	making	other	changes).

Preconditions	are	the	responsibility	of	the	caller.	If	the	caller	violates	a	(properly
documented!)	precondition	and	the	function	doesn’t	work	correctly,	the	bug	is	in	the
caller,	not	the	function.

If	the	preconditions	are	satisfied	and	the	postconditions	are	not,	the	bug	is	in	the	function.
If	your	pre-	and	postconditions	are	clear,	they	can	help	with	debugging.



Glossary
method:

A	function	that	is	associated	with	an	object	and	called	using	dot	notation.

loop:

A	part	of	a	program	that	can	run	repeatedly.

encapsulation:

The	process	of	transforming	a	sequence	of	statements	into	a	function	definition.

generalization:

The	process	of	replacing	something	unnecessarily	specific	(like	a	number)	with
something	appropriately	general	(like	a	variable	or	parameter).

keyword	argument:

An	argument	that	includes	the	name	of	the	parameter	as	a	“keyword”.

interface:

A	description	of	how	to	use	a	function,	including	the	name	and	descriptions	of	the
arguments	and	return	value.

refactoring:

The	process	of	modifying	a	working	program	to	improve	function	interfaces	and
other	qualities	of	the	code.

development	plan:

A	process	for	writing	programs.

docstring:

A	string	that	appears	at	the	top	of	a	function	definition	to	document	the	function’s
interface.

precondition:

A	requirement	that	should	be	satisfied	by	the	caller	before	a	function	starts.

postcondition:

A	requirement	that	should	be	satisfied	by	the	function	before	it	ends.



Exercises
Exercise	4-1.

Download	the	code	in	this	chapter	from	http://thinkpython2.com/code/polygon.py.

1.	 Draw	a	stack	diagram	that	shows	the	state	of	the	program	while	executing
circle(bob,	radius).	You	can	do	the	arithmetic	by	hand	or	add	print	statements
to	the	code.

2.	 The	version	of	arc	in	“Refactoring”	is	not	very	accurate	because	the	linear
approximation	of	the	circle	is	always	outside	the	true	circle.	As	a	result,	the	Turtle
ends	up	a	few	pixels	away	from	the	correct	destination.	My	solution	shows	a	way	to
reduce	the	effect	of	this	error.	Read	the	code	and	see	if	it	makes	sense	to	you.	If	you
draw	a	diagram,	you	might	see	how	it	works.

Exercise	4-2.

Write	an	appropriately	general	set	of	functions	that	can	draw	flowers	as	in	Figure	4-1.

Figure	4-1.	Turtle	flowers.

Solution:	http://thinkpython2.com/code/flower.py,	also	requires
http://thinkpython2.com/code/polygon.py.

Exercise	4-3.

Write	an	appropriately	general	set	of	functions	that	can	draw	shapes	as	in	Figure	4-2.

http://thinkpython2.com/code/polygon.py
http://thinkpython2.com/code/flower.py
http://thinkpython2.com/code/polygon.py


Figure	4-2.	Turtle	pies.

Solution:	http://thinkpython2.com/code/pie.py.

Exercise	4-4.

The	letters	of	the	alphabet	can	be	constructed	from	a	moderate	number	of	basic	elements,
like	vertical	and	horizontal	lines	and	a	few	curves.	Design	an	alphabet	that	can	be	drawn
with	a	minimal	number	of	basic	elements	and	then	write	functions	that	draw	the	letters.

You	should	write	one	function	for	each	letter,	with	names	draw_a,	draw_b,	etc.,	and	put
your	functions	in	a	file	named	letters.py.	You	can	download	a	“turtle	typewriter”	from
http://thinkpython2.com/code/typewriter.py	to	help	you	test	your	code.

You	can	get	a	solution	from	http://thinkpython2.com/code/letters.py;	it	also	requires
http://thinkpython2.com/code/polygon.py.

Exercise	4-5.

Read	about	spirals	at	http://en.wikipedia.org/wiki/Spiral;	then	write	a	program	that	draws
an	Archimedian	spiral	(or	one	of	the	other	kinds).

Solution:	http://thinkpython2.com/code/spiral.py.

http://thinkpython2.com/code/pie.py
http://thinkpython2.com/code/typewriter.py
http://thinkpython2.com/code/letters.py
http://thinkpython2.com/code/polygon.py
http://en.wikipedia.org/wiki/Spiral
http://thinkpython2.com/code/spiral.py




Chapter	5.	Conditionals	and	Recursion

The	main	topic	of	this	chapter	is	the	if	statement,	which	executes	different	code
depending	on	the	state	of	the	program.	But	first	I	want	to	introduce	two	new	operators:
floor	division	and	modulus.



Floor	Division	and	Modulus
The	floor	division	operator,	//,	divides	two	numbers	and	rounds	down	to	an	integer.	For
example,	suppose	the	run	time	of	a	movie	is	105	minutes.	You	might	want	to	know	how
long	that	is	in	hours.	Conventional	division	returns	a	floating-point	number:

>>>	minutes	=	105

>>>	minutes	/	60

1.75

But	we	don’t	normally	write	hours	with	decimal	points.	Floor	division	returns	the	integer
number	of	hours,	dropping	the	fraction	part:

>>>	minutes	=	105

>>>	hours	=	minutes	//	60

>>>	hours

1

To	get	the	remainder,	you	could	subtract	off	one	hour	in	minutes:

>>>	remainder	=	minutes	-	hours	*	60

>>>	remainder

45

An	alternative	is	to	use	the	modulus	operator,	%,	which	divides	two	numbers	and	returns
the	remainder:

>>>	remainder	=	minutes	%	60

>>>	remainder

45

The	modulus	operator	is	more	useful	than	it	seems.	For	example,	you	can	check	whether
one	number	is	divisible	by	another	—	if	x	%	y	is	zero,	then	x	is	divisible	by	y.

Also,	you	can	extract	the	right-most	digit	or	digits	from	a	number.	For	example,	x	%	10
yields	the	right-most	digit	of	x	(in	base	10).	Similarly	x	%	100	yields	the	last	two	digits.

If	you	are	using	Python	2,	division	works	differently.	The	division	operator,	/,	performs
floor	division	if	both	operands	are	integers,	and	floating-point	division	if	either	operand	is
a	float.



Boolean	Expressions
A	boolean	expression	is	an	expression	that	is	either	true	or	false.	The	following	examples
use	the	operator	==,	which	compares	two	operands	and	produces	True	if	they	are	equal
and	False	otherwise:

>>>	5	==	5

True

>>>	5	==	6

False

True	and	False	are	special	values	that	belong	to	the	type	bool;	they	are	not	strings:

>>>	type(True)

<class	'bool'>

>>>	type(False)

<class	'bool'>

The	==	operator	is	one	of	the	relational	operators;	the	others	are:

						x	!=	y															#	x	is	not	equal	to	y

						x	>	y																#	x	is	greater	than	y

						x	<	y																#	x	is	less	than	y

						x	>=	y															#	x	is	greater	than	or	equal	to	y

						x	<=	y															#	x	is	less	than	or	equal	to	y

Although	these	operations	are	probably	familiar	to	you,	the	Python	symbols	are	different
from	the	mathematical	symbols.	A	common	error	is	to	use	a	single	equal	sign	(=)	instead
of	a	double	equal	sign	(==).	Remember	that	=	is	an	assignment	operator	and	==	is	a
relational	operator.	There	is	no	such	thing	as	=<	or	=>.



Logical	Operators
There	are	three	logical	operators:	and,	or,	and	not.	The	semantics	(meaning)	of	these
operators	is	similar	to	their	meaning	in	English.	For	example,	x	>	0	and	x	<	10	is	true
only	if	x	is	greater	than	0	and	less	than	10.

n%2	==	0	or	n%3	==	0	is	true	if	either	or	both	of	the	conditions	is	true,	that	is,	if	the
number	is	divisible	by	2	or	3.

Finally,	the	not	operator	negates	a	boolean	expression,	so	not	(x	>	y)	is	true	if	x	>	y	is
false,	that	is,	if	x	is	less	than	or	equal	to	y.

Strictly	speaking,	the	operands	of	the	logical	operators	should	be	boolean	expressions,	but
Python	is	not	very	strict.	Any	nonzero	number	is	interpreted	as	True:

>>>	42	and	True

True

This	flexibility	can	be	useful,	but	there	are	some	subtleties	to	it	that	might	be	confusing.
You	might	want	to	avoid	it	(unless	you	know	what	you	are	doing).



Conditional	Execution
In	order	to	write	useful	programs,	we	almost	always	need	the	ability	to	check	conditions
and	change	the	behavior	of	the	program	accordingly.	Conditional	statements	give	us	this
ability.	The	simplest	form	is	the	if	statement:

if	x	>	0:

				print('x	is	positive')

The	boolean	expression	after	if	is	called	the	condition.	If	it	is	true,	the	indented	statement
runs.	If	not,	nothing	happens.

if	statements	have	the	same	structure	as	function	definitions:	a	header	followed	by	an
indented	body.	Statements	like	this	are	called	compound	statements.

There	is	no	limit	on	the	number	of	statements	that	can	appear	in	the	body,	but	there	has	to
be	at	least	one.	Occasionally,	it	is	useful	to	have	a	body	with	no	statements	(usually	as	a
place	keeper	for	code	you	haven’t	written	yet).	In	that	case,	you	can	use	the	pass
statement,	which	does	nothing.

if	x	<	0:

				pass										#	TODO:	need	to	handle	negative	values!



Alternative	Execution
A	second	form	of	the	if	statement	is	“alternative	execution”,	in	which	there	are	two
possibilities	and	the	condition	determines	which	one	runs.	The	syntax	looks	like	this:

if	x	%	2	==	0:

				print('x	is	even')

else:

				print('x	is	odd')

If	the	remainder	when	x	is	divided	by	2	is	0,	then	we	know	that	x	is	even,	and	the	program
displays	an	appropriate	message.	If	the	condition	is	false,	the	second	set	of	statements
runs.	Since	the	condition	must	be	true	or	false,	exactly	one	of	the	alternatives	will	run.	The
alternatives	are	called	branches,	because	they	are	branches	in	the	flow	of	execution.



Chained	Conditionals
Sometimes	there	are	more	than	two	possibilities	and	we	need	more	than	two	branches.
One	way	to	express	a	computation	like	that	is	a	chained	conditional:

if	x	<	y:

				print('x	is	less	than	y')

elif	x	>	y:

				print('x	is	greater	than	y')

else:

				print('x	and	y	are	equal')

elif	is	an	abbreviation	of	“else	if”.	Again,	exactly	one	branch	will	run.	There	is	no	limit
on	the	number	of	elif	statements.	If	there	is	an	else	clause,	it	has	to	be	at	the	end,	but
there	doesn’t	have	to	be	one.

if	choice	==	'a':

				draw_a()

elif	choice	==	'b':

				draw_b()

elif	choice	==	'c':

				draw_c()

Each	condition	is	checked	in	order.	If	the	first	is	false,	the	next	is	checked,	and	so	on.	If
one	of	them	is	true,	the	corresponding	branch	runs	and	the	statement	ends.	Even	if	more
than	one	condition	is	true,	only	the	first	true	branch	runs.



Nested	Conditionals
One	conditional	can	also	be	nested	within	another.	We	could	have	written	the	example	in
the	previous	section	like	this:

if	x	==	y:

				print('x	and	y	are	equal')

else:

				if	x	<	y:

								print('x	is	less	than	y')

				else:

								print('x	is	greater	than	y')

The	outer	conditional	contains	two	branches.	The	first	branch	contains	a	simple	statement.
The	second	branch	contains	another	if	statement,	which	has	two	branches	of	its	own.
Those	two	branches	are	both	simple	statements,	although	they	could	have	been	conditional
statements	as	well.

Although	the	indentation	of	the	statements	makes	the	structure	apparent,	nested
conditionals	become	difficult	to	read	very	quickly.	It	is	a	good	idea	to	avoid	them	when
you	can.

Logical	operators	often	provide	a	way	to	simplify	nested	conditional	statements.	For
example,	we	can	rewrite	the	following	code	using	a	single	conditional:

if	0	<	x:

				if	x	<	10:

								print('x	is	a	positive	single-digit	number.')

The	print	statement	runs	only	if	we	make	it	past	both	conditionals,	so	we	can	get	the
same	effect	with	the	and	operator:

if	0	<	x	and	x	<	10:

				print('x	is	a	positive	single-digit	number.')

For	this	kind	of	condition,	Python	provides	a	more	concise	option:

if	0	<	x	<	10:

				print('x	is	a	positive	single-digit	number.')



Recursion
It	is	legal	for	one	function	to	call	another;	it	is	also	legal	for	a	function	to	call	itself.	It	may
not	be	obvious	why	that	is	a	good	thing,	but	it	turns	out	to	be	one	of	the	most	magical
things	a	program	can	do.	For	example,	look	at	the	following	function:

def	countdown(n):

				if	n	<=	0:

								print('Blastoff!')

				else:

								print(n)

								countdown(n-1)

If	n	is	0	or	negative,	it	outputs	the	word,	“Blastoff!”	Otherwise,	it	outputs	n	and	then	calls
a	function	named	countdown	—	itself	—	passing	n-1	as	an	argument.

What	happens	if	we	call	this	function	like	this?

>>>	countdown(3)

The	execution	of	countdown	begins	with	n=3,	and	since	n	is	greater	than	0,	it	outputs	the
value	3,	and	then	calls	itself…

The	execution	of	countdown	begins	with	n=2,	and	since	n	is	greater	than	0,	it	outputs	the
value	2,	and	then	calls	itself…
The	execution	of	countdown	begins	with	n=1,	and	since	n	is	greater	than	0,	it	outputs	the	value	1,	and	then	calls
itself…

The	execution	of	countdown	begins	with	n=0,	and	since	n	is	not	greater	than	0,	it	outputs	the	word,	“Blastoff!”
and	then	returns.

The	countdown	that	got	n=1	returns.

The	countdown	that	got	n=2	returns.

The	countdown	that	got	n=3	returns.

And	then	you’re	back	in	__main__.	So,	the	total	output	looks	like	this:

3

2

1

Blastoff!

A	function	that	calls	itself	is	recursive;	the	process	of	executing	it	is	called	recursion.

As	another	example,	we	can	write	a	function	that	prints	a	string	n	times:

def	print_n(s,	n):

				if	n	<=	0:

								return

				print(s)

				print_n(s,	n-1)

If	n	<=	0	the	return	statement	exits	the	function.	The	flow	of	execution	immediately



returns	to	the	caller,	and	the	remaining	lines	of	the	function	don’t	run.

The	rest	of	the	function	is	similar	to	countdown:	it	displays	s	and	then	calls	itself	to
display	s	n-1	additional	times.	So	the	number	of	lines	of	output	is	1	+	(n	-	1),	which
adds	up	to	n.

For	simple	examples	like	this,	it	is	probably	easier	to	use	a	for	loop.	But	we	will	see
examples	later	that	are	hard	to	write	with	a	for	loop	and	easy	to	write	with	recursion,	so	it
is	good	to	start	early.



Stack	Diagrams	for	Recursive	Functions
In	“Stack	Diagrams”,	we	used	a	stack	diagram	to	represent	the	state	of	a	program	during	a
function	call.	The	same	kind	of	diagram	can	help	interpret	a	recursive	function.

Every	time	a	function	gets	called,	Python	creates	a	frame	to	contain	the	function’s	local
variables	and	parameters.	For	a	recursive	function,	there	might	be	more	than	one	frame	on
the	stack	at	the	same	time.

Figure	5-1	shows	a	stack	diagram	for	countdown	called	with	n	=	3.

Figure	5-1.	Stack	diagram.

As	usual,	the	top	of	the	stack	is	the	frame	for	__main__.	It	is	empty	because	we	did	not
create	any	variables	in	__main__	or	pass	any	arguments	to	it.

The	four	countdown	frames	have	different	values	for	the	parameter	n.	The	bottom	of	the
stack,	where	n=0,	is	called	the	base	case.	It	does	not	make	a	recursive	call,	so	there	are	no
more	frames.

As	an	exercise,	draw	a	stack	diagram	for	print_n	called	with	s	=	'Hello'	and	n=2.	Then
write	a	function	called	do_n	that	takes	a	function	object	and	a	number,	n,	as	arguments,



and	that	calls	the	given	function	n	times.



Infinite	Recursion
If	a	recursion	never	reaches	a	base	case,	it	goes	on	making	recursive	calls	forever,	and	the
program	never	terminates.	This	is	known	as	infinite	recursion,	and	it	is	generally	not	a
good	idea.	Here	is	a	minimal	program	with	an	infinite	recursion:

def	recurse():

				recurse()

In	most	programming	environments,	a	program	with	infinite	recursion	does	not	really	run
forever.	Python	reports	an	error	message	when	the	maximum	recursion	depth	is	reached:

		File	"<stdin>",	line	2,	in	recurse

		File	"<stdin>",	line	2,	in	recurse

		File	"<stdin>",	line	2,	in	recurse

																		.			

																		.

																		.

		File	"<stdin>",	line	2,	in	recurse

RuntimeError:	Maximum	recursion	depth	exceeded

This	traceback	is	a	little	bigger	than	the	one	we	saw	in	the	previous	chapter.	When	the
error	occurs,	there	are	1,000	recurse	frames	on	the	stack!

If	you	write	an	infinite	recursion	by	accident,	review	your	function	to	confirm	that	there	is
a	base	case	that	does	not	make	a	recursive	call.	And	if	there	is	a	base	case,	check	whether
you	are	guaranteed	to	reach	it.



Keyboard	Input
The	programs	we	have	written	so	far	accept	no	input	from	the	user.	They	just	do	the	same
thing	every	time.

Python	provides	a	built-in	function	called	input	that	stops	the	program	and	waits	for	the
user	to	type	something.	When	the	user	presses	Return	or	Enter,	the	program	resumes	and
input	returns	what	the	user	typed	as	a	string.	In	Python	2,	the	same	function	is	called
raw_input.

>>>	text	=	input()

What	are	you	waiting	for?

>>>	text

What	are	you	waiting	for?

Before	getting	input	from	the	user,	it	is	a	good	idea	to	print	a	prompt	telling	the	user	what
to	type.	input	can	take	a	prompt	as	an	argument:

>>>	name	=	input('What…is	your	name?\n')

What…is	your	name?

Arthur,	King	of	the	Britons!

>>>	name

Arthur,	King	of	the	Britons!

The	sequence	\n	at	the	end	of	the	prompt	represents	a	newline,	which	is	a	special
character	that	causes	a	line	break.	That’s	why	the	user’s	input	appears	below	the	prompt.

If	you	expect	the	user	to	type	an	integer,	you	can	try	to	convert	the	return	value	to	int:

>>>	prompt	=	'What…is	the	airspeed	velocity	of	an	unladen	swallow?\n'

>>>	speed	=	input(prompt)

What…is	the	airspeed	velocity	of	an	unladen	swallow?

42

>>>	int(speed)

42

But	if	the	user	types	something	other	than	a	string	of	digits,	you	get	an	error:

>>>	speed	=	input(prompt)

What…is	the	airspeed	velocity	of	an	unladen	swallow?

What	do	you	mean,	an	African	or	a	European	swallow?

>>>	int(speed)

ValueError:	invalid	literal	for	int()	with	base	10

We	will	see	how	to	handle	this	kind	of	error	later.



Debugging
When	a	syntax	or	runtime	error	occurs,	the	error	message	contains	a	lot	of	information,
but	it	can	be	overwhelming.	The	most	useful	parts	are	usually:

What	kind	of	error	it	was

Where	it	occurred

Syntax	errors	are	usually	easy	to	find,	but	there	are	a	few	gotchas.	Whitespace	errors	can
be	tricky	because	spaces	and	tabs	are	invisible	and	we	are	used	to	ignoring	them.

>>>	x	=	5

>>>		y	=	6

		File	"<stdin>",	line	1

				y	=	6

				^

IndentationError:	unexpected	indent

In	this	example,	the	problem	is	that	the	second	line	is	indented	by	one	space.	But	the	error
message	points	to	y,	which	is	misleading.	In	general,	error	messages	indicate	where	the
problem	was	discovered,	but	the	actual	error	might	be	earlier	in	the	code,	sometimes	on	a
previous	line.

The	same	is	true	of	runtime	errors.	Suppose	you	are	trying	to	compute	a	signal-to-noise

ratio	in	decibels.	The	formula	is	 .	In	Python,	you
might	write	something	like	this:

import	math

signal_power	=	9

noise_power	=	10

ratio	=	signal_power	//	noise_power

decibels	=	10	*	math.log10(ratio)

print(decibels)

When	you	run	this	program,	you	get	an	exception:

Traceback	(most	recent	call	last):

		File	"snr.py",	line	5,	in	?

				decibels	=	10	*	math.log10(ratio)

ValueError:	math	domain	error

The	error	message	indicates	line	5,	but	there	is	nothing	wrong	with	that	line.	To	find	the
real	error,	it	might	be	useful	to	print	the	value	of	ratio,	which	turns	out	to	be	0.	The
problem	is	in	line	4,	which	uses	floor	division	instead	of	floating-point	division.

You	should	take	the	time	to	read	error	messages	carefully,	but	don’t	assume	that
everything	they	say	is	correct.



Glossary
floor	division:

An	operator,	denoted	//,	that	divides	two	numbers	and	rounds	down	(toward	zero)	to
an	integer.

modulus	operator:

An	operator,	denoted	with	a	percent	sign	(%),	that	works	on	integers	and	returns	the
remainder	when	one	number	is	divided	by	another.

boolean	expression:

An	expression	whose	value	is	either	True	or	False.

relational	operator:

One	of	the	operators	that	compares	its	operands:	==,	!=,	>,	<,	>=,	and	<=.

logical	operator:

One	of	the	operators	that	combines	boolean	expressions:	and,	or,	and	not.

conditional	statement:

A	statement	that	controls	the	flow	of	execution	depending	on	some	condition.

condition:

The	boolean	expression	in	a	conditional	statement	that	determines	which	branch	runs.

compound	statement:

A	statement	that	consists	of	a	header	and	a	body.	The	header	ends	with	a	colon	(:).
The	body	is	indented	relative	to	the	header.

branch:

One	of	the	alternative	sequences	of	statements	in	a	conditional	statement.

chained	conditional:

A	conditional	statement	with	a	series	of	alternative	branches.

nested	conditional:

A	conditional	statement	that	appears	in	one	of	the	branches	of	another	conditional
statement.

return	statement:

A	statement	that	causes	a	function	to	end	immediately	and	return	to	the	caller.

recursion:

The	process	of	calling	the	function	that	is	currently	executing.

base	case:

A	conditional	branch	in	a	recursive	function	that	does	not	make	a	recursive	call.



infinite	recursion:

A	recursion	that	doesn’t	have	a	base	case,	or	never	reaches	it.	Eventually,	an	infinite
recursion	causes	a	runtime	error.



Exercises
Exercise	5-1.

The	time	module	provides	a	function,	also	named	time,	that	returns	the	current	Greenwich
Mean	Time	in	“the	epoch”,	which	is	an	arbitrary	time	used	as	a	reference	point.	On	UNIX
systems,	the	epoch	is	1	January	1970.
>>>	import	time

>>>	time.time()

1437746094.5735958

Write	a	script	that	reads	the	current	time	and	converts	it	to	a	time	of	day	in	hours,	minutes,
and	seconds,	plus	the	number	of	days	since	the	epoch.

Exercise	5-2.

Fermat’s	Last	Theorem	says	that	there	are	no	positive	integers	a,	b,	and	c	such	that

for	any	values	of	n	greater	than	2.

1.	 Write	a	function	named	check_fermat	that	takes	four	parameters	—	a,	b,	c	and	n	—
and	checks	to	see	if	Fermat’s	theorem	holds.	If	n	is	greater	than	2	and

the	program	should	print,	“Holy	smokes,	Fermat	was	wrong!”	Otherwise	the
program	should	print,	“No,	that	doesn’t	work.”

2.	 Write	a	function	that	prompts	the	user	to	input	values	for	a,	b,	c	and	n,	converts	them
to	integers,	and	uses	check_fermat	to	check	whether	they	violate	Fermat’s	theorem.

Exercise	5-3.

If	you	are	given	three	sticks,	you	may	or	may	not	be	able	to	arrange	them	in	a	triangle.	For
example,	if	one	of	the	sticks	is	12	inches	long	and	the	other	two	are	one	inch	long,	you
will	not	be	able	to	get	the	short	sticks	to	meet	in	the	middle.	For	any	three	lengths,	there	is
a	simple	test	to	see	if	it	is	possible	to	form	a	triangle:

If	any	of	the	three	lengths	is	greater	than	the	sum	of	the	other	two,	then	you	cannot	form
a	triangle.	Otherwise,	you	can.	(If	the	sum	of	two	lengths	equals	the	third,	they	form
what	is	called	a	“degenerate”	triangle.)

1.	 Write	a	function	named	is_triangle	that	takes	three	integers	as	arguments,	and	that
prints	either	“Yes”	or	“No”,	depending	on	whether	you	can	or	cannot	form	a	triangle
from	sticks	with	the	given	lengths.

2.	 Write	a	function	that	prompts	the	user	to	input	three	stick	lengths,	converts	them	to



integers,	and	uses	is_triangle	to	check	whether	sticks	with	the	given	lengths	can
form	a	triangle.

Exercise	5-4.

What	is	the	output	of	the	following	program?	Draw	a	stack	diagram	that	shows	the	state	of
the	program	when	it	prints	the	result.
def	recurse(n,	s):

				if	n	==	0:

								print(s)

				else:

								recurse(n-1,	n+s)

recurse(3,	0)

1.	 What	would	happen	if	you	called	this	function	like	this:	recurse(-1,	0)?

2.	 Write	a	docstring	that	explains	everything	someone	would	need	to	know	in	order	to
use	this	function	(and	nothing	else).

The	following	exercises	use	the	turtle	module,	described	in	Chapter	4:

Exercise	5-5.

Read	the	following	function	and	see	if	you	can	figure	out	what	it	does	(see	the	examples	in
Chapter	4).	Then	run	it	and	see	if	you	got	it	right.
def	draw(t,	length,	n):

				if	n	==	0:

								return

				angle	=	50

				t.fd(length*n)

				t.lt(angle)

				draw(t,	length,	n-1)

				t.rt(2*angle)

				draw(t,	length,	n-1)

				t.lt(angle)

				t.bk(length*n)

Figure	5-2.	A	Koch	curve.

Exercise	5-6.

The	Koch	curve	is	a	fractal	that	looks	something	like	Figure	5-2.	To	draw	a	Koch	curve
with	length	x,	all	you	have	to	do	is:

1.	 Draw	a	Koch	curve	with	length	x/3.



2.	 Turn	left	60	degrees.

3.	 Draw	a	Koch	curve	with	length	x/3.

4.	 Turn	right	120	degrees.

5.	 Draw	a	Koch	curve	with	length	x/3.

6.	 Turn	left	60	degrees.

7.	 Draw	a	Koch	curve	with	length	x/3.

The	exception	is	if	x	is	less	than	3:	in	that	case,	you	can	just	draw	a	straight	line	with
length	x.

1.	 Write	a	function	called	koch	that	takes	a	turtle	and	a	length	as	parameters,	and	that
uses	the	turtle	to	draw	a	Koch	curve	with	the	given	length.

2.	 Write	a	function	called	snowflake	that	draws	three	Koch	curves	to	make	the	outline
of	a	snowflake.	
Solution:	http://thinkpython2.com/code/koch.py.

3.	 The	Koch	curve	can	be	generalized	in	several	ways.	See
http://en.wikipedia.org/wiki/Koch_snowflake	for	examples	and	implement	your
favorite.

http://thinkpython2.com/code/koch.py
http://en.wikipedia.org/wiki/Koch_snowflake




Chapter	6.	Fruitful	Functions

Many	of	the	Python	functions	we	have	used,	such	as	the	math	functions,	produce	return
values.	But	the	functions	we’ve	written	are	all	void:	they	have	an	effect,	like	printing	a
value	or	moving	a	turtle,	but	they	don’t	have	a	return	value.	In	this	chapter	you	will	learn
to	write	fruitful	functions.



Return	Values
Calling	the	function	generates	a	return	value,	which	we	usually	assign	to	a	variable	or	use
as	part	of	an	expression.

e	=	math.exp(1.0)

height	=	radius	*	math.sin(radians)

The	functions	we	have	written	so	far	are	void.	Speaking	casually,	they	have	no	return
value;	more	precisely,	their	return	value	is	None.

In	this	chapter,	we	are	(finally)	going	to	write	fruitful	functions.	The	first	example	is	area,
which	returns	the	area	of	a	circle	with	the	given	radius:

def	area(radius):

				a	=	math.pi	*	radius**2

				return	a

We	have	seen	the	return	statement	before,	but	in	a	fruitful	function	the	return	statement
includes	an	expression.	This	statement	means:	“Return	immediately	from	this	function	and
use	the	following	expression	as	a	return	value.”	The	expression	can	be	arbitrarily
complicated,	so	we	could	have	written	this	function	more	concisely:

def	area(radius):

				return	math.pi	*	radius**2

On	the	other	hand,	temporary	variables	like	a	can	make	debugging	easier.

Sometimes	it	is	useful	to	have	multiple	return	statements,	one	in	each	branch	of	a
conditional:

def	absolute_value(x):

				if	x	<	0:

								return	-x

				else:

								return	x

Since	these	return	statements	are	in	an	alternative	conditional,	only	one	runs.

As	soon	as	a	return	statement	runs,	the	function	terminates	without	executing	any
subsequent	statements.	Code	that	appears	after	a	return	statement,	or	any	other	place	the
flow	of	execution	can	never	reach,	is	called	dead	code.

In	a	fruitful	function,	it	is	a	good	idea	to	ensure	that	every	possible	path	through	the
program	hits	a	return	statement.	For	example:

def	absolute_value(x):

				if	x	<	0:

								return	-x

				if	x	>	0:

								return	x



This	function	is	incorrect	because	if	x	happens	to	be	0,	neither	condition	is	true,	and	the
function	ends	without	hitting	a	return	statement.	If	the	flow	of	execution	gets	to	the	end
of	a	function,	the	return	value	is	None,	which	is	not	the	absolute	value	of	0:

>>>	absolute_value(0)

None

By	the	way,	Python	provides	a	built-in	function	called	abs	that	computes	absolute	values.

As	an	exercise,	write	a	compare	function	takes	two	values,	x	and	y,	and	returns	1	if	x	>	y,
0	if	x	==	y,	and	-1	if	x	<	y.



Incremental	Development
As	you	write	larger	functions,	you	might	find	yourself	spending	more	time	debugging.

To	deal	with	increasingly	complex	programs,	you	might	want	to	try	a	process	called
incremental	development.	The	goal	of	incremental	development	is	to	avoid	long
debugging	sessions	by	adding	and	testing	only	a	small	amount	of	code	at	a	time.

As	an	example,	suppose	you	want	to	find	the	distance	between	two	points,	given	by	the
coordinates	 	and	 .	By	the	Pythagorean	theorem,	the	distance	is:

The	first	step	is	to	consider	what	a	distance	function	should	look	like	in	Python.	In	other
words,	what	are	the	inputs	(parameters)	and	what	is	the	output	(return	value)?

In	this	case,	the	inputs	are	two	points,	which	you	can	represent	using	four	numbers.	The
return	value	is	the	distance	represented	by	a	floating-point	value.

Immediately	you	can	write	an	outline	of	the	function:

def	distance(x1,	y1,	x2,	y2):

				return	0.0

Obviously,	this	version	doesn’t	compute	distances;	it	always	returns	zero.	But	it	is
syntactically	correct,	and	it	runs,	which	means	that	you	can	test	it	before	you	make	it	more
complicated.

To	test	the	new	function,	call	it	with	sample	arguments:

>>>	distance(1,	2,	4,	6)

0.0

I	chose	these	values	so	that	the	horizontal	distance	is	3	and	the	vertical	distance	is	4;	that
way,	the	result	is	5,	the	hypotenuse	of	a	3-4-5	triangle.	When	testing	a	function,	it	is	useful
to	know	the	right	answer.

At	this	point	we	have	confirmed	that	the	function	is	syntactically	correct,	and	we	can	start
adding	code	to	the	body.	A	reasonable	next	step	is	to	find	the	differences	 	and	

.	The	next	version	stores	those	values	in	temporary	variables	and	prints	them:

def	distance(x1,	y1,	x2,	y2):

				dx	=	x2	-	x1

				dy	=	y2	-	y1

				print('dx	is',	dx)

				print('dy	is',	dy)

				return	0.0

If	the	function	is	working,	it	should	display	dx	is	3	and	dy	is	4.	If	so,	we	know	that	the
function	is	getting	the	right	arguments	and	performing	the	first	computation	correctly.	If



not,	there	are	only	a	few	lines	to	check.

Next	we	compute	the	sum	of	squares	of	dx	and	dy:

def	distance(x1,	y1,	x2,	y2):

				dx	=	x2	-	x1

				dy	=	y2	-	y1

				dsquared	=	dx**2	+	dy**2

				print('dsquared	is:	',	dsquared)

				return	0.0

Again,	you	would	run	the	program	at	this	stage	and	check	the	output	(which	should	be
25).	Finally,	you	can	use	math.sqrt	to	compute	and	return	the	result:

def	distance(x1,	y1,	x2,	y2):

				dx	=	x2	-	x1

				dy	=	y2	-	y1

				dsquared	=	dx**2	+	dy**2

				result	=	math.sqrt(dsquared)

				return	result

If	that	works	correctly,	you	are	done.	Otherwise,	you	might	want	to	print	the	value	of
result	before	the	return	statement.

The	final	version	of	the	function	doesn’t	display	anything	when	it	runs;	it	only	returns	a
value.	The	print	statements	we	wrote	are	useful	for	debugging,	but	once	you	get	the
function	working,	you	should	remove	them.	Code	like	that	is	called	scaffolding	because	it
is	helpful	for	building	the	program	but	is	not	part	of	the	final	product.

When	you	start	out,	you	should	add	only	a	line	or	two	of	code	at	a	time.	As	you	gain	more
experience,	you	might	find	yourself	writing	and	debugging	bigger	chunks.	Either	way,
incremental	development	can	save	you	a	lot	of	debugging	time.

The	key	aspects	of	the	process	are:

1.	 Start	with	a	working	program	and	make	small	incremental	changes.	At	any	point,	if
there	is	an	error,	you	should	have	a	good	idea	where	it	is.

2.	 Use	variables	to	hold	intermediate	values	so	you	can	display	and	check	them.

3.	 Once	the	program	is	working,	you	might	want	to	remove	some	of	the	scaffolding	or
consolidate	multiple	statements	into	compound	expressions,	but	only	if	it	does	not
make	the	program	difficult	to	read.

As	an	exercise,	use	incremental	development	to	write	a	function	called	hypotenuse	that
returns	the	length	of	the	hypotenuse	of	a	right	triangle	given	the	lengths	of	the	other	two
legs	as	arguments.	Record	each	stage	of	the	development	process	as	you	go.



Composition
As	you	should	expect	by	now,	you	can	call	one	function	from	within	another.	As	an
example,	we’ll	write	a	function	that	takes	two	points,	the	center	of	the	circle	and	a	point
on	the	perimeter,	and	computes	the	area	of	the	circle.

Assume	that	the	center	point	is	stored	in	the	variables	xc	and	yc,	and	the	perimeter	point	is
in	xp	and	yp.	The	first	step	is	to	find	the	radius	of	the	circle,	which	is	the	distance	between
the	two	points.	We	just	wrote	a	function,	distance,	that	does	that:

radius	=	distance(xc,	yc,	xp,	yp)

The	next	step	is	to	find	the	area	of	a	circle	with	that	radius;	we	just	wrote	that,	too:

result	=	area(radius)

Encapsulating	these	steps	in	a	function,	we	get:

def	circle_area(xc,	yc,	xp,	yp):

				radius	=	distance(xc,	yc,	xp,	yp)

				result	=	area(radius)

				return	result

The	temporary	variables	radius	and	result	are	useful	for	development	and	debugging,
but	once	the	program	is	working,	we	can	make	it	more	concise	by	composing	the	function
calls:

def	circle_area(xc,	yc,	xp,	yp):

				return	area(distance(xc,	yc,	xp,	yp))



Boolean	Functions
Functions	can	return	booleans,	which	is	often	convenient	for	hiding	complicated	tests
inside	functions.	For	example:

def	is_divisible(x,	y):

				if	x	%	y	==	0:

								return	True

				else:

								return	False

It	is	common	to	give	boolean	functions	names	that	sound	like	yes/no	questions;
is_divisible	returns	either	True	or	False	to	indicate	whether	x	is	divisible	by	y.

Here	is	an	example:

>>>	is_divisible(6,	4)

False

>>>	is_divisible(6,	3)

True

The	result	of	the	==	operator	is	a	boolean,	so	we	can	write	the	function	more	concisely	by
returning	it	directly:

def	is_divisible(x,	y):

				return	x	%	y	==	0

Boolean	functions	are	often	used	in	conditional	statements:

if	is_divisible(x,	y):

				print('x	is	divisible	by	y')

It	might	be	tempting	to	write	something	like:

if	is_divisible(x,	y)	==	True:

				print('x	is	divisible	by	y')

But	the	extra	comparison	is	unnecessary.

As	an	exercise,	write	a	function	is_between(x,	y,	z)	that	returns	True	if	
or	False	otherwise.



More	Recursion
We	have	only	covered	a	small	subset	of	Python,	but	you	might	be	interested	to	know	that
this	subset	is	a	complete	programming	language,	which	means	that	anything	that	can	be
computed	can	be	expressed	in	this	language.	Any	program	ever	written	could	be	rewritten
using	only	the	language	features	you	have	learned	so	far	(actually,	you	would	need	a	few
commands	to	control	devices	like	the	mouse,	disks,	etc.,	but	that’s	all).

Proving	that	claim	is	a	nontrivial	exercise	first	accomplished	by	Alan	Turing,	one	of	the
first	computer	scientists	(some	would	argue	that	he	was	a	mathematician,	but	a	lot	of	early
computer	scientists	started	as	mathematicians).	Accordingly,	it	is	known	as	the	Turing
Thesis.	For	a	more	complete	(and	accurate)	discussion	of	the	Turing	Thesis,	I	recommend
Michael	Sipser’s	book	Introduction	to	the	Theory	of	Computation	(Course	Technology,
2012).

To	give	you	an	idea	of	what	you	can	do	with	the	tools	you	have	learned	so	far,	we’ll
evaluate	a	few	recursively	defined	mathematical	functions.	A	recursive	definition	is
similar	to	a	circular	definition,	in	the	sense	that	the	definition	contains	a	reference	to	the
thing	being	defined.	A	truly	circular	definition	is	not	very	useful:

vorpal:

An	adjective	used	to	describe	something	that	is	vorpal.

If	you	saw	that	definition	in	the	dictionary,	you	might	be	annoyed.	On	the	other	hand,	if
you	looked	up	the	definition	of	the	factorial	function,	denoted	with	the	symbol	!,	you
might	get	something	like	this:

This	definition	says	that	the	factorial	of	0	is	1,	and	the	factorial	of	any	other	value,	n,	is	n
multiplied	by	the	factorial	of	n-1.

So	3!	is	3	times	2!,	which	is	2	times	1!,	which	is	1	times	0!.	Putting	it	all	together,	3!
equals	3	times	2	times	1	times	1,	which	is	6.

If	you	can	write	a	recursive	definition	of	something,	you	can	write	a	Python	program	to
evaluate	it.	The	first	step	is	to	decide	what	the	parameters	should	be.	In	this	case	it	should
be	clear	that	factorial	takes	an	integer:

def	factorial(n):

If	the	argument	happens	to	be	0,	all	we	have	to	do	is	return	1:

def	factorial(n):



				if	n	==	0:

								return	1

Otherwise,	and	this	is	the	interesting	part,	we	have	to	make	a	recursive	call	to	find	the
factorial	of	n-1	and	then	multiply	it	by	n:

def	factorial(n):

				if	n	==	0:

								return	1

				else:

								recurse	=	factorial(n-1)

								result	=	n	*	recurse

								return	result

The	flow	of	execution	for	this	program	is	similar	to	the	flow	of	countdown	in	“Recursion”.
If	we	call	factorial	with	the	value	3:

Since	3	is	not	0,	we	take	the	second	branch	and	calculate	the	factorial	of	n-1…

Since	2	is	not	0,	we	take	the	second	branch	and	calculate	the	factorial	of	n-1…
Since	1	is	not	0,	we	take	the	second	branch	and	calculate	the	factorial	of	n-1…

Since	0	equals	0,	we	take	the	first	branch	and	return	1	without	making	any	more	recursive	calls.

The	return	value,	1,	is	multiplied	by	n,	which	is	1,	and	the	result	is	returned.

The	return	value,	1,	is	multiplied	by	n,	which	is	2,	and	the	result	is	returned.

The	return	value	(2)	is	multiplied	by	n,	which	is	3,	and	the	result,	6,	becomes	the	return
value	of	the	function	call	that	started	the	whole	process.

Figure	6-1	shows	what	the	stack	diagram	looks	like	for	this	sequence	of	function	calls.

Figure	6-1.	Stack	diagram.

The	return	values	are	shown	being	passed	back	up	the	stack.	In	each	frame,	the	return
value	is	the	value	of	result,	which	is	the	product	of	n	and	recurse.



In	the	last	frame,	the	local	variables	recurse	and	result	do	not	exist,	because	the	branch
that	creates	them	does	not	run.



Leap	of	Faith
Following	the	flow	of	execution	is	one	way	to	read	programs,	but	it	can	quickly	become
overwhelming.	An	alternative	is	what	I	call	the	“leap	of	faith”.	When	you	come	to	a
function	call,	instead	of	following	the	flow	of	execution,	you	assume	that	the	function
works	correctly	and	returns	the	right	result.

In	fact,	you	are	already	practicing	this	leap	of	faith	when	you	use	built-in	functions.	When
you	call	math.cos	or	math.exp,	you	don’t	examine	the	bodies	of	those	functions.	You	just
assume	that	they	work	because	the	people	who	wrote	the	built-in	functions	were	good
programmers.

The	same	is	true	when	you	call	one	of	your	own	functions.	For	example,	in	“Boolean
Functions”,	we	wrote	a	function	called	is_divisible	that	determines	whether	one	number
is	divisible	by	another.	Once	we	have	convinced	ourselves	that	this	function	is	correct	—
by	examining	the	code	and	testing	—	we	can	use	the	function	without	looking	at	the	body
again.

The	same	is	true	of	recursive	programs.	When	you	get	to	the	recursive	call,	instead	of
following	the	flow	of	execution,	you	should	assume	that	the	recursive	call	works	(returns
the	correct	result)	and	then	ask	yourself,	“Assuming	that	I	can	find	the	factorial	of	n-1,	can
I	compute	the	factorial	of	n?”	It	is	clear	that	you	can,	by	multiplying	by	n.

Of	course,	it’s	a	bit	strange	to	assume	that	the	function	works	correctly	when	you	haven’t
finished	writing	it,	but	that’s	why	it’s	called	a	leap	of	faith!



One	More	Example
After	factorial,	the	most	common	example	of	a	recursively	defined	mathematical
function	is	fibonacci,	which	has	the	following	definition	(see
http://en.wikipedia.org/wiki/Fibonacci_number):

Translated	into	Python,	it	looks	like	this:

def	fibonacci	(n):

				if	n	==	0:

								return	0

				elif		n	==	1:

								return	1

				else:

								return	fibonacci(n-1)	+	fibonacci(n-2)

If	you	try	to	follow	the	flow	of	execution	here,	even	for	fairly	small	values	of	n,	your	head
explodes.	But	according	to	the	leap	of	faith,	if	you	assume	that	the	two	recursive	calls
work	correctly,	then	it	is	clear	that	you	get	the	right	result	by	adding	them	together.

http://en.wikipedia.org/wiki/Fibonacci_number


Checking	Types
What	happens	if	we	call	factorial	and	give	it	1.5	as	an	argument?

>>>	factorial(1.5)

RuntimeError:	Maximum	recursion	depth	exceeded

It	looks	like	an	infinite	recursion.	How	can	that	be?	The	function	has	a	base	case	—	when
n	==	0.	But	if	n	is	not	an	integer,	we	can	miss	the	base	case	and	recurse	forever.

In	the	first	recursive	call,	the	value	of	n	is	0.5.	In	the	next,	it	is	-0.5.	From	there,	it	gets
smaller	(more	negative),	but	it	will	never	be	0.

We	have	two	choices.	We	can	try	to	generalize	the	factorial	function	to	work	with
floating-point	numbers,	or	we	can	make	factorial	check	the	type	of	its	argument.	The
first	option	is	called	the	gamma	function	and	it’s	a	little	beyond	the	scope	of	this	book.	So
we’ll	go	for	the	second.

We	can	use	the	built-in	function	isinstance	to	verify	the	type	of	the	argument.	While
we’re	at	it,	we	can	also	make	sure	the	argument	is	positive:

def	factorial	(n):

				if	not	isinstance(n,	int):

								print('Factorial	is	only	defined	for	integers.')

								return	None

				elif	n	<	0:

								print('Factorial	is	not	defined	for	negative	integers.')

								return	None

				elif	n	==	0:

								return	1

				else:

								return	n	*	factorial(n-1)

The	first	base	case	handles	nonintegers;	the	second	handles	negative	integers.	In	both
cases,	the	program	prints	an	error	message	and	returns	None	to	indicate	that	something
went	wrong:

>>>	factorial('fred')

Factorial	is	only	defined	for	integers.

None

>>>	factorial(-2)

Factorial	is	not	defined	for	negative	integers.

None

If	we	get	past	both	checks,	we	know	that	n	is	positive	or	zero,	so	we	can	prove	that	the
recursion	terminates.

This	program	demonstrates	a	pattern	sometimes	called	a	guardian.	The	first	two
conditionals	act	as	guardians,	protecting	the	code	that	follows	from	values	that	might
cause	an	error.	The	guardians	make	it	possible	to	prove	the	correctness	of	the	code.

In	“Reverse	Lookup”	we	will	see	a	more	flexible	alternative	to	printing	an	error	message:
raising	an	exception.



Debugging
Breaking	a	large	program	into	smaller	functions	creates	natural	checkpoints	for
debugging.	If	a	function	is	not	working,	there	are	three	possibilities	to	consider:

There	is	something	wrong	with	the	arguments	the	function	is	getting;	a	precondition	is
violated.

There	is	something	wrong	with	the	function;	a	postcondition	is	violated.

There	is	something	wrong	with	the	return	value	or	the	way	it	is	being	used.

To	rule	out	the	first	possibility,	you	can	add	a	print	statement	at	the	beginning	of	the
function	and	display	the	values	of	the	parameters	(and	maybe	their	types).	Or	you	can
write	code	that	checks	the	preconditions	explicitly.

If	the	parameters	look	good,	add	a	print	statement	before	each	return	statement	and
display	the	return	value.	If	possible,	check	the	result	by	hand.	Consider	calling	the
function	with	values	that	make	it	easy	to	check	the	result	(as	in	“Incremental
Development”).

If	the	function	seems	to	be	working,	look	at	the	function	call	to	make	sure	the	return	value
is	being	used	correctly	(or	used	at	all!).

Adding	print	statements	at	the	beginning	and	end	of	a	function	can	help	make	the	flow	of
execution	more	visible.	For	example,	here	is	a	version	of	factorial	with	print	statements:

def	factorial(n):

				space	=	'	'	*	(4	*	n)

				print(space,	'factorial',	n)

				if	n	==	0:

								print(space,	'returning	1')

								return	1

				else:

								recurse	=	factorial(n-1)

								result	=	n	*	recurse

								print(space,	'returning',	result)

								return	result

space	is	a	string	of	space	characters	that	controls	the	indentation	of	the	output.	Here	is	the
result	of	factorial(4)	:

																	factorial	4

													factorial	3

									factorial	2

					factorial	1

	factorial	0

	returning	1

					returning	1

									returning	2

													returning	6

																	returning	24

If	you	are	confused	about	the	flow	of	execution,	this	kind	of	output	can	be	helpful.	It	takes
some	time	to	develop	effective	scaffolding,	but	a	little	bit	of	scaffolding	can	save	a	lot	of



debugging.



Glossary
temporary	variable:

A	variable	used	to	store	an	intermediate	value	in	a	complex	calculation.

dead	code:

Part	of	a	program	that	can	never	run,	often	because	it	appears	after	a	return
statement.

incremental	development:

A	program	development	plan	intended	to	avoid	debugging	by	adding	and	testing	only
a	small	amount	of	code	at	a	time.

scaffolding:

Code	that	is	used	during	program	development	but	is	not	part	of	the	final	version.

guardian:

A	programming	pattern	that	uses	a	conditional	statement	to	check	for	and	handle
circumstances	that	might	cause	an	error.



Exercises
Exercise	6-1.

Draw	a	stack	diagram	for	the	following	program.	What	does	the	program	print?
def	b(z):

				prod	=	a(z,	z)

				print(z,	prod)

				return	prod

def	a(x,	y):

				x	=	x	+	1

				return	x	*	y

def	c(x,	y,	z):

				total	=	x	+	y	+	z

				square	=	b(total)**2

				return	square

x	=	1

y	=	x	+	1

print(c(x,	y+3,	x+y))

Exercise	6-2.

The	Ackermann	function,	 ,	is	defined:

See	http://en.wikipedia.org/wiki/Ackermann_function.	Write	a	function	named	ack	that
evaluates	the	Ackermann	function.	Use	your	function	to	evaluate	ack(3,	4),	which
should	be	125.	What	happens	for	larger	values	of	m	and	n?

Solution:	http://thinkpython2.com/code/ackermann.py.

Exercise	6-3.

A	palindrome	is	a	word	that	is	spelled	the	same	backward	and	forward,	like	“noon”	and
“redivider”.	Recursively,	a	word	is	a	palindrome	if	the	first	and	last	letters	are	the	same
and	the	middle	is	a	palindrome.

The	following	are	functions	that	take	a	string	argument	and	return	the	first,	last,	and
middle	letters:
def	first(word):

				return	word[0]

def	last(word):

				return	word[-1]

def	middle(word):

				return	word[1:-1]

We’ll	see	how	they	work	in	Chapter	8.

1.	 Type	these	functions	into	a	file	named	palindrome.py	and	test	them	out.	What
happens	if	you	call	middle	with	a	string	with	two	letters?	One	letter?	What	about	the

http://en.wikipedia.org/wiki/Ackermann_function
http://thinkpython2.com/code/ackermann.py


empty	string,	which	is	written	''	and	contains	no	letters?

2.	 Write	a	function	called	is_palindrome	that	takes	a	string	argument	and	returns	True
if	it	is	a	palindrome	and	False	otherwise.	Remember	that	you	can	use	the	built-in
function	len	to	check	the	length	of	a	string.

Solution:	http://thinkpython2.com/code/palindrome_soln.py.

Exercise	6-4.

A	number,	a,	is	a	power	of	b	if	it	is	divisible	by	b	and	a/b	is	a	power	of	b.	Write	a	function
called	is_power	that	takes	parameters	a	and	b	and	returns	True	if	a	is	a	power	of	b.	Note:
you	will	have	to	think	about	the	base	case.

Exercise	6-5.

The	greatest	common	divisor	(GCD)	of	a	and	b	is	the	largest	number	that	divides	both	of
them	with	no	remainder.

One	way	to	find	the	GCD	of	two	numbers	is	based	on	the	observation	that	if	r	is	the

remainder	when	a	is	divided	by	b,	then	 .	As	a	base	case,	we

can	use	 .

Write	a	function	called	gcd	that	takes	parameters	a	and	b	and	returns	their	greatest
common	divisor.

Credit:	This	exercise	is	based	on	an	example	from	Abelson	and	Sussman’s	Structure	and
Interpretation	of	Computer	Programs	(MIT	Press,	1996).

http://thinkpython2.com/code/palindrome_soln.py




Chapter	7.	Iteration

This	chapter	is	about	iteration,	which	is	the	ability	to	run	a	block	of	statements	repeatedly.
We	saw	a	kind	of	iteration,	using	recursion,	in	“Recursion”.	We	saw	another	kind,	using	a
for	loop,	in	“Simple	Repetition”.	In	this	chapter	we’ll	see	yet	another	kind,	using	a	while
statement.	But	first	I	want	to	say	a	little	more	about	variable	assignment.



Reassignment
As	you	may	have	discovered,	it	is	legal	to	make	more	than	one	assignment	to	the	same
variable.	A	new	assignment	makes	an	existing	variable	refer	to	a	new	value	(and	stop
referring	to	the	old	value).

>>>	x	=	5

>>>	x

5

>>>	x	=	7

>>>	x

7

The	first	time	we	display	x,	its	value	is	5;	the	second	time,	its	value	is	7.

Figure	7-1	shows	what	reassignment	looks	like	in	a	state	diagram.

At	this	point	I	want	to	address	a	common	source	of	confusion.	Because	Python	uses	the
equal	sign	(=)	for	assignment,	it	is	tempting	to	interpret	a	statement	like	a	=	b	as	a
mathematical	proposition	of	equality;	that	is,	the	claim	that	a	and	b	are	equal.	But	this
interpretation	is	wrong.

First,	equality	is	a	symmetric	relationship	and	assignment	is	not.	For	example,	in
mathematics,	if	a=7	then	7=a.	But	in	Python,	the	statement	a	=	7	is	legal	and	7	=	a	is
not.

Also,	in	mathematics,	a	proposition	of	equality	is	either	true	or	false	for	all	time.	If	a=b
now,	then	a	will	always	equal	b.	In	Python,	an	assignment	statement	can	make	two
variables	equal,	but	they	don’t	have	to	stay	that	way:

>>>	a	=	5

>>>	b	=	a				#	a	and	b	are	now	equal

>>>	a	=	3				#	a	and	b	are	no	longer	equal

>>>	b

5

The	third	line	changes	the	value	of	a	but	does	not	change	the	value	of	b,	so	they	are	no
longer	equal.

Reassigning	variables	is	often	useful,	but	you	should	use	it	with	caution.	If	the	values	of
variables	change	frequently,	it	can	make	the	code	difficult	to	read	and	debug.

Figure	7-1.	State	diagram.



Updating	Variables
A	common	kind	of	reassignment	is	an	update,	where	the	new	value	of	the	variable
depends	on	the	old.

>>>	x	=	x	+	1

This	means	“get	the	current	value	of	x,	add	one,	and	then	update	x	with	the	new	value.”

If	you	try	to	update	a	variable	that	doesn’t	exist,	you	get	an	error,	because	Python
evaluates	the	right	side	before	it	assigns	a	value	to	x:

>>>	x	=	x	+	1

NameError:	name	'x'	is	not	defined

Before	you	can	update	a	variable,	you	have	to	initialize	it,	usually	with	a	simple
assignment:

>>>	x	=	0

>>>	x	=	x	+	1

Updating	a	variable	by	adding	1	is	called	an	increment;	subtracting	1	is	called	a
decrement.



The	while	Statement
Computers	are	often	used	to	automate	repetitive	tasks.	Repeating	identical	or	similar	tasks
without	making	errors	is	something	that	computers	do	well	and	people	do	poorly.	In	a
computer	program,	repetition	is	also	called	iteration.

We	have	already	seen	two	functions,	countdown	and	print_n,	that	iterate	using	recursion.
Because	iteration	is	so	common,	Python	provides	language	features	to	make	it	easier.	One
is	the	for	statement	we	saw	in	“Simple	Repetition”.	We’ll	get	back	to	that	later.

Another	is	the	while	statement.	Here	is	a	version	of	countdown	that	uses	a	while
statement:

def	countdown(n):

				while	n	>	0:

								print(n)

								n	=	n	-	1

				print('Blastoff!')

You	can	almost	read	the	while	statement	as	if	it	were	English.	It	means,	“While	n	is
greater	than	0,	display	the	value	of	n	and	then	decrement	n.	When	you	get	to	0,	display	the
word	Blastoff!”

More	formally,	here	is	the	flow	of	execution	for	a	while	statement:

1.	 Determine	whether	the	condition	is	true	or	false.

2.	 If	false,	exit	the	while	statement	and	continue	execution	at	the	next	statement.

3.	 If	the	condition	is	true,	run	the	body	and	then	go	back	to	step	1.

This	type	of	flow	is	called	a	loop	because	the	third	step	loops	back	around	to	the	top.

The	body	of	the	loop	should	change	the	value	of	one	or	more	variables	so	that	the
condition	becomes	false	eventually	and	the	loop	terminates.	Otherwise	the	loop	will	repeat
forever,	which	is	called	an	infinite	loop.	An	endless	source	of	amusement	for	computer
scientists	is	the	observation	that	the	directions	on	shampoo,	“Lather,	rinse,	repeat”,	are	an
infinite	loop.

In	the	case	of	countdown,	we	can	prove	that	the	loop	terminates:	if	n	is	zero	or	negative,
the	loop	never	runs.	Otherwise,	n	gets	smaller	each	time	through	the	loop,	so	eventually
we	have	to	get	to	0.

For	some	other	loops,	it	is	not	so	easy	to	tell.	For	example:

def	sequence(n):

				while	n	!=	1:

								print(n)

								if	n	%	2	==	0:								#	n	is	even

												n	=	n	/	2

								else:																	#	n	is	odd

												n	=	n*3	+	1



The	condition	for	this	loop	is	n	!=	1,	so	the	loop	will	continue	until	n	is	1,	which	makes
the	condition	false.

Each	time	through	the	loop,	the	program	outputs	the	value	of	n	and	then	checks	whether	it
is	even	or	odd.	If	it	is	even,	n	is	divided	by	2.	If	it	is	odd,	the	value	of	n	is	replaced	with
n*3	+	1.	For	example,	if	the	argument	passed	to	sequence	is	3,	the	resulting	values	of	n
are	3,	10,	5,	16,	8,	4,	2,	1.

Since	n	sometimes	increases	and	sometimes	decreases,	there	is	no	obvious	proof	that	n
will	ever	reach	1,	or	that	the	program	terminates.	For	some	particular	values	of	n,	we	can
prove	termination.	For	example,	if	the	starting	value	is	a	power	of	two,	n	will	be	even
every	time	through	the	loop	until	it	reaches	1.	The	previous	example	ends	with	such	a
sequence,	starting	with	16.

The	hard	question	is	whether	we	can	prove	that	this	program	terminates	for	all	positive
values	of	n.	So	far,	no	one	has	been	able	to	prove	it	or	disprove	it!	(See
http://en.wikipedia.org/wiki/Collatz_conjecture.)

As	an	exercise,	rewrite	the	function	print_n	from	“Recursion”	using	iteration	instead	of
recursion.

http://en.wikipedia.org/wiki/Collatz_conjecture


break
Sometimes	you	don’t	know	it’s	time	to	end	a	loop	until	you	get	halfway	through	the	body.
In	that	case	you	can	use	the	break	statement	to	jump	out	of	the	loop.

For	example,	suppose	you	want	to	take	input	from	the	user	until	they	type	done.	You	could
write:

while	True:

				line	=	input('>	')

				if	line	==	'done':

								break

				print(line)

print('Done!')

The	loop	condition	is	True,	which	is	always	true,	so	the	loop	runs	until	it	hits	the	break
statement.

Each	time	through,	it	prompts	the	user	with	an	angle	bracket.	If	the	user	types	done,	the
break	statement	exits	the	loop.	Otherwise	the	program	echoes	whatever	the	user	types	and
goes	back	to	the	top	of	the	loop.	Here’s	a	sample	run:

>	not	done

not	done

>	done

Done!

This	way	of	writing	while	loops	is	common	because	you	can	check	the	condition
anywhere	in	the	loop	(not	just	at	the	top)	and	you	can	express	the	stop	condition
affirmatively	(“stop	when	this	happens”)	rather	than	negatively	(“keep	going	until	that
happens”).



Square	Roots
Loops	are	often	used	in	programs	that	compute	numerical	results	by	starting	with	an
approximate	answer	and	iteratively	improving	it.

For	example,	one	way	of	computing	square	roots	is	Newton’s	method.	Suppose	that	you
want	to	know	the	square	root	of	a.	If	you	start	with	almost	any	estimate,	x,	you	can
compute	a	better	estimate	with	the	following	formula:

For	example,	if	a	is	4	and	x	is	3:

>>>	a	=	4

>>>	x	=	3

>>>	y	=	(x	+	a/x)	/	2

>>>	y

2.16666666667

The	result	is	closer	to	the	correct	answer	( ).	If	we	repeat	the	process	with	the
new	estimate,	it	gets	even	closer:

>>>	x	=	y

>>>	y	=	(x	+	a/x)	/	2

>>>	y

2.00641025641

After	a	few	more	updates,	the	estimate	is	almost	exact:

>>>	x	=	y

>>>	y	=	(x	+	a/x)	/	2

>>>	y

2.00001024003

>>>	x	=	y

>>>	y	=	(x	+	a/x)	/	2

>>>	y

2.00000000003

In	general	we	don’t	know	ahead	of	time	how	many	steps	it	takes	to	get	to	the	right	answer,
but	we	know	when	we	get	there	because	the	estimate	stops	changing:

>>>	x	=	y

>>>	y	=	(x	+	a/x)	/	2

>>>	y

2.0

>>>	x	=	y

>>>	y	=	(x	+	a/x)	/	2

>>>	y

2.0

When	y	==	x,	we	can	stop.	Here	is	a	loop	that	starts	with	an	initial	estimate,	x,	and
improves	it	until	it	stops	changing:



while	True:

				print(x)

				y	=	(x	+	a/x)	/	2

				if	y	==	x:

								break

				x	=	y

For	most	values	of	a	this	works	fine,	but	in	general	it	is	dangerous	to	test	float	equality.
Floating-point	values	are	only	approximately	right:	most	rational	numbers,	like	1/3,	and
irrational	numbers,	like	 ,	can’t	be	represented	exactly	with	a	float.

Rather	than	checking	whether	x	and	y	are	exactly	equal,	it	is	safer	to	use	the	built-in
function	abs	to	compute	the	absolute	value,	or	magnitude,	of	the	difference	between	them:

				if	abs(y-x)	<	epsilon:

								break

Where	epsilon	has	a	value,	like	0.0000001,	that	determines	how	close	is	close	enough.



Algorithms
Newton’s	method	is	an	example	of	an	algorithm:	it	is	a	mechanical	process	for	solving	a
category	of	problems	(in	this	case,	computing	square	roots).

To	understand	what	an	algorithm	is,	it	might	help	to	start	with	something	that	is	not	an
algorithm.	When	you	learned	to	multiply	single-digit	numbers,	you	probably	memorized
the	multiplication	table.	In	effect,	you	memorized	100	specific	solutions.	That	kind	of
knowledge	is	not	algorithmic.

But	if	you	were	“lazy”,	you	might	have	learned	a	few	tricks.	For	example,	to	find	the
product	of	n	and	9,	you	can	write	n-1	as	the	first	digit	and	10-n	as	the	second	digit.	This
trick	is	a	general	solution	for	multiplying	any	single-digit	number	by	9.	That’s	an
algorithm!

Similarly,	the	techniques	you	learned	for	addition	with	carrying,	subtraction	with
borrowing,	and	long	division	are	all	algorithms.	One	of	the	characteristics	of	algorithms	is
that	they	do	not	require	any	intelligence	to	carry	out.	They	are	mechanical	processes
where	each	step	follows	from	the	last	according	to	a	simple	set	of	rules.

Executing	algorithms	is	boring,	but	designing	them	is	interesting,	intellectually
challenging,	and	a	central	part	of	computer	science.

Some	of	the	things	that	people	do	naturally,	without	difficulty	or	conscious	thought,	are
the	hardest	to	express	algorithmically.	Understanding	natural	language	is	a	good	example.
We	all	do	it,	but	so	far	no	one	has	been	able	to	explain	how	we	do	it,	at	least	not	in	the
form	of	an	algorithm.



Debugging
As	you	start	writing	bigger	programs,	you	might	find	yourself	spending	more	time
debugging.	More	code	means	more	chances	to	make	an	error	and	more	places	for	bugs	to
hide.

One	way	to	cut	your	debugging	time	is	“debugging	by	bisection”.	For	example,	if	there
are	100	lines	in	your	program	and	you	check	them	one	at	a	time,	it	would	take	100	steps.

Instead,	try	to	break	the	problem	in	half.	Look	at	the	middle	of	the	program,	or	near	it,	for
an	intermediate	value	you	can	check.	Add	a	print	statement	(or	something	else	that	has	a
verifiable	effect)	and	run	the	program.

If	the	mid-point	check	is	incorrect,	there	must	be	a	problem	in	the	first	half	of	the
program.	If	it	is	correct,	the	problem	is	in	the	second	half.

Every	time	you	perform	a	check	like	this,	you	halve	the	number	of	lines	you	have	to
search.	After	six	steps	(which	is	fewer	than	100),	you	would	be	down	to	one	or	two	lines
of	code,	at	least	in	theory.

In	practice	it	is	not	always	clear	what	the	“middle	of	the	program”	is	and	not	always
possible	to	check	it.	It	doesn’t	make	sense	to	count	lines	and	find	the	exact	midpoint.
Instead,	think	about	places	in	the	program	where	there	might	be	errors	and	places	where	it
is	easy	to	put	a	check.	Then	choose	a	spot	where	you	think	the	chances	are	about	the	same
that	the	bug	is	before	or	after	the	check.



Glossary
reassignment:

Assigning	a	new	value	to	a	variable	that	already	exists.

update:

An	assignment	where	the	new	value	of	the	variable	depends	on	the	old.

initialization:

An	assignment	that	gives	an	initial	value	to	a	variable	that	will	be	updated.

increment:

An	update	that	increases	the	value	of	a	variable	(often	by	one).

decrement:

An	update	that	decreases	the	value	of	a	variable.

iteration:

Repeated	execution	of	a	set	of	statements	using	either	a	recursive	function	call	or	a
loop.

infinite	loop:

A	loop	in	which	the	terminating	condition	is	never	satisfied.

algorithm:

A	general	process	for	solving	a	category	of	problems.



Exercises
Exercise	7-1.

Copy	the	loop	from	“Square	Roots”	and	encapsulate	it	in	a	function	called	mysqrt	that
takes	a	as	a	parameter,	chooses	a	reasonable	value	of	x,	and	returns	an	estimate	of	the
square	root	of	a.

To	test	it,	write	a	function	named	test_square_root	that	prints	a	table	like	this:
a			mysqrt(a)					math.sqrt(a)		diff

-			---------					------------		----

1.0	1.0											1.0											0.0

2.0	1.41421356237	1.41421356237	2.22044604925e-16

3.0	1.73205080757	1.73205080757	0.0

4.0	2.0											2.0											0.0

5.0	2.2360679775		2.2360679775		0.0

6.0	2.44948974278	2.44948974278	0.0

7.0	2.64575131106	2.64575131106	0.0

8.0	2.82842712475	2.82842712475	4.4408920985e-16

9.0	3.0											3.0											0.0

The	first	column	is	a	number,	a;	the	second	column	is	the	square	root	of	a	computed	with
mysqrt;	the	third	column	is	the	square	root	computed	by	math.sqrt;	the	fourth	column	is
the	absolute	value	of	the	difference	between	the	two	estimates.

Exercise	7-2.

The	built-in	function	eval	takes	a	string	and	evaluates	it	using	the	Python	interpreter.	For
example:
>>>	eval('1	+	2	*	3')

7

>>>	import	math

>>>	eval('math.sqrt(5)')

2.2360679774997898

>>>	eval('type(math.pi)')

<class	'float'>

Write	a	function	called	eval_loop	that	iteratively	prompts	the	user,	takes	the	resulting
input	and	evaluates	it	using	eval,	and	prints	the	result.

It	should	continue	until	the	user	enters	'done',	and	then	return	the	value	of	the	last
expression	it	evaluated.

Exercise	7-3.

The	mathematician	Srinivasa	Ramanujan	found	an	infinite	series	that	can	be	used	to
generate	a	numerical	approximation	of	 :

Write	a	function	called	estimate_pi	that	uses	this	formula	to	compute	and	return	an



estimate	of	π.	It	should	use	a	while	loop	to	compute	terms	of	the	summation	until	the	last
term	is	smaller	than	1e-15	(which	is	Python	notation	for	 ).	You	can	check	the	result
by	comparing	it	to	math.pi.

Solution:	http://thinkpython2.com/code/pi.py.

http://thinkpython2.com/code/pi.py




Chapter	8.	Strings

Strings	are	not	like	integers,	floats,	and	booleans.	A	string	is	a	sequence,	which	means	it	is
an	ordered	collection	of	other	values.	In	this	chapter	you’ll	see	how	to	access	the
characters	that	make	up	a	string,	and	you’ll	learn	about	some	of	the	methods	strings
provide.



A	String	Is	a	Sequence
A	string	is	a	sequence	of	characters.	You	can	access	the	characters	one	at	a	time	with	the
bracket	operator:

>>>	fruit	=	'banana'

>>>	letter	=	fruit[1]

The	second	statement	selects	character	number	1	from	fruit	and	assigns	it	to	letter.

The	expression	in	brackets	is	called	an	index.	The	index	indicates	which	character	in	the
sequence	you	want	(hence	the	name).

But	you	might	not	get	what	you	expect:

>>>	letter

'a'

For	most	people,	the	first	letter	of	'banana'	is	b,	not	a.	But	for	computer	scientists,	the
index	is	an	offset	from	the	beginning	of	the	string,	and	the	offset	of	the	first	letter	is	zero.

>>>	letter	=	fruit[0]

>>>	letter

'b'

So	b	is	the	0th	letter	(“zero-eth”)	of	'banana',	a	is	the	1th	letter	(“one-eth”),	and	n	is	the
2th	letter	(“two-eth”).

As	an	index,	you	can	use	an	expression	that	contains	variables	and	operators:

>>>	i	=	1

>>>	fruit[i]

'a'

>>>	fruit[i+1]

'n'

But	the	value	of	the	index	has	to	be	an	integer.	Otherwise	you	get:

>>>	letter	=	fruit[1.5]

TypeError:	string	indices	must	be	integers



len
len	is	a	built-in	function	that	returns	the	number	of	characters	in	a	string:

>>>	fruit	=	'banana'

>>>	len(fruit)

6

To	get	the	last	letter	of	a	string,	you	might	be	tempted	to	try	something	like	this:

>>>	length	=	len(fruit)

>>>	last	=	fruit[length]

IndexError:	string	index	out	of	range

The	reason	for	the	IndexError	is	that	there	is	no	letter	in	'banana'	with	the	index	6.	Since
we	started	counting	at	zero,	the	six	letters	are	numbered	0	to	5.	To	get	the	last	character,
you	have	to	subtract	1	from	length:

>>>	last	=	fruit[length-1]

>>>	last

'a'

Or	you	can	use	negative	indices,	which	count	backward	from	the	end	of	the	string.	The
expression	fruit[-1]	yields	the	last	letter,	fruit[-2]	yields	the	second	to	last,	and	so	on.



Traversal	with	a	for	Loop
A	lot	of	computations	involve	processing	a	string	one	character	at	a	time.	Often	they	start
at	the	beginning,	select	each	character	in	turn,	do	something	to	it,	and	continue	until	the
end.	This	pattern	of	processing	is	called	a	traversal.	One	way	to	write	a	traversal	is	with	a
while	loop:

index	=	0

while	index	<	len(fruit):

				letter	=	fruit[index]

				print(letter)

				index	=	index	+	1

This	loop	traverses	the	string	and	displays	each	letter	on	a	line	by	itself.	The	loop
condition	is	index	<	len(fruit),	so	when	index	is	equal	to	the	length	of	the	string,	the
condition	is	false,	and	the	body	of	the	loop	doesn’t	run.	The	last	character	accessed	is	the
one	with	the	index	len(fruit)-1,	which	is	the	last	character	in	the	string.

As	an	exercise,	write	a	function	that	takes	a	string	as	an	argument	and	displays	the	letters
backward,	one	per	line.

Another	way	to	write	a	traversal	is	with	a	for	loop:

for	letter	in	fruit:

				print(letter)

Each	time	through	the	loop,	the	next	character	in	the	string	is	assigned	to	the	variable
letter.	The	loop	continues	until	no	characters	are	left.

The	following	example	shows	how	to	use	concatenation	(string	addition)	and	a	for	loop	to
generate	an	abecedarian	series	(that	is,	in	alphabetical	order).	In	Robert	McCloskey’s	book
Make	Way	for	Ducklings,	the	names	of	the	ducklings	are	Jack,	Kack,	Lack,	Mack,	Nack,
Ouack,	Pack,	and	Quack.	This	loop	outputs	these	names	in	order:

prefixes	=	'JKLMNOPQ'

suffix	=	'ack'

for	letter	in	prefixes:

				print(letter	+	suffix)

The	output	is:

Jack

Kack

Lack

Mack

Nack

Oack

Pack

Qack

Of	course,	that’s	not	quite	right	because	“Ouack”	and	“Quack”	are	misspelled.	As	an
exercise,	modify	the	program	to	fix	this	error.



String	Slices
A	segment	of	a	string	is	called	a	slice.	Selecting	a	slice	is	similar	to	selecting	a	character:

>>>	s	=	'Monty	Python'

>>>	s[0:5]

'Monty'

>>>	s[6:12]

'Python'

The	operator	[n:m]	returns	the	part	of	the	string	from	the	“n-eth”	character	to	the	“m-eth”
character,	including	the	first	but	excluding	the	last.	This	behavior	is	counterintuitive,	but	it
might	help	to	imagine	the	indices	pointing	between	the	characters,	as	in	Figure	8-1.

Figure	8-1.	Slice	indices.

If	you	omit	the	first	index	(before	the	colon),	the	slice	starts	at	the	beginning	of	the	string.
If	you	omit	the	second	index,	the	slice	goes	to	the	end	of	the	string:

>>>	fruit	=	'banana'

>>>	fruit[:3]

'ban'

>>>	fruit[3:]

'ana'

If	the	first	index	is	greater	than	or	equal	to	the	second	the	result	is	an	empty	string,
represented	by	two	quotation	marks:

>>>	fruit	=	'banana'

>>>	fruit[3:3]

''

An	empty	string	contains	no	characters	and	has	length	0,	but	other	than	that,	it	is	the	same
as	any	other	string.

Continuing	this	example,	what	do	you	think	fruit[:]	means?	Try	it	and	see.



Strings	Are	Immutable
It	is	tempting	to	use	the	[]	operator	on	the	left	side	of	an	assignment,	with	the	intention	of
changing	a	character	in	a	string.	For	example:

>>>	greeting	=	'Hello,	world!'

>>>	greeting[0]	=	'J'

TypeError:	'str'	object	does	not	support	item	assignment

The	“object”	in	this	case	is	the	string	and	the	“item”	is	the	character	you	tried	to	assign.
For	now,	an	object	is	the	same	thing	as	a	value,	but	we	will	refine	that	definition	later
(“Objects	and	Values”).

The	reason	for	the	error	is	that	strings	are	immutable,	which	means	you	can’t	change	an
existing	string.	The	best	you	can	do	is	create	a	new	string	that	is	a	variation	on	the
original:

>>>	greeting	=	'Hello,	world!'

>>>	new_greeting	=	'J'	+	greeting[1:]

>>>	new_greeting

'Jello,	world!'

This	example	concatenates	a	new	first	letter	onto	a	slice	of	greeting.	It	has	no	effect	on
the	original	string.



Searching
What	does	the	following	function	do?

def	find(word,	letter):

				index	=	0

				while	index	<	len(word):

								if	word[index]	==	letter:

												return	index

								index	=	index	+	1

				return	-1

In	a	sense,	find	is	the	inverse	of	the	[]	operator.	Instead	of	taking	an	index	and	extracting
the	corresponding	character,	it	takes	a	character	and	finds	the	index	where	that	character
appears.	If	the	character	is	not	found,	the	function	returns	-1.

This	is	the	first	example	we	have	seen	of	a	return	statement	inside	a	loop.	If	word[index]
==	letter,	the	function	breaks	out	of	the	loop	and	returns	immediately.

If	the	character	doesn’t	appear	in	the	string,	the	program	exits	the	loop	normally	and
returns	-1.

This	pattern	of	computation	—	traversing	a	sequence	and	returning	when	we	find	what	we
are	looking	for	—	is	called	a	search.

As	an	exercise,	modify	find	so	that	it	has	a	third	parameter:	the	index	in	word	where	it
should	start	looking.



Looping	and	Counting
The	following	program	counts	the	number	of	times	the	letter	a	appears	in	a	string:

word	=	'banana'

count	=	0

for	letter	in	word:

				if	letter	==	'a':

								count	=	count	+	1

print(count)

This	program	demonstrates	another	pattern	of	computation	called	a	counter.	The	variable
count	is	initialized	to	0	and	then	incremented	each	time	an	a	is	found.	When	the	loop
exits,	count	contains	the	result	—	the	total	number	of	a’s.

As	an	exercise,	encapsulate	this	code	in	a	function	named	count,	and	generalize	it	so	that
it	accepts	the	string	and	the	letter	as	arguments.

Then	rewrite	the	function	so	that	instead	of	traversing	the	string,	it	uses	the	three-
parameter	version	of	find	from	the	previous	section.



String	Methods
Strings	provide	methods	that	perform	a	variety	of	useful	operations.	A	method	is	similar	to
a	function	—	it	takes	arguments	and	returns	a	value	—	but	the	syntax	is	different.	For
example,	the	method	upper	takes	a	string	and	returns	a	new	string	with	all	uppercase
letters.

Instead	of	the	function	syntax	upper(word),	it	uses	the	method	syntax	word.upper():

>>>	word	=	'banana'

>>>	new_word	=	word.upper()

>>>	new_word

'BANANA'

This	form	of	dot	notation	specifies	the	name	of	the	method,	upper,	and	the	name	of	the
string	to	apply	the	method	to,	word.	The	empty	parentheses	indicate	that	this	method	takes
no	arguments.

A	method	call	is	called	an	invocation;	in	this	case,	we	would	say	that	we	are	invoking
upper	on	word.

As	it	turns	out,	there	is	a	string	method	named	find	that	is	remarkably	similar	to	the
function	we	wrote:

>>>	word	=	'banana'

>>>	index	=	word.find('a')

>>>	index

1

In	this	example,	we	invoke	find	on	word	and	pass	the	letter	we	are	looking	for	as	a
parameter.

Actually,	the	find	method	is	more	general	than	our	function;	it	can	find	substrings,	not
just	characters:

>>>	word.find('na')

2

By	default,	find	starts	at	the	beginning	of	the	string,	but	it	can	take	a	second	argument,	the
index	where	it	should	start:

>>>	word.find('na',	3)

4

This	is	an	example	of	an	optional	argument.	find	can	also	take	a	third	argument,	the
index	where	it	should	stop:

>>>	name	=	'bob'

>>>	name.find('b',	1,	2)

-1



This	search	fails	because	b	does	not	appear	in	the	index	range	from	1	to	2,	not	including	2.
Searching	up	to,	but	not	including,	the	second	index	makes	find	consistent	with	the	slice
operator.



The	in	Operator
The	word	in	is	a	boolean	operator	that	takes	two	strings	and	returns	True	if	the	first
appears	as	a	substring	in	the	second:

>>>	'a'	in	'banana'

True

>>>	'seed'	in	'banana'

False

For	example,	the	following	function	prints	all	the	letters	from	word1	that	also	appear	in
word2:

def	in_both(word1,	word2):

				for	letter	in	word1:

								if	letter	in	word2:

												print(letter)

With	well-chosen	variable	names,	Python	sometimes	reads	like	English.	You	could	read
this	loop,	“for	(each)	letter	in	(the	first)	word,	if	(the)	letter	(appears)	in	(the	second)	word,
print	(the)	letter.”

Here’s	what	you	get	if	you	compare	apples	and	oranges:

>>>	in_both('apples',	'oranges')

a

e

s



String	Comparison
The	relational	operators	work	on	strings.	To	see	if	two	strings	are	equal:

if	word	==	'banana':

				print('All	right,	bananas.')

Other	relational	operations	are	useful	for	putting	words	in	alphabetical	order:

if	word	<	'banana':

				print('Your	word,	'	+	word	+	',	comes	before	banana.')

elif	word	>	'banana':

				print('Your	word,	'	+	word	+	',	comes	after	banana.')

else:

				print('All	right,	bananas.')

Python	does	not	handle	uppercase	and	lowercase	letters	the	same	way	people	do.	All	the
uppercase	letters	come	before	all	the	lowercase	letters,	so:

Your	word,	Pineapple,	comes	before	banana.

A	common	way	to	address	this	problem	is	to	convert	strings	to	a	standard	format,	such	as
all	lowercase,	before	performing	the	comparison.	Keep	that	in	mind	in	case	you	have	to
defend	yourself	against	a	man	armed	with	a	Pineapple.



Debugging
When	you	use	indices	to	traverse	the	values	in	a	sequence,	it	is	tricky	to	get	the	beginning
and	end	of	the	traversal	right.	Here	is	a	function	that	is	supposed	to	compare	two	words
and	return	True	if	one	of	the	words	is	the	reverse	of	the	other,	but	it	contains	two	errors:

def	is_reverse(word1,	word2):

				if	len(word1)	!=	len(word2):

								return	False

				

				i	=	0

				j	=	len(word2)

				while	j	>	0:

								if	word1[i]	!=	word2[j]:

												return	False

								i	=	i+1

								j	=	j-1

				return	True

The	first	if	statement	checks	whether	the	words	are	the	same	length.	If	not,	we	can	return
False	immediately.	Otherwise,	for	the	rest	of	the	function,	we	can	assume	that	the	words
are	the	same	length.	This	is	an	example	of	the	guardian	pattern	in	“Checking	Types”.

i	and	j	are	indices:	i	traverses	word1	forward	while	j	traverses	word2	backward.	If	we
find	two	letters	that	don’t	match,	we	can	return	False	immediately.	If	we	get	through	the
whole	loop	and	all	the	letters	match,	we	return	True.

If	we	test	this	function	with	the	words	“pots”	and	“stop”,	we	expect	the	return	value	True,
but	we	get	an	IndexError:

>>>	is_reverse('pots',	'stop')

...

		File	"reverse.py",	line	15,	in	is_reverse

				if	word1[i]	!=	word2[j]:

IndexError:	string	index	out	of	range

For	debugging	this	kind	of	error,	my	first	move	is	to	print	the	values	of	the	indices
immediately	before	the	line	where	the	error	appears.

				while	j	>	0:

								print(i,	j)								#	print	here

								

								if	word1[i]	!=	word2[j]:

												return	False

								i	=	i+1

								j	=	j-1

Now	when	I	run	the	program	again,	I	get	more	information:

>>>	is_reverse('pots',	'stop')

0	4…

IndexError:	string	index	out	of	range

The	first	time	through	the	loop,	the	value	of	j	is	4,	which	is	out	of	range	for	the	string



'pots'.	The	index	of	the	last	character	is	3,	so	the	initial	value	for	j	should	be
len(word2)-1.

If	I	fix	that	error	and	run	the	program	again,	I	get:

>>>	is_reverse('pots',	'stop')

0	3

1	2

2	1

True

This	time	we	get	the	right	answer,	but	it	looks	like	the	loop	only	ran	three	times,	which	is
suspicious.	To	get	a	better	idea	of	what	is	happening,	it	is	useful	to	draw	a	state	diagram.
During	the	first	iteration,	the	frame	for	is_reverse	is	shown	in	Figure	8-2.

Figure	8-2.	State	diagram.

I	took	some	license	by	arranging	the	variables	in	the	frame	and	adding	dotted	lines	to
show	that	the	values	of	i	and	j	indicate	characters	in	word1	and	word2.

Starting	with	this	diagram,	run	the	program	on	paper,	changing	the	values	of	i	and	j
during	each	iteration.	Find	and	fix	the	second	error	in	this	function.



Glossary
object:

Something	a	variable	can	refer	to.	For	now,	you	can	use	“object”	and	“value”
interchangeably.

sequence:

An	ordered	collection	of	values	where	each	value	is	identified	by	an	integer	index.

item:

One	of	the	values	in	a	sequence.

index:

An	integer	value	used	to	select	an	item	in	a	sequence,	such	as	a	character	in	a	string.
In	Python	indices	start	from	0.

slice:

A	part	of	a	string	specified	by	a	range	of	indices.

empty	string:

A	string	with	no	characters	and	length	0,	represented	by	two	quotation	marks.

immutable:

The	property	of	a	sequence	whose	items	cannot	be	changed.

traverse:

To	iterate	through	the	items	in	a	sequence,	performing	a	similar	operation	on	each.

search:

A	pattern	of	traversal	that	stops	when	it	finds	what	it	is	looking	for.

counter:

A	variable	used	to	count	something,	usually	initialized	to	zero	and	then	incremented.

invocation:

A	statement	that	calls	a	method.

optional	argument:

A	function	or	method	argument	that	is	not	required.



Exercises
Exercise	8-1.

Read	the	documentation	of	the	string	methods	at
http://docs.python.org/3/library/stdtypes.html#string-methods.	You	might	want	to
experiment	with	some	of	them	to	make	sure	you	understand	how	they	work.	strip	and
replace	are	particularly	useful.

The	documentation	uses	a	syntax	that	might	be	confusing.	For	example,	in	find(sub[,
start[,	end]]),	the	brackets	indicate	optional	arguments.	So	sub	is	required,	but	start
is	optional,	and	if	you	include	start,	then	end	is	optional.

Exercise	8-2.

There	is	a	string	method	called	count	that	is	similar	to	the	function	in	“Looping	and
Counting”.	Read	the	documentation	of	this	method	and	write	an	invocation	that	counts	the
number	of	a’s	in	'banana'.

Exercise	8-3.

A	string	slice	can	take	a	third	index	that	specifies	the	“step	size”;	that	is,	the	number	of
spaces	between	successive	characters.	A	step	size	of	2	means	every	other	character;	3
means	every	third,	etc.
>>>	fruit	=	'banana'

>>>	fruit[0:5:2]

'bnn'

A	step	size	of	-1	goes	through	the	word	backwards,	so	the	slice	[::-1]	generates	a
reversed	string.

Use	this	idiom	to	write	a	one-line	version	of	is_palindrome	from	Exercise	6-3.

Exercise	8-4.

The	following	functions	are	all	intended	to	check	whether	a	string	contains	any	lowercase
letters,	but	at	least	some	of	them	are	wrong.	For	each	function,	describe	what	the	function
actually	does	(assuming	that	the	parameter	is	a	string).
def	any_lowercase1(s):

				for	c	in	s:

								if	c.islower():

												return	True

								else:

												return	False

def	any_lowercase2(s):

				for	c	in	s:

								if	'c'.islower():

												return	'True'

								else:

												return	'False'

def	any_lowercase3(s):

				for	c	in	s:

								flag	=	c.islower()

				return	flag

http://docs.python.org/3/library/stdtypes.html#string-methods


def	any_lowercase4(s):

				flag	=	False

				for	c	in	s:

								flag	=	flag	or	c.islower()

				return	flag

def	any_lowercase5(s):

				for	c	in	s:

								if	not	c.islower():

												return	False

				return	True

Exercise	8-5.

A	Caesar	cypher	is	a	weak	form	of	encryption	that	involves	“rotating”	each	letter	by	a
fixed	number	of	places.	To	rotate	a	letter	means	to	shift	it	through	the	alphabet,	wrapping
around	to	the	beginning	if	necessary,	so	‘A’	rotated	by	3	is	‘D’	and	‘Z’	rotated	by	1	is	‘A’.

To	rotate	a	word,	rotate	each	letter	by	the	same	amount.	For	example,	“cheer”	rotated	by	7
is	“jolly”	and	“melon”	rotated	by	-10	is	“cubed”.	In	the	movie	2001:	A	Space	Odyssey,	the
ship	computer	is	called	HAL,	which	is	IBM	rotated	by	-1.

Write	a	function	called	rotate_word	that	takes	a	string	and	an	integer	as	parameters,	and
returns	a	new	string	that	contains	the	letters	from	the	original	string	rotated	by	the	given
amount.

You	might	want	to	use	the	built-in	function	ord,	which	converts	a	character	to	a	numeric
code,	and	chr,	which	converts	numeric	codes	to	characters.	Letters	of	the	alphabet	are
encoded	in	alphabetical	order,	so	for	example:
>>>	ord('c')	-	ord('a')

2

Because	'c'	is	the	two-eth	letter	of	the	alphabet.	But	beware:	the	numeric	codes	for
uppercase	letters	are	different.

Potentially	offensive	jokes	on	the	Internet	are	sometimes	encoded	in	ROT13,	which	is	a
Caesar	cypher	with	rotation	13.	If	you	are	not	easily	offended,	find	and	decode	some	of
them.

Solution:	http://thinkpython2.com/code/rotate.py.

http://thinkpython2.com/code/rotate.py




Chapter	9.	Case	Study:	Word	Play

This	chapter	presents	the	second	case	study,	which	involves	solving	word	puzzles	by
searching	for	words	that	have	certain	properties.	For	example,	we’ll	find	the	longest
palindromes	in	English	and	search	for	words	whose	letters	appear	in	alphabetical	order.
And	I	will	present	another	program	development	plan:	reduction	to	a	previously	solved
problem.



Reading	Word	Lists
For	the	exercises	in	this	chapter	we	need	a	list	of	English	words.	There	are	lots	of	word
lists	available	on	the	Web,	but	the	one	most	suitable	for	our	purpose	is	one	of	the	word
lists	collected	and	contributed	to	the	public	domain	by	Grady	Ward	as	part	of	the	Moby
lexicon	project	(see	http://wikipedia.org/wiki/Moby_Project).	It	is	a	list	of	113,809	official
crosswords;	that	is,	words	that	are	considered	valid	in	crossword	puzzles	and	other	word
games.	In	the	Moby	collection,	the	filename	is	113809of.fic;	you	can	download	a	copy,
with	the	simpler	name	words.txt,	from	http://thinkpython2.com/code/words.txt.

This	file	is	in	plain	text,	so	you	can	open	it	with	a	text	editor,	but	you	can	also	read	it	from
Python.	The	built-in	function	open	takes	the	name	of	the	file	as	a	parameter	and	returns	a
file	object	you	can	use	to	read	the	file.

>>>	fin	=	open('words.txt')

fin	is	a	common	name	for	a	file	object	used	for	input.	The	file	object	provides	several
methods	for	reading,	including	readline,	which	reads	characters	from	the	file	until	it	gets
to	a	newline	and	returns	the	result	as	a	string:

>>>	fin.readline()

'aa\r\n'

The	first	word	in	this	particular	list	is	“aa”,	which	is	a	kind	of	lava.	The	sequence	\r\n
represents	two	whitespace	characters,	a	carriage	return	and	a	newline,	that	separate	this
word	from	the	next.

The	file	object	keeps	track	of	where	it	is	in	the	file,	so	if	you	call	readline	again,	you	get
the	next	word:

>>>	fin.readline()

'aah\r\n'

The	next	word	is	“aah”,	which	is	a	perfectly	legitimate	word,	so	stop	looking	at	me	like
that.	Or,	if	it’s	the	whitespace	that’s	bothering	you,	we	can	get	rid	of	it	with	the	string
method	strip:

>>>	line	=	fin.readline()

>>>	word	=	line.strip()

>>>	word

'aahed'

You	can	also	use	a	file	object	as	part	of	a	for	loop.	This	program	reads	words.txt	and
prints	each	word,	one	per	line:

fin	=	open('words.txt')

for	line	in	fin:

				word	=	line.strip()

				print(word)

http://wikipedia.org/wiki/Moby_Project
http://thinkpython2.com/code/words.txt


Exercises
There	are	solutions	to	these	exercises	in	the	next	section.	You	should	at	least	attempt	each
one	before	you	read	the	solutions.

Exercise	9-1.

Write	a	program	that	reads	words.txt	and	prints	only	the	words	with	more	than	20
characters	(not	counting	whitespace).

Exercise	9-2.

In	1939	Ernest	Vincent	Wright	published	a	50,000-word	novel	called	Gadsby	that	does	not
contain	the	letter	“e”.	Since	“e”	is	the	most	common	letter	in	English,	that’s	not	easy	to	do.

In	fact,	it	is	difficult	to	construct	a	solitary	thought	without	using	that	most	common
symbol.	It	is	slow	going	at	first,	but	with	caution	and	hours	of	training	you	can	gradually
gain	facility.

All	right,	I’ll	stop	now.

Write	a	function	called	has_no_e	that	returns	True	if	the	given	word	doesn’t	have	the
letter	“e”	in	it.

Modify	your	program	from	the	previous	section	to	print	only	the	words	that	have	no	“e”
and	compute	the	percentage	of	the	words	in	the	list	that	have	no	“e”.

Exercise	9-3.

Write	a	function	named	avoids	that	takes	a	word	and	a	string	of	forbidden	letters,	and	that
returns	True	if	the	word	doesn’t	use	any	of	the	forbidden	letters.

Modify	your	program	to	prompt	the	user	to	enter	a	string	of	forbidden	letters	and	then
print	the	number	of	words	that	don’t	contain	any	of	them.	Can	you	find	a	combination	of
five	forbidden	letters	that	excludes	the	smallest	number	of	words?

Exercise	9-4.

Write	a	function	named	uses_only	that	takes	a	word	and	a	string	of	letters,	and	that
returns	True	if	the	word	contains	only	letters	in	the	list.	Can	you	make	a	sentence	using
only	the	letters	acefhlo?	Other	than	“Hoe	alfalfa?”

Exercise	9-5.

Write	a	function	named	uses_all	that	takes	a	word	and	a	string	of	required	letters,	and
that	returns	True	if	the	word	uses	all	the	required	letters	at	least	once.	How	many	words
are	there	that	use	all	the	vowels	aeiou?	How	about	aeiouy?

Exercise	9-6.

Write	a	function	called	is_abecedarian	that	returns	True	if	the	letters	in	a	word	appear	in
alphabetical	order	(double	letters	are	okay).	How	many	abecedarian	words	are	there?



Search
All	of	the	exercises	in	the	previous	section	have	something	in	common;	they	can	be	solved
with	the	search	pattern	we	saw	in	“Searching”.	The	simplest	example	is:

def	has_no_e(word):

				for	letter	in	word:

								if	letter	==	'e':

												return	False

				return	True

The	for	loop	traverses	the	characters	in	word.	If	we	find	the	letter	“e”,	we	can
immediately	return	False;	otherwise	we	have	to	go	to	the	next	letter.	If	we	exit	the	loop
normally,	that	means	we	didn’t	find	an	“e”,	so	we	return	True.

You	could	write	this	function	more	concisely	using	the	in	operator,	but	I	started	with	this
version	because	it	demonstrates	the	logic	of	the	search	pattern.

avoids	is	a	more	general	version	of	has_no_e	but	it	has	the	same	structure:

def	avoids(word,	forbidden):

				for	letter	in	word:

								if	letter	in	forbidden:

												return	False

				return	True

We	can	return	False	as	soon	as	we	find	a	forbidden	letter;	if	we	get	to	the	end	of	the	loop,
we	return	True.

uses_only	is	similar	except	that	the	sense	of	the	condition	is	reversed:

def	uses_only(word,	available):

				for	letter	in	word:	

								if	letter	not	in	available:

												return	False

				return	True

Instead	of	a	list	of	forbidden	letters,	we	have	a	list	of	available	letters.	If	we	find	a	letter	in
word	that	is	not	in	available,	we	can	return	False.

uses_all	is	similar	except	that	we	reverse	the	role	of	the	word	and	the	string	of	letters:

def	uses_all(word,	required):

				for	letter	in	required:	

								if	letter	not	in	word:

												return	False

				return	True

Instead	of	traversing	the	letters	in	word,	the	loop	traverses	the	required	letters.	If	any	of	the
required	letters	do	not	appear	in	the	word,	we	can	return	False.

If	you	were	really	thinking	like	a	computer	scientist,	you	would	have	recognized	that
uses_all	was	an	instance	of	a	previously	solved	problem,	and	you	would	have	written:



def	uses_all(word,	required):

				return	uses_only(required,	word)

This	is	an	example	of	a	program	development	plan	called	reduction	to	a	previously
solved	problem,	which	means	that	you	recognize	the	problem	you	are	working	on	as	an
instance	of	a	solved	problem	and	apply	an	existing	solution.



Looping	with	Indices
I	wrote	the	functions	in	the	previous	section	with	for	loops	because	I	only	needed	the
characters	in	the	strings;	I	didn’t	have	to	do	anything	with	the	indices.

For	is_abecedarian	we	have	to	compare	adjacent	letters,	which	is	a	little	tricky	with	a
for	loop:

def	is_abecedarian(word):

				previous	=	word[0]

				for	c	in	word:

								if	c	<	previous:

												return	False

								previous	=	c

				return	True

An	alternative	is	to	use	recursion:

def	is_abecedarian(word):

				if	len(word)	<=	1:

								return	True

				if	word[0]	>	word[1]:

								return	False

				return	is_abecedarian(word[1:])

Another	option	is	to	use	a	while	loop:

def	is_abecedarian(word):

				i	=	0

				while	i	<	len(word)-1:

								if	word[i+1]	<	word[i]:

												return	False

								i	=	i+1

				return	True

The	loop	starts	at	i=0	and	ends	when	i=len(word)-1.	Each	time	through	the	loop,	it
compares	the	ith	character	(which	you	can	think	of	as	the	current	character)	to	the	i+1th
character	(which	you	can	think	of	as	the	next).

If	the	next	character	is	less	than	(alphabetically	before)	the	current	one,	then	we	have
discovered	a	break	in	the	abecedarian	trend,	and	we	return	False.

If	we	get	to	the	end	of	the	loop	without	finding	a	fault,	then	the	word	passes	the	test.	To
convince	yourself	that	the	loop	ends	correctly,	consider	an	example	like	'flossy'.	The
length	of	the	word	is	6,	so	the	last	time	the	loop	runs	is	when	i	is	4,	which	is	the	index	of
the	second-to-last	character.	On	the	last	iteration,	it	compares	the	second-to-last	character
to	the	last,	which	is	what	we	want.

Here	is	a	version	of	is_palindrome	(see	Exercise	6-3)	that	uses	two	indices:	one	starts	at
the	beginning	and	goes	up;	the	other	starts	at	the	end	and	goes	down.

def	is_palindrome(word):

				i	=	0

				j	=	len(word)-1



				while	i<j:

								if	word[i]	!=	word[j]:

												return	False

								i	=	i+1

								j	=	j-1

				return	True

Or	we	could	reduce	to	a	previously	solved	problem	and	write:

def	is_palindrome(word):

				return	is_reverse(word,	word)

Using	is_reverse	from	Figure	8-2.



Debugging
Testing	programs	is	hard.	The	functions	in	this	chapter	are	relatively	easy	to	test	because
you	can	check	the	results	by	hand.	Even	so,	it	is	somewhere	between	difficult	and
impossible	to	choose	a	set	of	words	that	test	for	all	possible	errors.

Taking	has_no_e	as	an	example,	there	are	two	obvious	cases	to	check:	words	that	have	an
‘e’	should	return	False,	and	words	that	don’t	should	return	True.	You	should	have	no
trouble	coming	up	with	one	of	each.

Within	each	case,	there	are	some	less	obvious	subcases.	Among	the	words	that	have	an
“e”,	you	should	test	words	with	an	“e”	at	the	beginning,	the	end,	and	somewhere	in	the
middle.	You	should	test	long	words,	short	words,	and	very	short	words,	like	the	empty
string.	The	empty	string	is	an	example	of	a	special	case,	which	is	one	of	the	non-obvious
cases	where	errors	often	lurk.

In	addition	to	the	test	cases	you	generate,	you	can	also	test	your	program	with	a	word	list
like	words.txt.	By	scanning	the	output,	you	might	be	able	to	catch	errors,	but	be	careful:
you	might	catch	one	kind	of	error	(words	that	should	not	be	included,	but	are)	and	not
another	(words	that	should	be	included,	but	aren’t).

In	general,	testing	can	help	you	find	bugs,	but	it	is	not	easy	to	generate	a	good	set	of	test
cases,	and	even	if	you	do,	you	can’t	be	sure	your	program	is	correct.	According	to	a
legendary	computer	scientist:

Program	testing	can	be	used	to	show	the	presence	of	bugs,	but	never	to	show	their
absence!

Edsger	W.	Dijkstra



Glossary
file	object:

A	value	that	represents	an	open	file.

reduction	to	a	previously	solved	problem:

A	way	of	solving	a	problem	by	expressing	it	as	an	instance	of	a	previously	solved
problem.

special	case:

A	test	case	that	is	atypical	or	non-obvious	(and	less	likely	to	be	handled	correctly).



Exercises
Exercise	9-7.

This	question	is	based	on	a	Puzzler	that	was	broadcast	on	the	radio	program	Car	Talk
(http://www.cartalk.com/content/puzzlers):

Give	me	a	word	with	three	consecutive	double	letters.	I’ll	give	you	a	couple	of	words
that	almost	qualify,	but	don’t.	For	example,	the	word	committee,	c-o-m-m-i-t-t-e-e.	It
would	be	great	except	for	the	‘i’	that	sneaks	in	there.	Or	Mississippi:	M-i-s-s-i-s-s-i-p-p-
i.	If	you	could	take	out	those	i’s	it	would	work.	But	there	is	a	word	that	has	three
consecutive	pairs	of	letters	and	to	the	best	of	my	knowledge	this	may	be	the	only	word.
Of	course	there	are	probably	500	more	but	I	can	only	think	of	one.	What	is	the	word?

Write	a	program	to	find	it.

Solution:	http://thinkpython2.com/code/cartalk1.py.

Exercise	9-8.

Here’s	another	Car	Talk	Puzzler	(http://www.cartalk.com/content/puzzlers):

“I	was	driving	on	the	highway	the	other	day	and	I	happened	to	notice	my	odometer.
Like	most	odometers,	it	shows	six	digits,	in	whole	miles	only.	So,	if	my	car	had	300,000
miles,	for	example,	I’d	see	3-0-0-0-0-0.

“Now,	what	I	saw	that	day	was	very	interesting.	I	noticed	that	the	last	4	digits	were
palindromic;	that	is,	they	read	the	same	forward	as	backward.	For	example,	5-4-4-5	is	a
palindrome,	so	my	odometer	could	have	read	3-1-5-4-4-5.

“One	mile	later,	the	last	5	numbers	were	palindromic.	For	example,	it	could	have	read
3-6-5-4-5-6.	One	mile	after	that,	the	middle	4	out	of	6	numbers	were	palindromic.	And
you	ready	for	this?	One	mile	later,	all	6	were	palindromic!

“The	question	is,	what	was	on	the	odometer	when	I	first	looked?”

Write	a	Python	program	that	tests	all	the	six-digit	numbers	and	prints	any	numbers	that
satisfy	these	requirements.

Solution:	http://thinkpython2.com/code/cartalk2.py.

Exercise	9-9.

Here’s	another	Car	Talk	Puzzler	you	can	solve	with	a	search
(http://www.cartalk.com/content/puzzlers):

http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk1.py
http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk2.py
http://www.cartalk.com/content/puzzlers


“Recently	I	had	a	visit	with	my	mom	and	we	realized	that	the	two	digits	that	make	up
my	age	when	reversed	resulted	in	her	age.	For	example,	if	she’s	73,	I’m	37.	We
wondered	how	often	this	has	happened	over	the	years	but	we	got	sidetracked	with	other
topics	and	we	never	came	up	with	an	answer.

“When	I	got	home	I	figured	out	that	the	digits	of	our	ages	have	been	reversible	six	times
so	far.	I	also	figured	out	that	if	we’re	lucky	it	would	happen	again	in	a	few	years,	and	if
we’re	really	lucky	it	would	happen	one	more	time	after	that.	In	other	words,	it	would
have	happened	8	times	over	all.	So	the	question	is,	how	old	am	I	now?”

Write	a	Python	program	that	searches	for	solutions	to	this	Puzzler.	Hint:	you	might	find
the	string	method	zfill	useful.

Solution:	http://thinkpython2.com/code/cartalk3.py.

http://thinkpython2.com/code/cartalk3.py




Chapter	10.	Lists

This	chapter	presents	one	of	Python’s	most	useful	built-in	types:	lists.	You	will	also	learn
more	about	objects	and	what	can	happen	when	you	have	more	than	one	name	for	the	same
object.



A	List	Is	a	Sequence
Like	a	string,	a	list	is	a	sequence	of	values.	In	a	string,	the	values	are	characters;	in	a	list,
they	can	be	any	type.	The	values	in	a	list	are	called	elements	or	sometimes	items.

There	are	several	ways	to	create	a	new	list;	the	simplest	is	to	enclose	the	elements	in
square	brackets	([	and	]):

[10,	20,	30,	40]

['crunchy	frog',	'ram	bladder',	'lark	vomit']

The	first	example	is	a	list	of	four	integers.	The	second	is	a	list	of	three	strings.	The
elements	of	a	list	don’t	have	to	be	the	same	type.	The	following	list	contains	a	string,	a
float,	an	integer,	and	(lo!)	another	list:

['spam',	2.0,	5,	[10,	20]]

A	list	within	another	list	is	nested.

A	list	that	contains	no	elements	is	called	an	empty	list;	you	can	create	one	with	empty
brackets,	[].

As	you	might	expect,	you	can	assign	list	values	to	variables:

>>>	cheeses	=	['Cheddar',	'Edam',	'Gouda']

>>>	numbers	=	[42,	123]

>>>	empty	=	[]

>>>	print(cheeses,	numbers,	empty)

['Cheddar',	'Edam',	'Gouda']	[42,	123]	[]



Lists	Are	Mutable
The	syntax	for	accessing	the	elements	of	a	list	is	the	same	as	for	accessing	the	characters
of	a	string	—	the	bracket	operator.	The	expression	inside	the	brackets	specifies	the	index.
Remember	that	the	indices	start	at	0:

>>>	cheeses[0]

'Cheddar'

Unlike	strings,	lists	are	mutable.	When	the	bracket	operator	appears	on	the	left	side	of	an
assignment,	it	identifies	the	element	of	the	list	that	will	be	assigned:

>>>	numbers	=	[42,	123]

>>>	numbers[1]	=	5

>>>	numbers

[42,	5]

The	one-eth	element	of	numbers,	which	used	to	be	123,	is	now	5.

Figure	10-1	shows	the	state	diagram	for	cheeses,	numbers	and	empty.



Figure	10-1.	State	diagram.

Lists	are	represented	by	boxes	with	the	word	“list”	outside	and	the	elements	of	the	list
inside.	cheeses	refers	to	a	list	with	three	elements	indexed	0,	1	and	2.	numbers	contains
two	elements;	the	diagram	shows	that	the	value	of	the	second	element	has	been	reassigned
from	123	to	5.	empty	refers	to	a	list	with	no	elements.

List	indices	work	the	same	way	as	string	indices:

Any	integer	expression	can	be	used	as	an	index.

If	you	try	to	read	or	write	an	element	that	does	not	exist,	you	get	an	IndexError.

If	an	index	has	a	negative	value,	it	counts	backward	from	the	end	of	the	list.

The	in	operator	also	works	on	lists:



>>>	cheeses	=	['Cheddar',	'Edam',	'Gouda']

>>>	'Edam'	in	cheeses

True

>>>	'Brie'	in	cheeses

False



Traversing	a	List
The	most	common	way	to	traverse	the	elements	of	a	list	is	with	a	for	loop.	The	syntax	is
the	same	as	for	strings:

for	cheese	in	cheeses:

				print(cheese)

This	works	well	if	you	only	need	to	read	the	elements	of	the	list.	But	if	you	want	to	write
or	update	the	elements,	you	need	the	indices.	A	common	way	to	do	that	is	to	combine	the
built-in	functions	range	and	len:

for	i	in	range(len(numbers)):

				numbers[i]	=	numbers[i]	*	2

This	loop	traverses	the	list	and	updates	each	element.	len	returns	the	number	of	elements
in	the	list.	range	returns	a	list	of	indices	from	0	to	n-1,	where	n	is	the	length	of	the	list.
Each	time	through	the	loop,	i	gets	the	index	of	the	next	element.	The	assignment
statement	in	the	body	uses	i	to	read	the	old	value	of	the	element	and	to	assign	the	new
value.

A	for	loop	over	an	empty	list	never	runs	the	body:

for	x	in	[]:

				print('This	never	happens.')

Although	a	list	can	contain	another	list,	the	nested	list	still	counts	as	a	single	element.	The
length	of	this	list	is	four:

['spam',	1,	['Brie',	'Roquefort',	'Pol	le	Veq'],	[1,	2,	3]]



List	Operations
The	+	operator	concatenates	lists:

>>>	a	=	[1,	2,	3]

>>>	b	=	[4,	5,	6]

>>>	c	=	a	+	b

>>>	c

[1,	2,	3,	4,	5,	6]

The	*	operator	repeats	a	list	a	given	number	of	times:

>>>	[0]	*	4

[0,	0,	0,	0]

>>>	[1,	2,	3]	*	3

[1,	2,	3,	1,	2,	3,	1,	2,	3]

The	first	example	repeats	[0]	four	times.	The	second	example	repeats	the	list	[1,	2,	3]
three	times.



List	Slices
The	slice	operator	also	works	on	lists:

>>>	t	=	['a',	'b',	'c',	'd',	'e',	'f']

>>>	t[1:3]

['b',	'c']

>>>	t[:4]

['a',	'b',	'c',	'd']

>>>	t[3:]

['d',	'e',	'f']

If	you	omit	the	first	index,	the	slice	starts	at	the	beginning.	If	you	omit	the	second,	the
slice	goes	to	the	end.	So	if	you	omit	both,	the	slice	is	a	copy	of	the	whole	list:

>>>	t[:]

['a',	'b',	'c',	'd',	'e',	'f']

Since	lists	are	mutable,	it	is	often	useful	to	make	a	copy	before	performing	operations	that
modify	lists.

A	slice	operator	on	the	left	side	of	an	assignment	can	update	multiple	elements:

>>>	t	=	['a',	'b',	'c',	'd',	'e',	'f']

>>>	t[1:3]	=	['x',	'y']

>>>	t

['a',	'x',	'y',	'd',	'e',	'f']



List	Methods
Python	provides	methods	that	operate	on	lists.	For	example,	append	adds	a	new	element	to
the	end	of	a	list:

>>>	t	=	['a',	'b',	'c']

>>>	t.append('d')

>>>	t

['a',	'b',	'c',	'd']

extend	takes	a	list	as	an	argument	and	appends	all	of	the	elements:

>>>	t1	=	['a',	'b',	'c']

>>>	t2	=	['d',	'e']

>>>	t1.extend(t2)

>>>	t1

['a',	'b',	'c',	'd',	'e']

This	example	leaves	t2	unmodified.

sort	arranges	the	elements	of	the	list	from	low	to	high:

>>>	t	=	['d',	'c',	'e',	'b',	'a']

>>>	t.sort()

>>>	t

['a',	'b',	'c',	'd',	'e']

Most	list	methods	are	void;	they	modify	the	list	and	return	None.	If	you	accidentally	write
t	=	t.sort(),	you	will	be	disappointed	with	the	result.



Map,	Filter	and	Reduce
To	add	up	all	the	numbers	in	a	list,	you	can	use	a	loop	like	this:

def	add_all(t):

				total	=	0

				for	x	in	t:

								total	+=	x

				return	total

total	is	initialized	to	0.	Each	time	through	the	loop,	x	gets	one	element	from	the	list.	The
+=	operator	provides	a	short	way	to	update	a	variable.	This	augmented	assignment
statement,

				total	+=	x

is	equivalent	to

				total	=	total	+	x

As	the	loop	runs,	total	accumulates	the	sum	of	the	elements;	a	variable	used	this	way	is
sometimes	called	an	accumulator.

Adding	up	the	elements	of	a	list	is	such	a	common	operation	that	Python	provides	it	as	a
built-in	function,	sum:

>>>	t	=	[1,	2,	3]

>>>	sum(t)

6

An	operation	like	this	that	combines	a	sequence	of	elements	into	a	single	value	is
sometimes	called	reduce.

Sometimes	you	want	to	traverse	one	list	while	building	another.	For	example,	the
following	function	takes	a	list	of	strings	and	returns	a	new	list	that	contains	capitalized
strings:

def	capitalize_all(t):

				res	=	[]

				for	s	in	t:

								res.append(s.capitalize())

				return	res

res	is	initialized	with	an	empty	list;	each	time	through	the	loop,	we	append	the	next
element.	So	res	is	another	kind	of	accumulator.

An	operation	like	capitalize_all	is	sometimes	called	a	map	because	it	“maps”	a
function	(in	this	case	the	method	capitalize)	onto	each	of	the	elements	in	a	sequence.

Another	common	operation	is	to	select	some	of	the	elements	from	a	list	and	return	a
sublist.	For	example,	the	following	function	takes	a	list	of	strings	and	returns	a	list	that



contains	only	the	uppercase	strings:

def	only_upper(t):

				res	=	[]

				for	s	in	t:

								if	s.isupper():

												res.append(s)

				return	res

isupper	is	a	string	method	that	returns	True	if	the	string	contains	only	uppercase	letters.

An	operation	like	only_upper	is	called	a	filter	because	it	selects	some	of	the	elements	and
filters	out	the	others.

Most	common	list	operations	can	be	expressed	as	a	combination	of	map,	filter	and	reduce.



Deleting	Elements
There	are	several	ways	to	delete	elements	from	a	list.	If	you	know	the	index	of	the	element
you	want,	you	can	use	pop:

>>>	t	=	['a',	'b',	'c']

>>>	x	=	t.pop(1)

>>>	t

['a',	'c']

>>>	x

'b'

pop	modifies	the	list	and	returns	the	element	that	was	removed.	If	you	don’t	provide	an
index,	it	deletes	and	returns	the	last	element.

If	you	don’t	need	the	removed	value,	you	can	use	the	del	operator:

>>>	t	=	['a',	'b',	'c']

>>>	del	t[1]

>>>	t

['a',	'c']

If	you	know	the	element	you	want	to	remove	(but	not	the	index),	you	can	use	remove:

>>>	t	=	['a',	'b',	'c']

>>>	t.remove('b')

>>>	t

['a',	'c']

The	return	value	from	remove	is	None.

To	remove	more	than	one	element,	you	can	use	del	with	a	slice	index:

>>>	t	=	['a',	'b',	'c',	'd',	'e',	'f']

>>>	del	t[1:5]

>>>	t

['a',	'f']

As	usual,	the	slice	selects	all	the	elements	up	to	but	not	including	the	second	index.



Lists	and	Strings
A	string	is	a	sequence	of	characters	and	a	list	is	a	sequence	of	values,	but	a	list	of
characters	is	not	the	same	as	a	string.	To	convert	from	a	string	to	a	list	of	characters,	you
can	use	list:

>>>	s	=	'spam'

>>>	t	=	list(s)

>>>	t

['s',	'p',	'a',	'm']

Because	list	is	the	name	of	a	built-in	function,	you	should	avoid	using	it	as	a	variable
name.	I	also	avoid	l	because	it	looks	too	much	like	1.	So	that’s	why	I	use	t.

The	list	function	breaks	a	string	into	individual	letters.	If	you	want	to	break	a	string	into
words,	you	can	use	the	split	method:

>>>	s	=	'pining	for	the	fjords'

>>>	t	=	s.split()

>>>	t

['pining',	'for',	'the',	'fjords']

An	optional	argument	called	a	delimiter	specifies	which	characters	to	use	as	word
boundaries.	The	following	example	uses	a	hyphen	as	a	delimiter:

>>>	s	=	'spam-spam-spam'

>>>	delimiter	=	'-'

>>>	t	=	s.split(delimiter)

>>>	t

['spam',	'spam',	'spam']

join	is	the	inverse	of	split.	It	takes	a	list	of	strings	and	concatenates	the	elements.	join
is	a	string	method,	so	you	have	to	invoke	it	on	the	delimiter	and	pass	the	list	as	a
parameter:

>>>	t	=	['pining',	'for',	'the',	'fjords']

>>>	delimiter	=	'	'

>>>	s	=	delimiter.join(t)

>>>	s

'pining	for	the	fjords'

In	this	case	the	delimiter	is	a	space	character,	so	join	puts	a	space	between	words.	To
concatenate	strings	without	spaces,	you	can	use	the	empty	string,	'',	as	a	delimiter.



Objects	and	Values
If	we	run	these	assignment	statements:

a	=	'banana'

b	=	'banana'

We	know	that	a	and	b	both	refer	to	a	string,	but	we	don’t	know	whether	they	refer	to	the
same	string.	There	are	two	possible	states,	shown	in	Figure	10-2.

Figure	10-2.	State	diagram.

In	one	case,	a	and	b	refer	to	two	different	objects	that	have	the	same	value.	In	the	second
case,	they	refer	to	the	same	object.

To	check	whether	two	variables	refer	to	the	same	object,	you	can	use	the	is	operator:

>>>	a	=	'banana'

>>>	b	=	'banana'

>>>	a	is	b

True

In	this	example,	Python	only	created	one	string	object,	and	both	a	and	b	refer	to	it.	But
when	you	create	two	lists,	you	get	two	objects:

>>>	a	=	[1,	2,	3]

>>>	b	=	[1,	2,	3]

>>>	a	is	b

False

So	the	state	diagram	looks	like	Figure	10-3.

Figure	10-3.	State	diagram.

In	this	case	we	would	say	that	the	two	lists	are	equivalent,	because	they	have	the	same
elements,	but	not	identical,	because	they	are	not	the	same	object.	If	two	objects	are



identical,	they	are	also	equivalent,	but	if	they	are	equivalent,	they	are	not	necessarily
identical.

Until	now,	we	have	been	using	“object”	and	“value”	interchangeably,	but	it	is	more	precise
to	say	that	an	object	has	a	value.	If	you	evaluate	[1,	2,	3],	you	get	a	list	object	whose
value	is	a	sequence	of	integers.	If	another	list	has	the	same	elements,	we	say	it	has	the
same	value,	but	it	is	not	the	same	object.



Aliasing
If	a	refers	to	an	object	and	you	assign	b	=	a,	then	both	variables	refer	to	the	same	object:

>>>	a	=	[1,	2,	3]

>>>	b	=	a

>>>	b	is	a

True

The	state	diagram	looks	like	Figure	10-4.

Figure	10-4.	State	diagram.

The	association	of	a	variable	with	an	object	is	called	a	reference.	In	this	example,	there
are	two	references	to	the	same	object.

An	object	with	more	than	one	reference	has	more	than	one	name,	so	we	say	that	the	object
is	aliased.

If	the	aliased	object	is	mutable,	changes	made	with	one	alias	affect	the	other:

>>>	b[0]	=	42

>>>	a

[42,	2,	3]

Although	this	behavior	can	be	useful,	it	is	error-prone.	In	general,	it	is	safer	to	avoid
aliasing	when	you	are	working	with	mutable	objects.

For	immutable	objects	like	strings,	aliasing	is	not	as	much	of	a	problem.	In	this	example:

a	=	'banana'

b	=	'banana'

It	almost	never	makes	a	difference	whether	a	and	b	refer	to	the	same	string	or	not.



List	Arguments
When	you	pass	a	list	to	a	function,	the	function	gets	a	reference	to	the	list.	If	the	function
modifies	the	list,	the	caller	sees	the	change.	For	example,	delete_head	removes	the	first
element	from	a	list:

def	delete_head(t):

				del	t[0]

Here’s	how	it	is	used:

>>>	letters	=	['a',	'b',	'c']

>>>	delete_head(letters)

>>>	letters

['b',	'c']

The	parameter	t	and	the	variable	letters	are	aliases	for	the	same	object.	The	stack
diagram	looks	like	Figure	10-5.

Figure	10-5.	Stack	diagram.

Since	the	list	is	shared	by	two	frames,	I	drew	it	between	them.

It	is	important	to	distinguish	between	operations	that	modify	lists	and	operations	that
create	new	lists.	For	example,	the	append	method	modifies	a	list,	but	the	+	operator	creates
a	new	list:

>>>	t1	=	[1,	2]

>>>	t2	=	t1.append(3)

>>>	t1

[1,	2,	3]

>>>	t2

None

append	modifies	the	list	and	returns	None:

>>>	t3	=	t1	+	[4]

>>>	t1

[1,	2,	3]

>>>	t3

[1,	2,	3,	4]

>>>	t1



The	+	operator	creates	a	new	list	and	leaves	the	original	list	unchanged.

This	difference	is	important	when	you	write	functions	that	are	supposed	to	modify	lists.
For	example,	this	function	does	not	delete	the	head	of	a	list:

def	bad_delete_head(t):

				t	=	t[1:]														#	WRONG!

The	slice	operator	creates	a	new	list	and	the	assignment	makes	t	refer	to	it,	but	that
doesn’t	affect	the	caller.

>>>	t4	=	[1,	2,	3]

>>>	bad_delete_head(t4)

>>>	t4

[1,	2,	3]

At	the	beginning	of	bad_delete_head,	t	and	t4	refer	to	the	same	list.	At	the	end,	t	refers
to	a	new	list,	but	t4	still	refers	to	the	original,	unmodified	list.

An	alternative	is	to	write	a	function	that	creates	and	returns	a	new	list.	For	example,	tail
returns	all	but	the	first	element	of	a	list:

def	tail(t):

				return	t[1:]

This	function	leaves	the	original	list	unmodified.	Here’s	how	it	is	used:

>>>	letters	=	['a',	'b',	'c']

>>>	rest	=	tail(letters)

>>>	rest

['b',	'c']



Debugging
Careless	use	of	lists	(and	other	mutable	objects)	can	lead	to	long	hours	of	debugging.	Here
are	some	common	pitfalls	and	ways	to	avoid	them:

1.	 Most	list	methods	modify	the	argument	and	return	None.	This	is	the	opposite	of	the
string	methods,	which	return	a	new	string	and	leave	the	original	alone.	
If	you	are	used	to	writing	string	code	like	this:

word	=	word.strip()

It	is	tempting	to	write	list	code	like	this:

t	=	t.sort()											#	WRONG!

Because	sort	returns	None,	the	next	operation	you	perform	with	t	is	likely	to	fail.	
Before	using	list	methods	and	operators,	you	should	read	the	documentation
carefully	and	then	test	them	in	interactive	mode.

2.	 Pick	an	idiom	and	stick	with	it.	
Part	of	the	problem	with	lists	is	that	there	are	too	many	ways	to	do	things.	For
example,	to	remove	an	element	from	a	list,	you	can	use	pop,	remove,	del,	or	even	a
slice	assignment.	
To	add	an	element,	you	can	use	the	append	method	or	the	+	operator.	Assuming	that
t	is	a	list	and	x	is	a	list	element,	these	are	correct:

t.append(x)

t	=	t	+	[x]

t	+=	[x]

And	these	are	wrong:

t.append([x])										#	WRONG!

t	=	t.append(x)								#	WRONG!

t	+	[x]																#	WRONG!

t	=	t	+	x														#	WRONG!

Try	out	each	of	these	examples	in	interactive	mode	to	make	sure	you	understand
what	they	do.	Notice	that	only	the	last	one	causes	a	runtime	error;	the	other	three	are
legal,	but	they	do	the	wrong	thing.

3.	 Make	copies	to	avoid	aliasing.
If	you	want	to	use	a	method	like	sort	that	modifies	the	argument,	but	you	need	to
keep	the	original	list	as	well,	you	can	make	a	copy:

>>>	t	=	[3,	1,	2]



>>>	t2	=	t[:]

>>>	t2.sort()

>>>	t

[3,	1,	2]

>>>	t2

[1,	2,	3]

In	this	example	you	could	also	use	the	built-in	function	sorted,	which	returns	a	new,
sorted	list	and	leaves	the	original	alone:

>>>	t2	=	sorted(t)

>>>	t

[3,	1,	2]

>>>	t2

[1,	2,	3]



Glossary
list:

A	sequence	of	values.

element:

One	of	the	values	in	a	list	(or	other	sequence),	also	called	items.

nested	list:

A	list	that	is	an	element	of	another	list.

accumulator:

A	variable	used	in	a	loop	to	add	up	or	accumulate	a	result.

augmented	assignment:

A	statement	that	updates	the	value	of	a	variable	using	an	operator	like	+=.

reduce:

A	processing	pattern	that	traverses	a	sequence	and	accumulates	the	elements	into	a
single	result.

map:

A	processing	pattern	that	traverses	a	sequence	and	performs	an	operation	on	each
element.

filter:

A	processing	pattern	that	traverses	a	list	and	selects	the	elements	that	satisfy	some
criterion.

object:

Something	a	variable	can	refer	to.	An	object	has	a	type	and	a	value.

equivalent:

Having	the	same	value.

identical:

Being	the	same	object	(which	implies	equivalence).

reference:

The	association	between	a	variable	and	its	value.

aliasing:

A	circumstance	where	two	or	more	variables	refer	to	the	same	object.

delimiter:

A	character	or	string	used	to	indicate	where	a	string	should	be	split.



Exercises
You	can	download	solutions	to	these	exercises	from	from
http://thinkpython2.com/code/list_exercises.py.

Exercise	10-1.

Write	a	function	called	nested_sum	that	takes	a	list	of	lists	of	integers	and	adds	up	the
elements	from	all	of	the	nested	lists.	For	example:
>>>	t	=	[[1,	2],	[3],	[4,	5,	6]]

>>>	nested_sum(t)

21

Exercise	10-2.

Write	a	function	called	cumsum	that	takes	a	list	of	numbers	and	returns	the	cumulative	sum;
that	is,	a	new	list	where	the	ith	element	is	the	sum	of	the	first	i+1	elements	from	the
original	list.	For	example:
>>>	t	=	[1,	2,	3]

>>>	cumsum(t)

[1,	3,	6]

Exercise	10-3.

Write	a	function	called	middle	that	takes	a	list	and	returns	a	new	list	that	contains	all	but
the	first	and	last	elements.	For	example:
>>>	t	=	[1,	2,	3,	4]

>>>	middle(t)

[2,	3]

Exercise	10-4.

Write	a	function	called	chop	that	takes	a	list,	modifies	it	by	removing	the	first	and	last
elements,	and	returns	None.	For	example:
>>>	t	=	[1,	2,	3,	4]

>>>	chop(t)

>>>	t

[2,	3]

Exercise	10-5.

Write	a	function	called	is_sorted	that	takes	a	list	as	a	parameter	and	returns	True	if	the
list	is	sorted	in	ascending	order	and	False	otherwise.	For	example:
>>>	is_sorted([1,	2,	2])

True

>>>	is_sorted(['b',	'a'])

False

Exercise	10-6.

Two	words	are	anagrams	if	you	can	rearrange	the	letters	from	one	to	spell	the	other.	Write
a	function	called	is_anagram	that	takes	two	strings	and	returns	True	if	they	are	anagrams.

Exercise	10-7.

Write	a	function	called	has_duplicates	that	takes	a	list	and	returns	True	if	there	is	any

http://thinkpython2.com/code/list_exercises.py


element	that	appears	more	than	once.	It	should	not	modify	the	original	list.

Exercise	10-8.

This	exercise	pertains	to	the	so-called	Birthday	Paradox,	which	you	can	read	about	at
http://en.wikipedia.org/wiki/Birthday_paradox.

If	there	are	23	students	in	your	class,	what	are	the	chances	that	two	of	you	have	the	same
birthday?	You	can	estimate	this	probability	by	generating	random	samples	of	23	birthdays
and	checking	for	matches.	Hint:	you	can	generate	random	birthdays	with	the	randint
function	in	the	random	module.

You	can	download	my	solution	from	http://thinkpython2.com/code/birthday.py.

Exercise	10-9.

Write	a	function	that	reads	the	file	words.txt	and	builds	a	list	with	one	element	per	word.
Write	two	versions	of	this	function,	one	using	the	append	method	and	the	other	using	the
idiom	t	=	t	+	[x].	Which	one	takes	longer	to	run?	Why?

Solution:	http://thinkpython2.com/code/wordlist.py.

Exercise	10-10.

To	check	whether	a	word	is	in	the	word	list,	you	could	use	the	in	operator,	but	it	would	be
slow	because	it	searches	through	the	words	in	order.

Because	the	words	are	in	alphabetical	order,	we	can	speed	things	up	with	a	bisection
search	(also	known	as	binary	search),	which	is	similar	to	what	you	do	when	you	look	a
word	up	in	the	dictionary.	You	start	in	the	middle	and	check	to	see	whether	the	word	you
are	looking	for	comes	before	the	word	in	the	middle	of	the	list.	If	so,	you	search	the	first
half	of	the	list	the	same	way.	Otherwise	you	search	the	second	half.

Either	way,	you	cut	the	remaining	search	space	in	half.	If	the	word	list	has	113,809	words,
it	will	take	about	17	steps	to	find	the	word	or	conclude	that	it’s	not	there.

Write	a	function	called	in_bisect	that	takes	a	sorted	list	and	a	target	value	and	returns	the
index	of	the	value	in	the	list	if	it’s	there,	or	None	if	it’s	not.

Or	you	could	read	the	documentation	of	the	bisect	module	and	use	that!

Solution:	http://thinkpython2.com/code/inlist.py.

Exercise	10-11.

Two	words	are	a	“reverse	pair”	if	each	is	the	reverse	of	the	other.	Write	a	program	that
finds	all	the	reverse	pairs	in	the	word	list.

Solution:	http://thinkpython2.com/code/reverse_pair.py.

Exercise	10-12.

Two	words	“interlock”	if	taking	alternating	letters	from	each	forms	a	new	word.	For

http://en.wikipedia.org/wiki/Birthday_paradox
http://thinkpython2.com/code/birthday.py
http://thinkpython2.com/code/wordlist.py
http://thinkpython2.com/code/inlist.py
http://thinkpython2.com/code/reverse_pair.py


example,	“shoe”	and	“cold”	interlock	to	form	“schooled”.

Solution:	http://thinkpython2.com/code/interlock.py.	Credit:	This	exercise	is	inspired	by	an
example	at	http://puzzlers.org.

1.	 Write	a	program	that	finds	all	pairs	of	words	that	interlock.	Hint:	don’t	enumerate	all
pairs!

2.	 Can	you	find	any	words	that	are	three-way	interlocked;	that	is,	every	third	letter
forms	a	word,	starting	from	the	first,	second	or	third?

http://thinkpython2.com/code/interlock.py
http://puzzlers.org




Chapter	11.	Dictionaries

This	chapter	presents	another	built-in	type	called	a	dictionary.	Dictionaries	are	one	of
Python’s	best	features;	they	are	the	building	blocks	of	many	efficient	and	elegant
algorithms.



A	Dictionary	Is	a	Mapping
A	dictionary	is	like	a	list,	but	more	general.	In	a	list,	the	indices	have	to	be	integers;	in	a
dictionary	they	can	be	(almost)	any	type.

A	dictionary	contains	a	collection	of	indices,	which	are	called	keys,	and	a	collection	of
values.	Each	key	is	associated	with	a	single	value.	The	association	of	a	key	and	a	value	is
called	a	key-value	pair	or	sometimes	an	item.

In	mathematical	language,	a	dictionary	represents	a	mapping	from	keys	to	values,	so	you
can	also	say	that	each	key	“maps	to”	a	value.	As	an	example,	we’ll	build	a	dictionary	that
maps	from	English	to	Spanish	words,	so	the	keys	and	the	values	are	all	strings.

The	function	dict	creates	a	new	dictionary	with	no	items.	Because	dict	is	the	name	of	a
built-in	function,	you	should	avoid	using	it	as	a	variable	name.

>>>	eng2sp	=	dict()

>>>	eng2sp

{}

The	squiggly	brackets,	{},	represent	an	empty	dictionary.	To	add	items	to	the	dictionary,
you	can	use	square	brackets:

>>>	eng2sp['one']	=	'uno'

This	line	creates	an	item	that	maps	from	the	key	'one'	to	the	value	'uno'.	If	we	print	the
dictionary	again,	we	see	a	key-value	pair	with	a	colon	between	the	key	and	value:

>>>	eng2sp

{'one':	'uno'}

This	output	format	is	also	an	input	format.	For	example,	you	can	create	a	new	dictionary
with	three	items:

>>>	eng2sp	=	{'one':	'uno',	'two':	'dos',	'three':	'tres'}

But	if	you	print	eng2sp,	you	might	be	surprised:

>>>	eng2sp

{'one':	'uno',	'three':	'tres',	'two':	'dos'}

The	order	of	the	key-value	pairs	might	not	be	the	same.	If	you	type	the	same	example	on
your	computer,	you	might	get	a	different	result.	In	general,	the	order	of	items	in	a
dictionary	is	unpredictable.

But	that’s	not	a	problem	because	the	elements	of	a	dictionary	are	never	indexed	with
integer	indices.	Instead,	you	use	the	keys	to	look	up	the	corresponding	values:

>>>	eng2sp['two']

'dos'



The	key	'two'	always	maps	to	the	value	'dos'	so	the	order	of	the	items	doesn’t	matter.

If	the	key	isn’t	in	the	dictionary,	you	get	an	exception:

>>>	eng2sp['four']

KeyError:	'four'

The	len	function	works	on	dictionaries;	it	returns	the	number	of	key-value	pairs:

>>>	len(eng2sp)

3

The	in	operator	works	on	dictionaries,	too;	it	tells	you	whether	something	appears	as	a	key
in	the	dictionary	(appearing	as	a	value	is	not	good	enough).

>>>	'one'	in	eng2sp

True

>>>	'uno'	in	eng2sp

False

To	see	whether	something	appears	as	a	value	in	a	dictionary,	you	can	use	the	method
values,	which	returns	a	collection	of	values,	and	then	use	the	in	operator:

>>>	vals	=	eng2sp.values()

>>>	'uno'	in	vals

True

The	in	operator	uses	different	algorithms	for	lists	and	dictionaries.	For	lists,	it	searches	the
elements	of	the	list	in	order,	as	in	“Searching”.	As	the	list	gets	longer,	the	search	time	gets
longer	in	direct	proportion.

For	dictionaries,	Python	uses	an	algorithm	called	a	hashtable	that	has	a	remarkable
property:	the	in	operator	takes	about	the	same	amount	of	time	no	matter	how	many	items
are	in	the	dictionary.	I	explain	how	that’s	possible	in	“Hashtables”,	but	the	explanation
might	not	make	sense	until	you’ve	read	a	few	more	chapters.



Dictionary	as	a	Collection	of	Counters
Suppose	you	are	given	a	string	and	you	want	to	count	how	many	times	each	letter	appears.
There	are	several	ways	you	could	do	it:

1.	 You	could	create	26	variables,	one	for	each	letter	of	the	alphabet.	Then	you	could
traverse	the	string	and,	for	each	character,	increment	the	corresponding	counter,
probably	using	a	chained	conditional.

2.	 You	could	create	a	list	with	26	elements.	Then	you	could	convert	each	character	to	a
number	(using	the	built-in	function	ord),	use	the	number	as	an	index	into	the	list,
and	increment	the	appropriate	counter.

3.	 You	could	create	a	dictionary	with	characters	as	keys	and	counters	as	the
corresponding	values.	The	first	time	you	see	a	character,	you	would	add	an	item	to
the	dictionary.	After	that	you	would	increment	the	value	of	an	existing	item.

Each	of	these	options	performs	the	same	computation,	but	each	of	them	implements	that
computation	in	a	different	way.

An	implementation	is	a	way	of	performing	a	computation;	some	implementations	are
better	than	others.	For	example,	an	advantage	of	the	dictionary	implementation	is	that	we
don’t	have	to	know	ahead	of	time	which	letters	appear	in	the	string	and	we	only	have	to
make	room	for	the	letters	that	do	appear.

Here	is	what	the	code	might	look	like:

def	histogram(s):

				d	=	dict()

				for	c	in	s:

								if	c	not	in	d:

												d[c]	=	1

								else:

												d[c]	+=	1

				return	d

The	name	of	the	function	is	histogram,	which	is	a	statistical	term	for	a	collection	of
counters	(or	frequencies).

The	first	line	of	the	function	creates	an	empty	dictionary.	The	for	loop	traverses	the	string.
Each	time	through	the	loop,	if	the	character	c	is	not	in	the	dictionary,	we	create	a	new	item
with	key	c	and	the	initial	value	1	(since	we	have	seen	this	letter	once).	If	c	is	already	in	the
dictionary	we	increment	d[c].

Here’s	how	it	works:

>>>	h	=	histogram('brontosaurus')

>>>	h

{'a':	1,	'b':	1,	'o':	2,	'n':	1,	's':	2,	'r':	2,	'u':	2,	't':	1}

The	histogram	indicates	that	the	letters	’a’	and	'b'	appear	once;	'o'	appears	twice,	and



so	on.

Dictionaries	have	a	method	called	get	that	takes	a	key	and	a	default	value.	If	the	key
appears	in	the	dictionary,	get	returns	the	corresponding	value;	otherwise	it	returns	the
default	value.	For	example:

>>>	h	=	histogram('a')

>>>	h

{'a':	1}

>>>	h.get('a',	0)

1

>>>	h.get('b',	0)

0

As	an	exercise,	use	get	to	write	histogram	more	concisely.	You	should	be	able	to
eliminate	the	if	statement.



Looping	and	Dictionaries
If	you	use	a	dictionary	in	a	for	statement,	it	traverses	the	keys	of	the	dictionary.	For
example,	print_hist	prints	each	key	and	the	corresponding	value:

def	print_hist(h):

				for	c	in	h:

								print(c,	h[c])

Here’s	what	the	output	looks	like:

>>>	h	=	histogram('parrot')

>>>	print_hist(h)

a	1

p	1

r	2

t	1

o	1

Again,	the	keys	are	in	no	particular	order.	To	traverse	the	keys	in	sorted	order,	you	can	use
the	built-in	function	sorted:

>>>	for	key	in	sorted(h):

...					print(key,	h[key])

a	1

o	1

p	1

r	2

t	1



Reverse	Lookup
Given	a	dictionary	d	and	a	key	k,	it	is	easy	to	find	the	corresponding	value	v	=	d[k].	This
operation	is	called	a	lookup.

But	what	if	you	have	v	and	you	want	to	find	k?	You	have	two	problems:	first,	there	might
be	more	than	one	key	that	maps	to	the	value	v.	Depending	on	the	application,	you	might
be	able	to	pick	one,	or	you	might	have	to	make	a	list	that	contains	all	of	them.	Second,
there	is	no	simple	syntax	to	do	a	reverse	lookup;	you	have	to	search.

Here	is	a	function	that	takes	a	value	and	returns	the	first	key	that	maps	to	that	value:

def	reverse_lookup(d,	v):

				for	k	in	d:

								if	d[k]	==	v:

												return	k

				raise	LookupError()

This	function	is	yet	another	example	of	the	search	pattern,	but	it	uses	a	feature	we	haven’t
seen	before:	raise.	The	raise	statement	causes	an	exception;	in	this	case	it	causes	a
LookupError,	which	is	a	built-in	exception	used	to	indicate	that	a	lookup	operation	failed.

If	we	get	to	the	end	of	the	loop,	that	means	v	doesn’t	appear	in	the	dictionary	as	a	value,	so
we	raise	an	exception.

Here	is	an	example	of	a	successful	reverse	lookup:

>>>	h	=	histogram('parrot')

>>>	k	=	reverse_lookup(h,	2)

>>>	k

'r'

And	an	unsuccessful	one:

>>>	k	=	reverse_lookup(h,	3)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	5,	in	reverse_lookup

LookupError

The	effect	when	you	raise	an	exception	is	the	same	as	when	Python	raises	one:	it	prints	a
traceback	and	an	error	message.

The	raise	statement	can	take	a	detailed	error	message	as	an	optional	argument.	For
example:

>>>	raise	LookupError('value	does	not	appear	in	the	dictionary')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

LookupError:	value	does	not	appear	in	the	dictionary

A	reverse	lookup	is	much	slower	than	a	forward	lookup;	if	you	have	to	do	it	often,	or	if	the
dictionary	gets	big,	the	performance	of	your	program	will	suffer.



Dictionaries	and	Lists
Lists	can	appear	as	values	in	a	dictionary.	For	example,	if	you	are	given	a	dictionary	that
maps	from	letters	to	frequencies,	you	might	want	to	invert	it;	that	is,	create	a	dictionary
that	maps	from	frequencies	to	letters.	Since	there	might	be	several	letters	with	the	same
frequency,	each	value	in	the	inverted	dictionary	should	be	a	list	of	letters.

Here	is	a	function	that	inverts	a	dictionary:

def	invert_dict(d):

				inverse	=	dict()

				for	key	in	d:

								val	=	d[key]

								if	val	not	in	inverse:

												inverse[val]	=	[key]

								else:

												inverse[val].append(key)

				return	inverse

Each	time	through	the	loop,	key	gets	a	key	from	d	and	val	gets	the	corresponding	value.	If
val	is	not	in	inverse,	that	means	we	haven’t	seen	it	before,	so	we	create	a	new	item	and
initialize	it	with	a	singleton	(a	list	that	contains	a	single	element).	Otherwise	we	have	seen
this	value	before,	so	we	append	the	corresponding	key	to	the	list.

Here	is	an	example:

>>>	hist	=	histogram('parrot')

>>>	hist

{'a':	1,	'p':	1,	'r':	2,	't':	1,	'o':	1}

>>>	inverse	=	invert_dict(hist)

>>>	inverse

{1:	['a',	'p',	't',	'o'],	2:	['r']}

Figure	11-1	is	a	state	diagram	showing	hist	and	inverse.	A	dictionary	is	represented	as	a
box	with	the	type	dict	above	it	and	the	key-value	pairs	inside.	If	the	values	are	integers,
floats	or	strings,	I	draw	them	inside	the	box,	but	I	usually	draw	lists	outside	the	box,	just	to
keep	the	diagram	simple.



Figure	11-1.	State	diagram.

Lists	can	be	values	in	a	dictionary,	as	this	example	shows,	but	they	cannot	be	keys.	Here’s
what	happens	if	you	try:

>>>	t	=	[1,	2,	3]

>>>	d	=	dict()

>>>	d[t]	=	'oops'

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	list	objects	are	unhashable

I	mentioned	earlier	that	a	dictionary	is	implemented	using	a	hashtable	and	that	means	that
the	keys	have	to	be	hashable.

A	hash	is	a	function	that	takes	a	value	(of	any	kind)	and	returns	an	integer.	Dictionaries
use	these	integers,	called	hash	values,	to	store	and	look	up	key-value	pairs.

This	system	works	fine	if	the	keys	are	immutable.	But	if	the	keys	are	mutable,	like	lists,
bad	things	happen.	For	example,	when	you	create	a	key-value	pair,	Python	hashes	the	key
and	stores	it	in	the	corresponding	location.	If	you	modify	the	key	and	then	hash	it	again,	it
would	go	to	a	different	location.	In	that	case	you	might	have	two	entries	for	the	same	key,
or	you	might	not	be	able	to	find	a	key.	Either	way,	the	dictionary	wouldn’t	work	correctly.

That’s	why	keys	have	to	be	hashable,	and	why	mutable	types	like	lists	aren’t.	The	simplest
way	to	get	around	this	limitation	is	to	use	tuples,	which	we	will	see	in	the	next	chapter.

Since	dictionaries	are	mutable,	they	can’t	be	used	as	keys,	but	they	can	be	used	as	values.



Memos
If	you	played	with	the	fibonacci	function	from	“One	More	Example”,	you	might	have
noticed	that	the	bigger	the	argument	you	provide,	the	longer	the	function	takes	to	run.
Furthermore,	the	runtime	increases	quickly.

To	understand	why,	consider	Figure	11-2,	which	shows	the	call	graph	for	fibonacci	with
n=4.

Figure	11-2.	Call	graph.

A	call	graph	shows	a	set	of	function	frames,	with	lines	connecting	each	frame	to	the
frames	of	the	functions	it	calls.	At	the	top	of	the	graph,	fibonacci	with	n=4	calls
fibonacci	with	n=3	and	n=2.	In	turn,	fibonacci	with	n=3	calls	fibonacci	with	n=2	and
n=1.	And	so	on.

Count	how	many	times	fibonacci(0)	and	fibonacci(1)	are	called.	This	is	an	inefficient
solution	to	the	problem,	and	it	gets	worse	as	the	argument	gets	bigger.

One	solution	is	to	keep	track	of	values	that	have	already	been	computed	by	storing	them	in
a	dictionary.	A	previously	computed	value	that	is	stored	for	later	use	is	called	a	memo.
Here	is	a	“memoized”	version	of	fibonacci:

known	=	{0:0,	1:1}



def	fibonacci(n):

				if	n	in	known:

								return	known[n]

				res	=	fibonacci(n-1)	+	fibonacci(n-2)

				known[n]	=	res

				return	res

known	is	a	dictionary	that	keeps	track	of	the	Fibonacci	numbers	we	already	know.	It	starts
with	two	items:	0	maps	to	0	and	1	maps	to	1.

Whenever	fibonacci	is	called,	it	checks	known.	If	the	result	is	already	there,	it	can	return
immediately.	Otherwise	it	has	to	compute	the	new	value,	add	it	to	the	dictionary,	and
return	it.

If	you	run	this	version	of	fibonacci	and	compare	it	with	the	original,	you	will	find	that	it
is	much	faster.



Global	Variables
In	the	previous	example,	known	is	created	outside	the	function,	so	it	belongs	to	the	special
frame	called	__main__.	Variables	in	__main__	are	sometimes	called	global	because	they
can	be	accessed	from	any	function.	Unlike	local	variables,	which	disappear	when	their
function	ends,	global	variables	persist	from	one	function	call	to	the	next.

It	is	common	to	use	global	variables	for	flags;	that	is,	boolean	variables	that	indicate
(“flag”)	whether	a	condition	is	true.	For	example,	some	programs	use	a	flag	named
verbose	to	control	the	level	of	detail	in	the	output:

verbose	=	True

def	example1():

				if	verbose:

								print('Running	example1')

If	you	try	to	reassign	a	global	variable,	you	might	be	surprised.	The	following	example	is
supposed	to	keep	track	of	whether	the	function	has	been	called:

been_called	=	False

def	example2():

				been_called	=	True									#	WRONG

But	if	you	run	it	you	will	see	that	the	value	of	been_called	doesn’t	change.	The	problem
is	that	example2	creates	a	new	local	variable	named	been_called.	The	local	variable	goes
away	when	the	function	ends,	and	has	no	effect	on	the	global	variable.

To	reassign	a	global	variable	inside	a	function	you	have	to	declare	the	global	variable
before	you	use	it:

been_called	=	False

def	example2():

				global	been_called	

				been_called	=	True

The	global	statement	tells	the	interpreter	something	like,	“In	this	function,	when	I	say
been_called,	I	mean	the	global	variable;	don’t	create	a	local	one.”

Here’s	an	example	that	tries	to	update	a	global	variable:

count	=	0

def	example3():

				count	=	count	+	1										#	WRONG

If	you	run	it	you	get:

UnboundLocalError:	local	variable	'count'	referenced	before	assignment



Python	assumes	that	count	is	local,	and	under	that	assumption	you	are	reading	it	before
writing	it.	The	solution,	again,	is	to	declare	count	global:

def	example3():

				global	count

				count	+=	1

If	a	global	variable	refers	to	a	mutable	value,	you	can	modify	the	value	without	declaring
the	variable:

known	=	{0:0,	1:1}

def	example4():

				known[2]	=	1

So	you	can	add,	remove	and	replace	elements	of	a	global	list	or	dictionary,	but	if	you	want
to	reassign	the	variable,	you	have	to	declare	it:

def	example5():

				global	known

				known	=	dict()

Global	variables	can	be	useful,	but	if	you	have	a	lot	of	them,	and	you	modify	them
frequently,	they	can	make	programs	hard	to	debug.



Debugging
As	you	work	with	bigger	datasets	it	can	become	unwieldy	to	debug	by	printing	and
checking	the	output	by	hand.	Here	are	some	suggestions	for	debugging	large	datasets:

Scale	down	the	input:

If	possible,	reduce	the	size	of	the	dataset.	For	example	if	the	program	reads	a	text	file,
start	with	just	the	first	10	lines,	or	with	the	smallest	example	you	can	find.	You	can
either	edit	the	files	themselves,	or	(better)	modify	the	program	so	it	reads	only	the
first	n	lines.

If	there	is	an	error,	you	can	reduce	n	to	the	smallest	value	that	manifests	the	error,	and
then	increase	it	gradually	as	you	find	and	correct	errors.

Check	summaries	and	types:

Instead	of	printing	and	checking	the	entire	dataset,	consider	printing	summaries	of
the	data:	for	example,	the	number	of	items	in	a	dictionary	or	the	total	of	a	list	of
numbers.

A	common	cause	of	runtime	errors	is	a	value	that	is	not	the	right	type.	For	debugging
this	kind	of	error,	it	is	often	enough	to	print	the	type	of	a	value.

Write	self-checks:

Sometimes	you	can	write	code	to	check	for	errors	automatically.	For	example,	if	you
are	computing	the	average	of	a	list	of	numbers,	you	could	check	that	the	result	is	not
greater	than	the	largest	element	in	the	list	or	less	than	the	smallest.	This	is	called	a
“sanity	check”	because	it	detects	results	that	are	“insane”.

Another	kind	of	check	compares	the	results	of	two	different	computations	to	see	if
they	are	consistent.	This	is	called	a	“consistency	check”.

Format	the	output:

Formatting	debugging	output	can	make	it	easier	to	spot	an	error.	We	saw	an	example
in	“Debugging”.	The	pprint	module	provides	a	pprint	function	that	displays	built-
in	types	in	a	more	human-readable	format	(pprint	stands	for	“pretty	print”).

Again,	time	you	spend	building	scaffolding	can	reduce	the	time	you	spend	debugging.



Glossary
mapping:

A	relationship	in	which	each	element	of	one	set	corresponds	to	an	element	of	another
set.

dictionary:

A	mapping	from	keys	to	their	corresponding	values.

key-value	pair:

The	representation	of	the	mapping	from	a	key	to	a	value.

item:

In	a	dictionary,	another	name	for	a	key-value	pair.

key:

An	object	that	appears	in	a	dictionary	as	the	first	part	of	a	key-value	pair.

value:

An	object	that	appears	in	a	dictionary	as	the	second	part	of	a	key-value	pair.	This	is
more	specific	than	our	previous	use	of	the	word	“value”.

implementation:

A	way	of	performing	a	computation.

hashtable:

The	algorithm	used	to	implement	Python	dictionaries.

hash	function:

A	function	used	by	a	hashtable	to	compute	the	location	for	a	key.

hashable:

A	type	that	has	a	hash	function.	Immutable	types	like	integers,	floats	and	strings	are
hashable;	mutable	types	like	lists	and	dictionaries	are	not.

lookup:

A	dictionary	operation	that	takes	a	key	and	finds	the	corresponding	value.

reverse	lookup:

A	dictionary	operation	that	takes	a	value	and	finds	one	or	more	keys	that	map	to	it.

raise	statement:

A	statement	that	(deliberately)	raises	an	exception.

singleton:

A	list	(or	other	sequence)	with	a	single	element.



call	graph:

A	diagram	that	shows	every	frame	created	during	the	execution	of	a	program,	with	an
arrow	from	each	caller	to	each	callee.

memo:

A	computed	value	stored	to	avoid	unnecessary	future	computation.

global	variable:

A	variable	defined	outside	a	function.	Global	variables	can	be	accessed	from	any
function.

global	statement:

A	statement	that	declares	a	variable	name	global.

flag:

A	boolean	variable	used	to	indicate	whether	a	condition	is	true.

declaration:

A	statement	like	global	that	tells	the	interpreter	something	about	a	variable.



Exercises
Exercise	11-1.

Write	a	function	that	reads	the	words	in	words.txt	and	stores	them	as	keys	in	a	dictionary.
It	doesn’t	matter	what	the	values	are.	Then	you	can	use	the	in	operator	as	a	fast	way	to
check	whether	a	string	is	in	the	dictionary.

If	you	did	Exercise	10-10,	you	can	compare	the	speed	of	this	implementation	with	the	list
in	operator	and	the	bisection	search.

Exercise	11-2.

Read	the	documentation	of	the	dictionary	method	setdefault	and	use	it	to	write	a	more
concise	version	of	invert_dict.

Solution:	http://thinkpython2.com/code/invert_dict.py.

Exercise	11-3.

Memoize	the	Ackermann	function	from	Exercise	6-2	and	see	if	memoization	makes	it
possible	to	evaluate	the	function	with	bigger	arguments.	Hint:	no.

Solution:	http://thinkpython2.com/code/ackermann_memo.py.

Exercise	11-4.

If	you	did	Exercise	10-7,	you	already	have	a	function	named	has_duplicates	that	takes	a
list	as	a	parameter	and	returns	True	if	there	is	any	object	that	appears	more	than	once	in
the	list.

Use	a	dictionary	to	write	a	faster,	simpler	version	of	has_duplicates.

Solution:	http://thinkpython2.com/code/has_duplicates.py.

Exercise	11-5.

Two	words	are	“rotate	pairs”	if	you	can	rotate	one	of	them	and	get	the	other	(see
rotate_word	in	Exercise	8-5).

Write	a	program	that	reads	a	wordlist	and	finds	all	the	rotate	pairs.

Solution:	http://thinkpython2.com/code/rotate_pairs.py.

Exercise	11-6.

Here’s	another	Puzzler	from	Car	Talk	(http://www.cartalk.com/content/puzzlers):

http://thinkpython2.com/code/invert_dict.py
http://thinkpython2.com/code/ackermann_memo.py
http://thinkpython2.com/code/has_duplicates.py
http://thinkpython2.com/code/rotate_pairs.py
http://www.cartalk.com/content/puzzlers


This	was	sent	in	by	a	fellow	named	Dan	O’Leary.	He	came	upon	a	common	one-
syllable,	five-letter	word	recently	that	has	the	following	unique	property.	When	you
remove	the	first	letter,	the	remaining	letters	form	a	homophone	of	the	original	word,
that	is	a	word	that	sounds	exactly	the	same.	Replace	the	first	letter,	that	is,	put	it	back
and	remove	the	second	letter,	and	the	result	is	yet	another	homophone	of	the	original
word.	And	the	question	is,	what’s	the	word?

Now	I’m	going	to	give	you	an	example	that	doesn’t	work.	Let’s	look	at	the	five-letter
word,	‘wrack.’	W-R-A-C-K,	you	know	like	to	‘wrack	with	pain.’	If	I	remove	the	first
letter,	I	am	left	with	a	four-letter	word,	‘R-A-C-K.’	As	in,	‘Holy	cow,	did	you	see	the
rack	on	that	buck!	It	must	have	been	a	nine-pointer!’	It’s	a	perfect	homophone.	If	you
put	the	‘w’	back,	and	remove	the	‘r,’	instead,	you’re	left	with	the	word,	‘wack,’	which	is
a	real	word,	it’s	just	not	a	homophone	of	the	other	two	words.

But	there	is,	however,	at	least	one	word	that	Dan	and	we	know	of,	which	will	yield	two
homophones	if	you	remove	either	of	the	first	two	letters	to	make	two,	new	four-letter
words.	The	question	is,	what’s	the	word?

You	can	use	the	dictionary	from	Exercise	11-1	to	check	whether	a	string	is	in	the	word	list.

To	check	whether	two	words	are	homophones,	you	can	use	the	CMU	Pronouncing
Dictionary.	You	can	download	it	from	http://www.speech.cs.cmu.edu/cgi-bin/cmudict	or
from	http://thinkpython2.com/code/c06d	and	you	can	also	download
http://thinkpython2.com/code/pronounce.py,	which	provides	a	function	named
read_dictionary	that	reads	the	pronouncing	dictionary	and	returns	a	Python	dictionary
that	maps	from	each	word	to	a	string	that	describes	its	primary	pronunciation.

Write	a	program	that	lists	all	the	words	that	solve	the	Puzzler.

Solution:	http://thinkpython2.com/code/homophone.py.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://thinkpython2.com/code/c06d
http://thinkpython2.com/code/pronounce.py
http://thinkpython2.com/code/homophone.py




Chapter	12.	Tuples

This	chapter	presents	one	more	built-in	type,	the	tuple,	and	then	shows	how	lists,
dictionaries,	and	tuples	work	together.	I	also	present	a	useful	feature	for	variable-length
argument	lists:	the	gather	and	scatter	operators.

One	note:	there	is	no	consensus	on	how	to	pronounce	“tuple”.	Some	people	say	“tuh-ple”,
which	rhymes	with	“supple”.	But	in	the	context	of	programming,	most	people	say	“too-
ple”,	which	rhymes	with	“quadruple”.



Tuples	Are	Immutable
A	tuple	is	a	sequence	of	values.	The	values	can	be	any	type,	and	they	are	indexed	by
integers,	so	in	that	respect	tuples	are	a	lot	like	lists.	The	important	difference	is	that	tuples
are	immutable.

Syntactically,	a	tuple	is	a	comma-separated	list	of	values:

>>>	t	=	'a',	'b',	'c',	'd',	'e'

Although	it	is	not	necessary,	it	is	common	to	enclose	tuples	in	parentheses:

>>>	t	=	('a',	'b',	'c',	'd',	'e')

To	create	a	tuple	with	a	single	element,	you	have	to	include	a	final	comma:

>>>	t1	=	'a',

>>>	type(t1)

<class	'tuple'>

A	value	in	parentheses	is	not	a	tuple:

>>>	t2	=	('a')

>>>	type(t2)

<class	'str'>

Another	way	to	create	a	tuple	is	the	built-in	function	tuple.	With	no	argument,	it	creates
an	empty	tuple:

>>>	t	=	tuple()

>>>	t

()

If	the	argument	is	a	sequence	(string,	list	or	tuple),	the	result	is	a	tuple	with	the	elements	of
the	sequence:

>>>	t	=	tuple('lupins')

>>>	t

('l',	'u',	'p',	'i',	'n',	's')

Because	tuple	is	the	name	of	a	built-in	function,	you	should	avoid	using	it	as	a	variable
name.

Most	list	operators	also	work	on	tuples.	The	bracket	operator	indexes	an	element:

>>>	t	=	('a',	'b',	'c',	'd',	'e')

>>>	t[0]

'a'

And	the	slice	operator	selects	a	range	of	elements:

>>>	t[1:3]



('b',	'c')

But	if	you	try	to	modify	one	of	the	elements	of	the	tuple,	you	get	an	error:

>>>	t[0]	=	'A'

TypeError:	object	doesn't	support	item	assignment

Because	tuples	are	immutable,	you	can’t	modify	the	elements.	But	you	can	replace	one
tuple	with	another:

>>>	t	=	('A',)	+	t[1:]

>>>	t

('A',	'b',	'c',	'd',	'e')

This	statement	makes	a	new	tuple	and	then	makes	t	refer	to	it.

The	relational	operators	work	with	tuples	and	other	sequences;	Python	starts	by	comparing
the	first	element	from	each	sequence.	If	they	are	equal,	it	goes	on	to	the	next	elements,	and
so	on,	until	it	finds	elements	that	differ.	Subsequent	elements	are	not	considered	(even	if
they	are	really	big).

>>>	(0,	1,	2)	<	(0,	3,	4)

True

>>>	(0,	1,	2000000)	<	(0,	3,	4)

True



Tuple	Assignment
It	is	often	useful	to	swap	the	values	of	two	variables.	With	conventional	assignments,	you
have	to	use	a	temporary	variable.	For	example,	to	swap	a	and	b:

>>>	temp	=	a

>>>	a	=	b

>>>	b	=	temp

This	solution	is	cumbersome;	tuple	assignment	is	more	elegant:

>>>	a,	b	=	b,	a

The	left	side	is	a	tuple	of	variables;	the	right	side	is	a	tuple	of	expressions.	Each	value	is
assigned	to	its	respective	variable.	All	the	expressions	on	the	right	side	are	evaluated
before	any	of	the	assignments.

The	number	of	variables	on	the	left	and	the	number	of	values	on	the	right	have	to	be	the
same:

>>>	a,	b	=	1,	2,	3

ValueError:	too	many	values	to	unpack

More	generally,	the	right	side	can	be	any	kind	of	sequence	(string,	list	or	tuple).	For
example,	to	split	an	email	address	into	a	user	name	and	a	domain,	you	could	write:

>>>	addr	=	'monty@python.org'

>>>	uname,	domain	=	addr.split('@')

The	return	value	from	split	is	a	list	with	two	elements;	the	first	element	is	assigned	to
uname,	the	second	to	domain:

>>>	uname

'monty'

>>>	domain

'python.org'



Tuples	as	Return	Values
Strictly	speaking,	a	function	can	only	return	one	value,	but	if	the	value	is	a	tuple,	the	effect
is	the	same	as	returning	multiple	values.	For	example,	if	you	want	to	divide	two	integers
and	compute	the	quotient	and	remainder,	it	is	inefficient	to	compute	x/y	and	then	x%y.	It	is
better	to	compute	them	both	at	the	same	time.

The	built-in	function	divmod	takes	two	arguments	and	returns	a	tuple	of	two	values:	the
quotient	and	remainder.	You	can	store	the	result	as	a	tuple:

>>>	t	=	divmod(7,	3)

>>>	t

(2,	1)

Or	use	tuple	assignment	to	store	the	elements	separately:

>>>	quot,	rem	=	divmod(7,	3)

>>>	quot

2

>>>	rem

1

Here	is	an	example	of	a	function	that	returns	a	tuple:

def	min_max(t):

				return	min(t),	max(t)

max	and	min	are	built-in	functions	that	find	the	largest	and	smallest	elements	of	a
sequence.	min_max	computes	both	and	returns	a	tuple	of	two	values.



Variable-Length	Argument	Tuples
Functions	can	take	a	variable	number	of	arguments.	A	parameter	name	that	begins	with	*
gathers	arguments	into	a	tuple.	For	example,	printall	takes	any	number	of	arguments
and	prints	them:

def	printall(*args):

				print(args)

The	gather	parameter	can	have	any	name	you	like,	but	args	is	conventional.	Here’s	how
the	function	works:

>>>	printall(1,	2.0,	'3')

(1,	2.0,	'3')

The	complement	of	gather	is	scatter.	If	you	have	a	sequence	of	values	and	you	want	to
pass	it	to	a	function	as	multiple	arguments,	you	can	use	the	*	operator.	For	example,
divmod	takes	exactly	two	arguments;	it	doesn’t	work	with	a	tuple:

>>>	t	=	(7,	3)

>>>	divmod(t)

TypeError:	divmod	expected	2	arguments,	got	1

But	if	you	scatter	the	tuple,	it	works:

>>>	divmod(*t)

(2,	1)

Many	of	the	built-in	functions	use	variable-length	argument	tuples.	For	example,	max	and
min	can	take	any	number	of	arguments:

>>>	max(1,	2,	3)

3

But	sum	does	not:

>>>	sum(1,	2,	3)

TypeError:	sum	expected	at	most	2	arguments,	got	3

As	an	exercise,	write	a	function	called	sumall	that	takes	any	number	of	arguments	and
returns	their	sum.



Lists	and	Tuples
zip	is	a	built-in	function	that	takes	two	or	more	sequences	and	returns	a	list	of	tuples
where	each	tuple	contains	one	element	from	each	sequence.	The	name	of	the	function
refers	to	a	zipper,	which	joins	and	interleaves	two	rows	of	teeth.

This	example	zips	a	string	and	a	list:

>>>	s	=	'abc'

>>>	t	=	[0,	1,	2]

>>>	zip(s,	t)

<zip	object	at	0x7f7d0a9e7c48>

The	result	is	a	zip	object	that	knows	how	to	iterate	through	the	pairs.	The	most	common
use	of	zip	is	in	a	for	loop:

>>>	for	pair	in	zip(s,	t):

...					print(pair)

...

('a',	0)

('b',	1)

('c',	2)

A	zip	object	is	a	kind	of	iterator,	which	is	any	object	that	iterates	through	a	sequence.
Iterators	are	similar	to	lists	in	some	ways,	but	unlike	lists,	you	can’t	use	an	index	to	select
an	element	from	an	iterator.

If	you	want	to	use	list	operators	and	methods,	you	can	use	a	zip	object	to	make	a	list:

>>>	list(zip(s,	t))

[('a',	0),	('b',	1),	('c',	2)]

The	result	is	a	list	of	tuples;	in	this	example,	each	tuple	contains	a	character	from	the
string	and	the	corresponding	element	from	the	list.

If	the	sequences	are	not	the	same	length,	the	result	has	the	length	of	the	shorter	one:

>>>	list(zip('Anne',	'Elk'))

[('A',	'E'),	('n',	'l'),	('n',	'k')]

You	can	use	tuple	assignment	in	a	for	loop	to	traverse	a	list	of	tuples:

t	=	[('a',	0),	('b',	1),	('c',	2)]

for	letter,	number	in	t:

				print(number,	letter)

Each	time	through	the	loop,	Python	selects	the	next	tuple	in	the	list	and	assigns	the
elements	to	letter	and	number.	The	output	of	this	loop	is:

0	a

1	b

2	c



If	you	combine	zip,	for	and	tuple	assignment,	you	get	a	useful	idiom	for	traversing	two
(or	more)	sequences	at	the	same	time.	For	example,	has_match	takes	two	sequences,	t1
and	t2,	and	returns	True	if	there	is	an	index	i	such	that	t1[i]	==	t2[i]:

def	has_match(t1,	t2):

				for	x,	y	in	zip(t1,	t2):

								if	x	==	y:

												return	True

				return	False

If	you	need	to	traverse	the	elements	of	a	sequence	and	their	indices,	you	can	use	the	built-
in	function	enumerate:

for	index,	element	in	enumerate('abc'):

				print(index,	element)

The	result	from	enumerate	is	an	enumerate	object,	which	iterates	a	sequence	of	pairs;	each
pair	contains	an	index	(starting	from	0)	and	an	element	from	the	given	sequence.	In	this
example,	the	output	is

0	a

1	b

2	c

Again.



Dictionaries	and	Tuples
Dictionaries	have	a	method	called	items	that	returns	a	sequence	of	tuples,	where	each
tuple	is	a	key-value	pair:

>>>	d	=	{'a':0,	'b':1,	'c':2}

>>>	t	=	d.items()

>>>	t

dict_items([('c',	2),	('a',	0),	('b',	1)])

The	result	is	a	dict_items	object,	which	is	an	iterator	that	iterates	the	key-value	pairs.
You	can	use	it	in	a	for	loop	like	this:

>>>	for	key,	value	in	d.items():

...					print(key,	value)

...

c	2

a	0

b	1

As	you	should	expect	from	a	dictionary,	the	items	are	in	no	particular	order.

Going	in	the	other	direction,	you	can	use	a	list	of	tuples	to	initialize	a	new	dictionary:

>>>	t	=	[('a',	0),	('c',	2),	('b',	1)]

>>>	d	=	dict(t)

>>>	d

{'a':	0,	'c':	2,	'b':	1}

Combining	dict	with	zip	yields	a	concise	way	to	create	a	dictionary:

>>>	d	=	dict(zip('abc',	range(3)))

>>>	d

{'a':	0,	'c':	2,	'b':	1}

The	dictionary	method	update	also	takes	a	list	of	tuples	and	adds	them,	as	key-value	pairs,
to	an	existing	dictionary.

It	is	common	to	use	tuples	as	keys	in	dictionaries	(primarily	because	you	can’t	use	lists).
For	example,	a	telephone	directory	might	map	from	last-name,	first-name	pairs	to
telephone	numbers.	Assuming	that	we	have	defined	last,	first	and	number,	we	could
write:

directory[last,	first]	=	number

The	expression	in	brackets	is	a	tuple.	We	could	use	tuple	assignment	to	traverse	this
dictionary:

for	last,	first	in	directory:

				print(first,	last,	directory[last,first])

This	loop	traverses	the	keys	in	directory,	which	are	tuples.	It	assigns	the	elements	of



each	tuple	to	last	and	first,	then	prints	the	name	and	corresponding	telephone	number.

There	are	two	ways	to	represent	tuples	in	a	state	diagram.	The	more	detailed	version
shows	the	indices	and	elements	just	as	they	appear	in	a	list.	For	example,	the	tuple
('Cleese',	'John')	would	appear	as	in	Figure	12-1.

Figure	12-1.	State	diagram.

But	in	a	larger	diagram	you	might	want	to	leave	out	the	details.	For	example,	a	diagram	of
the	telephone	directory	might	appear	as	in	Figure	12-2.

Figure	12-2.	State	diagram.

Here	the	tuples	are	shown	using	Python	syntax	as	a	graphical	shorthand.	The	telephone
number	in	the	diagram	is	the	complaints	line	for	the	BBC,	so	please	don’t	call	it.



Sequences	of	Sequences
I	have	focused	on	lists	of	tuples,	but	almost	all	of	the	examples	in	this	chapter	also	work
with	lists	of	lists,	tuples	of	tuples,	and	tuples	of	lists.	To	avoid	enumerating	the	possible
combinations,	it	is	sometimes	easier	to	talk	about	sequences	of	sequences.

In	many	contexts,	the	different	kinds	of	sequences	(strings,	lists	and	tuples)	can	be	used
interchangeably.	So	how	should	you	choose	one	over	the	others?

To	start	with	the	obvious,	strings	are	more	limited	than	other	sequences	because	the
elements	have	to	be	characters.	They	are	also	immutable.	If	you	need	the	ability	to	change
the	characters	in	a	string	(as	opposed	to	creating	a	new	string),	you	might	want	to	use	a	list
of	characters	instead.

Lists	are	more	common	than	tuples,	mostly	because	they	are	mutable.	But	there	are	a	few
cases	where	you	might	prefer	tuples:

1.	 In	some	contexts,	like	a	return	statement,	it	is	syntactically	simpler	to	create	a	tuple
than	a	list.

2.	 If	you	want	to	use	a	sequence	as	a	dictionary	key,	you	have	to	use	an	immutable	type
like	a	tuple	or	string.

3.	 If	you	are	passing	a	sequence	as	an	argument	to	a	function,	using	tuples	reduces	the
potential	for	unexpected	behavior	due	to	aliasing.

Because	tuples	are	immutable,	they	don’t	provide	methods	like	sort	and	reverse,	which
modify	existing	lists.	But	Python	provides	the	built-in	function	sorted,	which	takes	any
sequence	and	returns	a	new	list	with	the	same	elements	in	sorted	order,	and	reversed,
which	takes	a	sequence	and	returns	an	iterator	that	traverses	the	list	in	reverse	order.



Debugging
Lists,	dictionaries	and	tuples	are	examples	of	data	structures;	in	this	chapter	we	are
starting	to	see	compound	data	structures,	like	lists	of	tuples,	or	dictionaries	that	contain
tuples	as	keys	and	lists	as	values.	Compound	data	structures	are	useful,	but	they	are	prone
to	what	I	call	shape	errors;	that	is,	errors	caused	when	a	data	structure	has	the	wrong
type,	size,	or	structure.	For	example,	if	you	are	expecting	a	list	with	one	integer	and	I	give
you	a	plain	old	integer	(not	in	a	list),	it	won’t	work.

To	help	debug	these	kinds	of	errors,	I	have	written	a	module	called	structshape	that
provides	a	function,	also	called	structshape,	that	takes	any	kind	of	data	structure	as	an
argument	and	returns	a	string	that	summarizes	its	shape.	You	can	download	it	from
http://thinkpython2.com/code/structshape.py.

Here’s	the	result	for	a	simple	list:

>>>	from	structshape	import	structshape

>>>	t	=	[1,	2,	3]

>>>	structshape(t)

'list	of	3	int'

A	fancier	program	might	write	“list	of	3	ints”,	but	it	was	easier	not	to	deal	with	plurals.
Here’s	a	list	of	lists:

>>>	t2	=	[[1,2],	[3,4],	[5,6]]

>>>	structshape(t2)

'list	of	3	list	of	2	int'

If	the	elements	of	the	list	are	not	the	same	type,	structshape	groups	them,	in	order,	by
type:

>>>	t3	=	[1,	2,	3,	4.0,	'5',	'6',	[7],	[8],	9]

>>>	structshape(t3)

'list	of	(3	int,	float,	2	str,	2	list	of	int,	int)'

Here’s	a	list	of	tuples:

>>>	s	=	'abc'

>>>	lt	=	list(zip(t,	s))

>>>	structshape(lt)

'list	of	3	tuple	of	(int,	str)'

And	here’s	a	dictionary	with	three	items	that	map	integers	to	strings:

>>>	d	=	dict(lt)	

>>>	structshape(d)

'dict	of	3	int->str'

If	you	are	having	trouble	keeping	track	of	your	data	structures,	structshape	can	help.

http://thinkpython2.com/code/structshape.py


Glossary
tuple:

An	immutable	sequence	of	elements.

tuple	assignment:

An	assignment	with	a	sequence	on	the	right	side	and	a	tuple	of	variables	on	the	left.
The	right	side	is	evaluated	and	then	its	elements	are	assigned	to	the	variables	on	the
left.

gather:

The	operation	of	assembling	a	variable-length	argument	tuple.

scatter:

The	operation	of	treating	a	sequence	as	a	list	of	arguments.

zip	object:

The	result	of	calling	a	built-in	function	zip;	an	object	that	iterates	through	a	sequence
of	tuples.

iterator:

An	object	that	can	iterate	through	a	sequence,	but	which	does	not	provide	list
operators	and	methods.

data	structure:

A	collection	of	related	values,	often	organized	in	lists,	dictionaries,	tuples,	etc.

shape	error:

An	error	caused	because	a	value	has	the	wrong	shape;	that	is,	the	wrong	type	or	size.



Exercises
Exercise	12-1.

Write	a	function	called	most_frequent	that	takes	a	string	and	prints	the	letters	in
decreasing	order	of	frequency.	Find	text	samples	from	several	different	languages	and	see
how	letter	frequency	varies	between	languages.	Compare	your	results	with	the	tables	at
http://en.wikipedia.org/wiki/Letter_frequencies.

Solution:	http://thinkpython2.com/code/most_frequent.py.

Exercise	12-2.

More	anagrams!

1.	 Write	a	program	that	reads	a	word	list	from	a	file	(see	“Reading	Word	Lists”)	and
prints	all	the	sets	of	words	that	are	anagrams.	
Here	is	an	example	of	what	the	output	might	look	like:
['deltas',	'desalt',	'lasted',	'salted',	'slated',	'staled']

['retainers',	'ternaries']

['generating',	'greatening']

['resmelts',	'smelters',	'termless']

Hint:	you	might	want	to	build	a	dictionary	that	maps	from	a	collection	of	letters	to	a
list	of	words	that	can	be	spelled	with	those	letters.	The	question	is,	how	can	you
represent	the	collection	of	letters	in	a	way	that	can	be	used	as	a	key?

2.	 Modify	the	previous	program	so	that	it	prints	the	longest	list	of	anagrams	first,
followed	by	the	second	longest,	and	so	on.

3.	 In	Scrabble,	a	“bingo”	is	when	you	play	all	seven	tiles	in	your	rack,	along	with	a
letter	on	the	board,	to	form	an	eight-letter	word.	What	collection	of	eight	letters
forms	the	most	possible	bingos?	Hint:	there	are	seven.	
Solution:	http://thinkpython2.com/code/anagram_sets.py.

Exercise	12-3.

Two	words	form	a	“metathesis	pair”	if	you	can	transform	one	into	the	other	by	swapping
two	letters;	for	example,	“converse”	and	“conserve”.	Write	a	program	that	finds	all	of	the
metathesis	pairs	in	the	dictionary.	Hint:	don’t	test	all	pairs	of	words,	and	don’t	test	all
possible	swaps.

Solution:	http://thinkpython2.com/code/metathesis.py.	Credit:	This	exercise	is	inspired	by
an	example	at	http://puzzlers.org.

Exercise	12-4.

Here’s	another	Car	Talk	Puzzler	(http://www.cartalk.com/content/puzzlers):

http://en.wikipedia.org/wiki/Letter_frequencies
http://thinkpython2.com/code/most_frequent.py
http://thinkpython2.com/code/anagram_sets.py
http://thinkpython2.com/code/metathesis.py
http://puzzlers.org
http://www.cartalk.com/content/puzzlers


What	is	the	longest	English	word,	that	remains	a	valid	English	word,	as	you	remove	its
letters	one	at	a	time?

Now,	letters	can	be	removed	from	either	end,	or	the	middle,	but	you	can’t	rearrange	any
of	the	letters.	Every	time	you	drop	a	letter,	you	wind	up	with	another	English	word.	If
you	do	that,	you’re	eventually	going	to	wind	up	with	one	letter	and	that	too	is	going	to
be	an	English	word	—	one	that’s	found	in	the	dictionary.	I	want	to	know	what’s	the
longest	word	and	how	many	letters	does	it	have?

I’m	going	to	give	you	a	little	modest	example:	Sprite.	Ok?	You	start	off	with	sprite,	you
take	a	letter	off,	one	from	the	interior	of	the	word,	take	the	r	away,	and	we’re	left	with
the	word	spite,	then	we	take	the	e	off	the	end,	we’re	left	with	spit,	we	take	the	s	off,
we’re	left	with	pit,	it,	and	I.

Write	a	program	to	find	all	words	that	can	be	reduced	in	this	way,	and	then	find	the	longest
one.

This	exercise	is	a	little	more	challenging	than	most,	so	here	are	some	suggestions:

1.	 You	might	want	to	write	a	function	that	takes	a	word	and	computes	a	list	of	all	the
words	that	can	be	formed	by	removing	one	letter.	These	are	the	“children”	of	the
word.

2.	 Recursively,	a	word	is	reducible	if	any	of	its	children	are	reducible.	As	a	base	case,
you	can	consider	the	empty	string	reducible.

3.	 The	wordlist	I	provided,	words.txt,	doesn’t	contain	single	letter	words.	So	you
might	want	to	add	“I”,	“a”,	and	the	empty	string.

4.	 To	improve	the	performance	of	your	program,	you	might	want	to	memoize	the	words
that	are	known	to	be	reducible.

Solution:	http://thinkpython2.com/code/reducible.py.

http://thinkpython2.com/code/reducible.py




Chapter	13.	Case	Study:	Data	Structure
Selection

At	this	point	you	have	learned	about	Python’s	core	data	structures,	and	you	have	seen
some	of	the	algorithms	that	use	them.	If	you	would	like	to	know	more	about	algorithms,
this	might	be	a	good	time	to	read	Chapter	21.	But	you	don’t	have	to	read	it	before	you	go
on;	you	can	read	it	whenever	you	are	interested.

This	chapter	presents	a	case	study	with	exercises	that	let	you	think	about	choosing	data
structures	and	practice	using	them.



Word	Frequency	Analysis
As	usual,	you	should	at	least	attempt	the	exercises	before	you	read	my	solutions.

Exercise	13-1.

Write	a	program	that	reads	a	file,	breaks	each	line	into	words,	strips	whitespace	and
punctuation	from	the	words,	and	converts	them	to	lowercase.

Hint:	The	string	module	provides	a	string	named	whitespace,	which	contains	space,	tab,
newline,	etc.,	and	punctuation	which	contains	the	punctuation	characters.	Let’s	see	if	we
can	make	Python	swear:
>>>	import	string

>>>	string.punctuation

'!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~'

Also,	you	might	consider	using	the	string	methods	strip,	replace	and	translate.

Exercise	13-2.

Go	to	Project	Gutenberg	(http://gutenberg.org)	and	download	your	favorite	out-of-
copyright	book	in	plain	text	format.

Modify	your	program	from	the	previous	exercise	to	read	the	book	you	downloaded,	skip
over	the	header	information	at	the	beginning	of	the	file,	and	process	the	rest	of	the	words
as	before.

Then	modify	the	program	to	count	the	total	number	of	words	in	the	book,	and	the	number
of	times	each	word	is	used.

Print	the	number	of	different	words	used	in	the	book.	Compare	different	books	by
different	authors,	written	in	different	eras.	Which	author	uses	the	most	extensive
vocabulary?

Exercise	13-3.

Modify	the	program	from	the	previous	exercise	to	print	the	20	most	frequently	used	words
in	the	book.

Exercise	13-4.

Modify	the	previous	program	to	read	a	word	list	(see	“Reading	Word	Lists”)	and	then
print	all	the	words	in	the	book	that	are	not	in	the	word	list.	How	many	of	them	are	typos?
How	many	of	them	are	common	words	that	should	be	in	the	word	list,	and	how	many	of
them	are	really	obscure?

http://gutenberg.org


Random	Numbers
Given	the	same	inputs,	most	computer	programs	generate	the	same	outputs	every	time,	so
they	are	said	to	be	deterministic.	Determinism	is	usually	a	good	thing,	since	we	expect
the	same	calculation	to	yield	the	same	result.	For	some	applications,	though,	we	want	the
computer	to	be	unpredictable.	Games	are	an	obvious	example,	but	there	are	more.

Making	a	program	truly	nondeterministic	turns	out	to	be	difficult,	but	there	are	ways	to
make	it	at	least	seem	nondeterministic.	One	of	them	is	to	use	algorithms	that	generate
pseudorandom	numbers.	Pseudorandom	numbers	are	not	truly	random	because	they	are
generated	by	a	deterministic	computation,	but	just	by	looking	at	the	numbers	it	is	all	but
impossible	to	distinguish	them	from	random.

The	random	module	provides	functions	that	generate	pseudorandom	numbers	(which	I	will
simply	call	“random”	from	here	on).

The	function	random	returns	a	random	float	between	0.0	and	1.0	(including	0.0	but	not
1.0).	Each	time	you	call	random,	you	get	the	next	number	in	a	long	series.	To	see	a	sample,
run	this	loop:

import	random

for	i	in	range(10):

				x	=	random.random()

				print(x)

The	function	randint	takes	parameters	low	and	high	and	returns	an	integer	between	low
and	high	(including	both):

>>>	random.randint(5,	10)

5

>>>	random.randint(5,	10)

9

To	choose	an	element	from	a	sequence	at	random,	you	can	use	choice:

>>>	t	=	[1,	2,	3]

>>>	random.choice(t)

2

>>>	random.choice(t)

3

The	random	module	also	provides	functions	to	generate	random	values	from	continuous
distributions	including	Gaussian,	exponential,	gamma,	and	a	few	more.

Exercise	13-5.

Write	a	function	named	choose_from_hist	that	takes	a	histogram	as	defined	in
“Dictionary	as	a	Collection	of	Counters”	and	returns	a	random	value	from	the	histogram,
chosen	with	probability	in	proportion	to	frequency.	For	example,	for	this	histogram:
>>>	t	=	['a',	'a',	'b']

>>>	hist	=	histogram(t)



>>>	hist

{'a':	2,	'b':	1}

your	function	should	return	'a'	with	probability	2/3	and	'b'	with	probability	1/3.



Word	Histogram
You	should	attempt	the	previous	exercises	before	you	go	on.	You	can	download	my
solution	from	http://thinkpython2.com/code/analyze_book1.py.	You	will	also	need
http://thinkpython2.com/code/emma.txt.

Here	is	a	program	that	reads	a	file	and	builds	a	histogram	of	the	words	in	the	file:

import	string

def	process_file(filename):

				hist	=	dict()

				fp	=	open(filename)

				for	line	in	fp:

								process_line(line,	hist)

				return	hist

def	process_line(line,	hist):

				line	=	line.replace('-',	'	')

				

				for	word	in	line.split():

								word	=	word.strip(string.punctuation	+	string.whitespace)

								word	=	word.lower()

								hist[word]	=	hist.get(word,	0)	+	1

hist	=	process_file('emma.txt')

This	program	reads	emma.txt,	which	contains	the	text	of	Emma	by	Jane	Austen.

process_file	loops	through	the	lines	of	the	file,	passing	them	one	at	a	time	to
process_line.	The	histogram	hist	is	being	used	as	an	accumulator.

process_line	uses	the	string	method	replace	to	replace	hyphens	with	spaces	before
using	split	to	break	the	line	into	a	list	of	strings.	It	traverses	the	list	of	words	and	uses
strip	and	lower	to	remove	punctuation	and	convert	to	lowercase.	(It	is	shorthand	to	say
that	strings	are	“converted”;	remember	that	strings	are	immutable,	so	methods	like	strip
and	lower	return	new	strings.)

Finally,	process_line	updates	the	histogram	by	creating	a	new	item	or	incrementing	an
existing	one.

To	count	the	total	number	of	words	in	the	file,	we	can	add	up	the	frequencies	in	the
histogram:

def	total_words(hist):

				return	sum(hist.values())

The	number	of	different	words	is	just	the	number	of	items	in	the	dictionary:

def	different_words(hist):

				return	len(hist)

Here	is	some	code	to	print	the	results:

print('Total	number	of	words:',	total_words(hist))

http://thinkpython2.com/code/analyze_book1.py
http://thinkpython2.com/code/emma.txt


print('Number	of	different	words:',	different_words(hist))

And	the	results:

Total	number	of	words:	161080

Number	of	different	words:	7214



Most	Common	Words
To	find	the	most	common	words,	we	can	make	a	list	of	tuples,	where	each	tuple	contains	a
word	and	its	frequency,	and	sort	it.

The	following	function	takes	a	histogram	and	returns	a	list	of	word-frequency	tuples:

def	most_common(hist):

				t	=	[]

				for	key,	value	in	hist.items():

								t.append((value,	key))

				t.sort(reverse=True)

				return	t

In	each	tuple,	the	frequency	appears	first,	so	the	resulting	list	is	sorted	by	frequency.	Here
is	a	loop	that	prints	the	10	most	common	words:

t	=	most_common(hist)

print('The	most	common	words	are:')

for	freq,	word	in	t[:10]:

				print(word,	freq,	sep='\t')

I	use	the	keyword	argument	sep	to	tell	print	to	use	a	tab	character	as	a	“separator”,	rather
than	a	space,	so	the	second	column	is	lined	up.	Here	are	the	results	from	Emma:

The	most	common	words	are:

to						5242

the					5205

and					4897

of						4295

i							3191

a							3130

it						2529

her					2483

was					2400

she					2364

This	code	can	be	simplified	using	the	key	parameter	of	the	sort	function.	If	you	are
curious,	you	can	read	about	it	at	https://wiki.python.org/moin/HowTo/Sorting.

https://wiki.python.org/moin/HowTo/Sorting


Optional	Parameters
We	have	seen	built-in	functions	and	methods	that	take	optional	arguments.	It	is	possible	to
write	programmer-defined	functions	with	optional	arguments,	too.	For	example,	here	is	a
function	that	prints	the	most	common	words	in	a	histogram:

def	print_most_common(hist,	num=10):

				t	=	most_common(hist)

				print('The	most	common	words	are:')

				for	freq,	word	in	t[:num]:

								print(word,	freq,	sep='\t')

The	first	parameter	is	required;	the	second	is	optional.	The	default	value	of	num	is	10.

If	you	only	provide	one	argument:

print_most_common(hist)

num	gets	the	default	value.	If	you	provide	two	arguments:

print_most_common(hist,	20)

num	gets	the	value	of	the	argument	instead.	In	other	words,	the	optional	argument
overrides	the	default	value.

If	a	function	has	both	required	and	optional	parameters,	all	the	required	parameters	have	to
come	first,	followed	by	the	optional	ones.



Dictionary	Subtraction
Finding	the	words	from	the	book	that	are	not	in	the	word	list	from	words.txt	is	a	problem
you	might	recognize	as	set	subtraction;	that	is,	we	want	to	find	all	the	words	from	one	set
(the	words	in	the	book)	that	are	not	in	the	other	(the	words	in	the	list).

subtract	takes	dictionaries	d1	and	d2	and	returns	a	new	dictionary	that	contains	all	the
keys	from	d1	that	are	not	in	d2.	Since	we	don’t	really	care	about	the	values,	we	set	them
all	to	None:

def	subtract(d1,	d2):

				res	=	dict()

				for	key	in	d1:

								if	key	not	in	d2:

												res[key]	=	None

				return	res

To	find	the	words	in	the	book	that	are	not	in	words.txt,	we	can	use	process_file	to
build	a	histogram	for	words.txt,	and	then	subtract:

words	=	process_file('words.txt')

diff	=	subtract(hist,	words)

print("Words	in	the	book	that	aren't	in	the	word	list:")

for	word	in	diff:

				print(word,	end='	')

Here	are	some	of	the	results	from	Emma:

Words	in	the	book	that	aren't	in	the	word	list:

rencontre	jane's	blanche	woodhouses	disingenuousness	

friend's	venice	apartment…

Some	of	these	words	are	names	and	possessives.	Others,	like	“rencontre”,	are	no	longer	in
common	use.	But	a	few	are	common	words	that	should	really	be	in	the	list!

Exercise	13-6.

Python	provides	a	data	structure	called	set	that	provides	many	common	set	operations.
You	can	read	about	them	in	“Sets”,	or	read	the	documentation	at
http://docs.python.org/3/library/stdtypes.html#types-set.

Write	a	program	that	uses	set	subtraction	to	find	words	in	the	book	that	are	not	in	the	word
list.

Solution:	http://thinkpython2.com/code/analyze_book2.py.

http://docs.python.org/3/library/stdtypes.html#types-set
http://thinkpython2.com/code/analyze_book2.py


Random	Words
To	choose	a	random	word	from	the	histogram,	the	simplest	algorithm	is	to	build	a	list	with
multiple	copies	of	each	word,	according	to	the	observed	frequency,	and	then	choose	from
the	list:

def	random_word(h):

				t	=	[]

				for	word,	freq	in	h.items():

								t.extend([word]	*	freq)

				return	random.choice(t)

The	expression	[word]	*	freq	creates	a	list	with	freq	copies	of	the	string	word.	The
extend	method	is	similar	to	append	except	that	the	argument	is	a	sequence.

This	algorithm	works,	but	it	is	not	very	efficient;	each	time	you	choose	a	random	word,	it
rebuilds	the	list,	which	is	as	big	as	the	original	book.	An	obvious	improvement	is	to	build
the	list	once	and	then	make	multiple	selections,	but	the	list	is	still	big.

An	alternative	is:

1.	 Use	keys	to	get	a	list	of	the	words	in	the	book.

2.	 Build	a	list	that	contains	the	cumulative	sum	of	the	word	frequencies	(see	Exercise
10-2).	The	last	item	in	this	list	is	the	total	number	of	words	in	the	book,	n.

3.	 Choose	a	random	number	from	1	to	n.	Use	a	bisection	search	(See	Exercise	10-10)	to
find	the	index	where	the	random	number	would	be	inserted	in	the	cumulative	sum.

4.	 Use	the	index	to	find	the	corresponding	word	in	the	word	list.

Exercise	13-7.

Write	a	program	that	uses	this	algorithm	to	choose	a	random	word	from	the	book.

Solution:	http://thinkpython2.com/code/analyze_book3.py.

http://thinkpython2.com/code/analyze_book3.py


Markov	Analysis
If	you	choose	words	from	the	book	at	random,	you	can	get	a	sense	of	the	vocabulary,	but
you	probably	won’t	get	a	sentence:

this	the	small	regard	harriet	which	knightley's	it	most	things

A	series	of	random	words	seldom	makes	sense	because	there	is	no	relationship	between
successive	words.	For	example,	in	a	real	sentence	you	would	expect	an	article	like	“the”	to
be	followed	by	an	adjective	or	a	noun,	and	probably	not	a	verb	or	adverb.

One	way	to	measure	these	kinds	of	relationships	is	Markov	analysis,	which	characterizes,
for	a	given	sequence	of	words,	the	probability	of	the	words	that	might	come	next.	For
example,	the	song	“Eric,	the	Half	a	Bee”	begins:

Half	a	bee,	philosophically,

Must,	ipso	facto,	half	not	be.

But	half	the	bee	has	got	to	be

Vis	a	vis,	its	entity.	D’you	see?

But	can	a	bee	be	said	to	be

Or	not	to	be	an	entire	bee

When	half	the	bee	is	not	a	bee

Due	to	some	ancient	injury?

In	this	text,	the	phrase	“half	the”	is	always	followed	by	the	word	“bee”,	but	the	phrase	“the
bee”	might	be	followed	by	either	“has”	or	“is”.

The	result	of	Markov	analysis	is	a	mapping	from	each	prefix	(like	“half	the”	and	“the
bee”)	to	all	possible	suffixes	(like	“has”	and	“is”).

Given	this	mapping,	you	can	generate	a	random	text	by	starting	with	any	prefix	and
choosing	at	random	from	the	possible	suffixes.	Next,	you	can	combine	the	end	of	the
prefix	and	the	new	suffix	to	form	the	next	prefix,	and	repeat.

For	example,	if	you	start	with	the	prefix	“Half	a”,	then	the	next	word	has	to	be	“bee”,
because	the	prefix	only	appears	once	in	the	text.	The	next	prefix	is	“a	bee”,	so	the	next
suffix	might	be	“philosophically”,	“be”	or	“due”.

In	this	example	the	length	of	the	prefix	is	always	two,	but	you	can	do	Markov	analysis
with	any	prefix	length.



Exercise	13-8.

Markov	analysis:

1.	 Write	a	program	to	read	a	text	from	a	file	and	perform	Markov	analysis.	The	result
should	be	a	dictionary	that	maps	from	prefixes	to	a	collection	of	possible	suffixes.
The	collection	might	be	a	list,	tuple,	or	dictionary;	it	is	up	to	you	to	make	an
appropriate	choice.	You	can	test	your	program	with	prefix	length	2,	but	you	should
write	the	program	in	a	way	that	makes	it	easy	to	try	other	lengths.

2.	 Add	a	function	to	the	previous	program	to	generate	random	text	based	on	the
Markov	analysis.	Here	is	an	example	from	Emma	with	prefix	length	2:

He	was	very	clever,	be	it	sweetness	or	be	angry,	ashamed	or	only	amused,	at	such
a	stroke.	She	had	never	thought	of	Hannah	till	you	were	never	meant	for	me?”	“I
cannot	make	speeches,	Emma:”	he	soon	cut	it	all	himself.

For	this	example,	I	left	the	punctuation	attached	to	the	words.	The	result	is	almost
syntactically	correct,	but	not	quite.	Semantically,	it	almost	makes	sense,	but	not
quite.	
What	happens	if	you	increase	the	prefix	length?	Does	the	random	text	make	more
sense?

3.	 Once	your	program	is	working,	you	might	want	to	try	a	mash-up:	if	you	combine
text	from	two	or	more	books,	the	random	text	you	generate	will	blend	the	vocabulary
and	phrases	from	the	sources	in	interesting	ways.

Credit:	This	case	study	is	based	on	an	example	from	Kernighan	and	Pike,	The	Practice	of
Programming,	Addison-Wesley,	1999.

You	should	attempt	this	exercise	before	you	go	on;	then	you	can	can	download	my
solution	from	http://thinkpython2.com/code/markov.py.	You	will	also	need
http://thinkpython2.com/code/emma.txt.

http://thinkpython2.com/code/markov.py
http://thinkpython2.com/code/emma.txt


Data	Structures
Using	Markov	analysis	to	generate	random	text	is	fun,	but	there	is	also	a	point	to	this
exercise:	data	structure	selection.	In	your	solution	to	the	previous	exercises,	you	had	to
choose:

How	to	represent	the	prefixes.

How	to	represent	the	collection	of	possible	suffixes.

How	to	represent	the	mapping	from	each	prefix	to	the	collection	of	possible	suffixes.

The	last	one	is	easy:	a	dictionary	is	the	obvious	choice	for	a	mapping	from	keys	to
corresponding	values.

For	the	prefixes,	the	most	obvious	options	are	string,	list	of	strings,	or	tuple	of	strings.

For	the	suffixes,	one	option	is	a	list;	another	is	a	histogram	(dictionary).

How	should	you	choose?	The	first	step	is	to	think	about	the	operations	you	will	need	to
implement	for	each	data	structure.	For	the	prefixes,	we	need	to	be	able	to	remove	words
from	the	beginning	and	add	to	the	end.	For	example,	if	the	current	prefix	is	“Half	a”,	and
the	next	word	is	“bee”,	you	need	to	be	able	to	form	the	next	prefix,	“a	bee”.

Your	first	choice	might	be	a	list,	since	it	is	easy	to	add	and	remove	elements,	but	we	also
need	to	be	able	to	use	the	prefixes	as	keys	in	a	dictionary,	so	that	rules	out	lists.	With
tuples,	you	can’t	append	or	remove,	but	you	can	use	the	addition	operator	to	form	a	new
tuple:

def	shift(prefix,	word):

				return	prefix[1:]	+	(word,)

shift	takes	a	tuple	of	words,	prefix,	and	a	string,	word,	and	forms	a	new	tuple	that	has	all
the	words	in	prefix	except	the	first,	and	word	added	to	the	end.

For	the	collection	of	suffixes,	the	operations	we	need	to	perform	include	adding	a	new
suffix	(or	increasing	the	frequency	of	an	existing	one),	and	choosing	a	random	suffix.

Adding	a	new	suffix	is	equally	easy	for	the	list	implementation	or	the	histogram.	Choosing
a	random	element	from	a	list	is	easy;	choosing	from	a	histogram	is	harder	to	do	efficiently
(see	Exercise	13-7).

So	far	we	have	been	talking	mostly	about	ease	of	implementation,	but	there	are	other
factors	to	consider	in	choosing	data	structures.	One	is	runtime.	Sometimes	there	is	a
theoretical	reason	to	expect	one	data	structure	to	be	faster	than	other;	for	example,	I
mentioned	that	the	in	operator	is	faster	for	dictionaries	than	for	lists,	at	least	when	the
number	of	elements	is	large.

But	often	you	don’t	know	ahead	of	time	which	implementation	will	be	faster.	One	option
is	to	implement	both	of	them	and	see	which	is	better.	This	approach	is	called



benchmarking.	A	practical	alternative	is	to	choose	the	data	structure	that	is	easiest	to
implement,	and	then	see	if	it	is	fast	enough	for	the	intended	application.	If	so,	there	is	no
need	to	go	on.	If	not,	there	are	tools,	like	the	profile	module,	that	can	identify	the	places
in	a	program	that	take	the	most	time.

The	other	factor	to	consider	is	storage	space.	For	example,	using	a	histogram	for	the
collection	of	suffixes	might	take	less	space	because	you	only	have	to	store	each	word
once,	no	matter	how	many	times	it	appears	in	the	text.	In	some	cases,	saving	space	can
also	make	your	program	run	faster,	and	in	the	extreme,	your	program	might	not	run	at	all
if	you	run	out	of	memory.	But	for	many	applications,	space	is	a	secondary	consideration
after	runtime.

One	final	thought:	in	this	discussion,	I	have	implied	that	we	should	use	one	data	structure
for	both	analysis	and	generation.	But	since	these	are	separate	phases,	it	would	also	be
possible	to	use	one	structure	for	analysis	and	then	convert	to	another	structure	for
generation.	This	would	be	a	net	win	if	the	time	saved	during	generation	exceeded	the	time
spent	in	conversion.



Debugging
When	you	are	debugging	a	program,	and	especially	if	you	are	working	on	a	hard	bug,
there	are	five	things	to	try:

Reading:

Examine	your	code,	read	it	back	to	yourself,	and	check	that	it	says	what	you	meant	to
say.

Running:

Experiment	by	making	changes	and	running	different	versions.	Often	if	you	display
the	right	thing	at	the	right	place	in	the	program,	the	problem	becomes	obvious,	but
sometimes	you	have	to	build	scaffolding.

Ruminating:

Take	some	time	to	think!	What	kind	of	error	is	it:	syntax,	runtime,	or	semantic?	What
information	can	you	get	from	the	error	messages,	or	from	the	output	of	the	program?
What	kind	of	error	could	cause	the	problem	you’re	seeing?	What	did	you	change	last,
before	the	problem	appeared?

Rubberducking:

If	you	explain	the	problem	to	someone	else,	you	sometimes	find	the	answer	before
you	finish	asking	the	question.	Often	you	don’t	need	the	other	person;	you	could	just
talk	to	a	rubber	duck.	And	that’s	the	origin	of	the	well-known	strategy	called	rubber
duck	debugging.	I	am	not	making	this	up;	see
https://en.wikipedia.org/wiki/Rubber_duck_debugging.

Retreating:

At	some	point,	the	best	thing	to	do	is	back	off	and	undo	recent	changes	until	you	get
back	to	a	program	that	works	and	that	you	understand.	Then	you	can	start	rebuilding.

Beginning	programmers	sometimes	get	stuck	on	one	of	these	activities	and	forget	the
others.	Each	activity	comes	with	its	own	failure	mode.

For	example,	reading	your	code	might	help	if	the	problem	is	a	typographical	error,	but	not
if	the	problem	is	a	conceptual	misunderstanding.	If	you	don’t	understand	what	your
program	does,	you	can	read	it	100	times	and	never	see	the	error,	because	the	error	is	in
your	head.

Running	experiments	can	help,	especially	if	you	run	small,	simple	tests.	But	if	you	run
experiments	without	thinking	or	reading	your	code,	you	might	fall	into	a	pattern	I	call
“random	walk	programming”,	which	is	the	process	of	making	random	changes	until	the
program	does	the	right	thing.	Needless	to	say,	random	walk	programming	can	take	a	long
time.

You	have	to	take	time	to	think.	Debugging	is	like	an	experimental	science.	You	should
have	at	least	one	hypothesis	about	what	the	problem	is.	If	there	are	two	or	more

https://en.wikipedia.org/wiki/Rubber_duck_debugging


possibilities,	try	to	think	of	a	test	that	would	eliminate	one	of	them.

But	even	the	best	debugging	techniques	will	fail	if	there	are	too	many	errors,	or	if	the	code
you	are	trying	to	fix	is	too	big	and	complicated.	Sometimes	the	best	option	is	to	retreat,
simplifying	the	program	until	you	get	to	something	that	works	and	that	you	understand.

Beginning	programmers	are	often	reluctant	to	retreat	because	they	can’t	stand	to	delete	a
line	of	code	(even	if	it’s	wrong).	If	it	makes	you	feel	better,	copy	your	program	into
another	file	before	you	start	stripping	it	down.	Then	you	can	copy	the	pieces	back	one	at	a
time.

Finding	a	hard	bug	requires	reading,	running,	ruminating,	and	sometimes	retreating.	If	you
get	stuck	on	one	of	these	activities,	try	the	others.



Glossary
deterministic:

Pertaining	to	a	program	that	does	the	same	thing	each	time	it	runs,	given	the	same
inputs.

pseudorandom:

Pertaining	to	a	sequence	of	numbers	that	appears	to	be	random,	but	is	generated	by	a
deterministic	program.

default	value:

The	value	given	to	an	optional	parameter	if	no	argument	is	provided.

override:

To	replace	a	default	value	with	an	argument.

benchmarking:

The	process	of	choosing	between	data	structures	by	implementing	alternatives	and
testing	them	on	a	sample	of	the	possible	inputs.

rubber	duck	debugging:

Debugging	by	explaining	your	problem	to	an	inanimate	object	such	as	a	rubber	duck.
Articulating	the	problem	can	help	you	solve	it,	even	if	the	rubber	duck	doesn’t	know
Python.



Exercises
Exercise	13-9.

The	“rank”	of	a	word	is	its	position	in	a	list	of	words	sorted	by	frequency:	the	most
common	word	has	rank	1,	the	second	most	common	has	rank	2,	etc.

Zipf’s	law	describes	a	relationship	between	the	ranks	and	frequencies	of	words	in	natural
languages	(http://en.wikipedia.org/wiki/Zipf’s_law).	Specifically,	it	predicts	that	the
frequency,	f,	of	the	word	with	rank	r	is:

where	s	and	c	are	parameters	that	depend	on	the	language	and	the	text.	If	you	take	the
logarithm	of	both	sides	of	this	equation,	you	get:

So	if	you	plot	log	f	versus	log	r,	you	should	get	a	straight	line	with	slope	-s	and	intercept
log	c.

Write	a	program	that	reads	a	text	from	a	file,	counts	word	frequencies,	and	prints	one	line
for	each	word,	in	descending	order	of	frequency,	with	log	f	and	log	r.	Use	the	graphing
program	of	your	choice	to	plot	the	results	and	check	whether	they	form	a	straight	line.	Can
you	estimate	the	value	of	s?

Solution:	http://thinkpython2.com/code/zipf.py.	To	run	my	solution,	you	need	the	plotting
module	matplotlib.	If	you	installed	Anaconda,	you	already	have	matplotlib;	otherwise
you	might	have	to	install	it.

http://en.wikipedia.org/wiki/Zipf’s_law
http://thinkpython2.com/code/zipf.py




Chapter	14.	Files

This	chapter	introduces	the	idea	of	“persistent”	programs	that	keep	data	in	permanent
storage,	and	shows	how	to	use	different	kinds	of	permanent	storage,	like	files	and
databases.



Persistence
Most	of	the	programs	we	have	seen	so	far	are	transient	in	the	sense	that	they	run	for	a
short	time	and	produce	some	output,	but	when	they	end,	their	data	disappears.	If	you	run
the	program	again,	it	starts	with	a	clean	slate.

Other	programs	are	persistent:	they	run	for	a	long	time	(or	all	the	time);	they	keep	at	least
some	of	their	data	in	permanent	storage	(a	hard	drive,	for	example);	and	if	they	shut	down
and	restart,	they	pick	up	where	they	left	off.

Examples	of	persistent	programs	are	operating	systems,	which	run	pretty	much	whenever
a	computer	is	on,	and	web	servers,	which	run	all	the	time,	waiting	for	requests	to	come	in
on	the	network.

One	of	the	simplest	ways	for	programs	to	maintain	their	data	is	by	reading	and	writing	text
files.	We	have	already	seen	programs	that	read	text	files;	in	this	chapter	we	will	see
programs	that	write	them.

An	alternative	is	to	store	the	state	of	the	program	in	a	database.	In	this	chapter	I	will
present	a	simple	database	and	a	module,	pickle,	that	makes	it	easy	to	store	program	data.



Reading	and	Writing
A	text	file	is	a	sequence	of	characters	stored	on	a	permanent	medium	like	a	hard	drive,
flash	memory,	or	CD-ROM.	We	saw	how	to	open	and	read	a	file	in	“Reading	Word	Lists”.

To	write	a	file,	you	have	to	open	it	with	mode	'w'	as	a	second	parameter:

>>>	fout	=	open('output.txt',	'w')

If	the	file	already	exists,	opening	it	in	write	mode	clears	out	the	old	data	and	starts	fresh,
so	be	careful!	If	the	file	doesn’t	exist,	a	new	one	is	created.

open	returns	a	file	object	that	provides	methods	for	working	with	the	file.	The	write
method	puts	data	into	the	file:

>>>	line1	=	"This	here's	the	wattle,\n"

>>>	fout.write(line1)

24

The	return	value	is	the	number	of	characters	that	were	written.	The	file	object	keeps	track
of	where	it	is,	so	if	you	call	write	again,	it	adds	the	new	data	to	the	end	of	the	file:

>>>	line2	=	"the	emblem	of	our	land.\n"

>>>	fout.write(line2)

24

When	you	are	done	writing,	you	should	close	the	file:

>>>	fout.close()

If	you	don’t	close	the	file,	it	gets	closed	for	you	when	the	program	ends.



Format	Operator
The	argument	of	write	has	to	be	a	string,	so	if	we	want	to	put	other	values	in	a	file,	we
have	to	convert	them	to	strings.	The	easiest	way	to	do	that	is	with	str:

>>>	x	=	52

>>>	fout.write(str(x))

An	alternative	is	to	use	the	format	operator,	%.	When	applied	to	integers,	%	is	the
modulus	operator.	But	when	the	first	operand	is	a	string,	%	is	the	format	operator.

The	first	operand	is	the	format	string,	which	contains	one	or	more	format	sequences,
which	specify	how	the	second	operand	is	formatted.	The	result	is	a	string.

For	example,	the	format	sequence	'%d'	means	that	the	second	operand	should	be
formatted	as	a	decimal	integer:

>>>	camels	=	42

>>>	'%d'	%	camels

'42'

The	result	is	the	string	'42',	which	is	not	to	be	confused	with	the	integer	value	42.

A	format	sequence	can	appear	anywhere	in	the	string,	so	you	can	embed	a	value	in	a
sentence:

>>>	'I	have	spotted	%d	camels.'	%	camels

'I	have	spotted	42	camels.'

If	there	is	more	than	one	format	sequence	in	the	string,	the	second	argument	has	to	be	a
tuple.	Each	format	sequence	is	matched	with	an	element	of	the	tuple,	in	order.

The	following	example	uses	'%d'	to	format	an	integer,	'%g'	to	format	a	floating-point
number,	and	'%s'	to	format	a	string:

>>>	'In	%d	years	I	have	spotted	%g	%s.'	%	(3,	0.1,	'camels')

'In	3	years	I	have	spotted	0.1	camels.'

The	number	of	elements	in	the	tuple	has	to	match	the	number	of	format	sequences	in	the
string.	Also,	the	types	of	the	elements	have	to	match	the	format	sequences:

>>>	'%d	%d	%d'	%	(1,	2)

TypeError:	not	enough	arguments	for	format	string

>>>	'%d'	%	'dollars'

TypeError:	%d	format:	a	number	is	required,	not	str

In	the	first	example,	there	aren’t	enough	elements;	in	the	second,	the	element	is	the	wrong
type.

For	more	information	on	the	format	operator,	see
https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting.	A	more

https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting


powerful	alternative	is	the	string	format	method,	which	you	can	read	about	at
https://docs.python.org/3/library/stdtypes.html#str.format.

https://docs.python.org/3/library/stdtypes.html#str.format


Filenames	and	Paths
Files	are	organized	into	directories	(also	called	“folders”).	Every	running	program	has	a
“current	directory”,	which	is	the	default	directory	for	most	operations.	For	example,	when
you	open	a	file	for	reading,	Python	looks	for	it	in	the	current	directory.

The	os	module	provides	functions	for	working	with	files	and	directories	(“os”	stands	for
“operating	system”).	os.getcwd	returns	the	name	of	the	current	directory:

>>>	import	os

>>>	cwd	=	os.getcwd()

>>>	cwd

'/home/dinsdale'

cwd	stands	for	“current	working	directory”.	The	result	in	this	example	is	/home/dinsdale,
which	is	the	home	directory	of	a	user	named	dinsdale.

A	string	like	'/home/dinsdale'	that	identifies	a	file	or	directory	is	called	a	path.

A	simple	filename,	like	memo.txt,	is	also	considered	a	path,	but	it	is	a	relative	path
because	it	relates	to	the	current	directory.	If	the	current	directory	is	/home/dinsdale,	the
filename	memo.txt	would	refer	to	/home/dinsdale/memo.txt.

A	path	that	begins	with	/	does	not	depend	on	the	current	directory;	it	is	called	an	absolute
path.	To	find	the	absolute	path	to	a	file,	you	can	use	os.path.abspath:

>>>	os.path.abspath('memo.txt')

'/home/dinsdale/memo.txt'

os.path	provides	other	functions	for	working	with	filenames	and	paths.	For	example,
os.path.exists	checks	whether	a	file	or	directory	exists:

>>>	os.path.exists('memo.txt')

True

If	it	exists,	os.path.isdir	checks	whether	it’s	a	directory:

>>>	os.path.isdir('memo.txt')

False

>>>	os.path.isdir('/home/dinsdale')

True

Similarly,	os.path.isfile	checks	whether	it’s	a	file.

os.listdir	returns	a	list	of	the	files	(and	other	directories)	in	the	given	directory:

>>>	os.listdir(cwd)

['music',	'photos',	'memo.txt']

To	demonstrate	these	functions,	the	following	example	“walks”	through	a	directory,	prints
the	names	of	all	the	files,	and	calls	itself	recursively	on	all	the	directories:



def	walk(dirname):

				for	name	in	os.listdir(dirname):

								path	=	os.path.join(dirname,	name)

								if	os.path.isfile(path):

												print(path)

								else:

												walk(path)

os.path.join	takes	a	directory	and	a	filename	and	joins	them	into	a	complete	path.

The	os	module	provides	a	function	called	walk	that	is	similar	to	this	one	but	more
versatile.	As	an	exercise,	read	the	documentation	and	use	it	to	print	the	names	of	the	files
in	a	given	directory	and	its	subdirectories.	You	can	download	my	solution	from
http://thinkpython2.com/code/walk.py.

http://thinkpython2.com/code/walk.py


Catching	Exceptions
A	lot	of	things	can	go	wrong	when	you	try	to	read	and	write	files.	If	you	try	to	open	a	file
that	doesn’t	exist,	you	get	an	IOError:

>>>	fin	=	open('bad_file')

IOError:	[Errno	2]	No	such	file	or	directory:	'bad_file'

If	you	don’t	have	permission	to	access	a	file:

>>>	fout	=	open('/etc/passwd',	'w')

PermissionError:	[Errno	13]	Permission	denied:	'/etc/passwd'

And	if	you	try	to	open	a	directory	for	reading,	you	get

>>>	fin	=	open('/home')

IsADirectoryError:	[Errno	21]	Is	a	directory:	'/home'

To	avoid	these	errors,	you	could	use	functions	like	os.path.exists	and	os.path.isfile,
but	it	would	take	a	lot	of	time	and	code	to	check	all	the	possibilities	(if	“Errno	21”	is	any
indication,	there	are	at	least	21	things	that	can	go	wrong).

It	is	better	to	go	ahead	and	try	—	and	deal	with	problems	if	they	happen	—	which	is
exactly	what	the	try	statement	does.	The	syntax	is	similar	to	an	if…else	statement:

try:				

				fin	=	open('bad_file')

except:

				print('Something	went	wrong.')

Python	starts	by	executing	the	try	clause.	If	all	goes	well,	it	skips	the	except	clause	and
proceeds.	If	an	exception	occurs,	it	jumps	out	of	the	try	clause	and	runs	the	except
clause.

Handling	an	exception	with	a	try	statement	is	called	catching	an	exception.	In	this
example,	the	except	clause	prints	an	error	message	that	is	not	very	helpful.	In	general,
catching	an	exception	gives	you	a	chance	to	fix	the	problem,	or	try	again,	or	at	least	end
the	program	gracefully.



Databases
A	database	is	a	file	that	is	organized	for	storing	data.	Many	databases	are	organized	like	a
dictionary	in	the	sense	that	they	map	from	keys	to	values.	The	biggest	difference	between
a	database	and	a	dictionary	is	that	the	database	is	on	disk	(or	other	permanent	storage),	so
it	persists	after	the	program	ends.

The	module	dbm	provides	an	interface	for	creating	and	updating	database	files.	As	an
example,	I’ll	create	a	database	that	contains	captions	for	image	files.

Opening	a	database	is	similar	to	opening	other	files:

>>>	import	dbm

>>>	db	=	dbm.open('captions',	'c')

The	mode	'c'	means	that	the	database	should	be	created	if	it	doesn’t	already	exist.	The
result	is	a	database	object	that	can	be	used	(for	most	operations)	like	a	dictionary.

When	you	create	a	new	item,	dbm	updates	the	database	file:

>>>	db['cleese.png']	=	'Photo	of	John	Cleese.'

When	you	access	one	of	the	items,	dbm	reads	the	file:

>>>	db['cleese.png']

b'Photo	of	John	Cleese.'

The	result	is	a	bytes	object,	which	is	why	it	begins	with	b.	A	bytes	object	is	similar	to	a
string	in	many	ways.	When	you	get	farther	into	Python,	the	difference	becomes	important,
but	for	now	we	can	ignore	it.

If	you	make	another	assignment	to	an	existing	key,	dbm	replaces	the	old	value:

>>>	db['cleese.png']	=	'Photo	of	John	Cleese	doing	a	silly	walk.'

>>>	db['cleese.png']

b'Photo	of	John	Cleese	doing	a	silly	walk.'

Some	dictionary	methods,	like	keys	and	items,	don’t	work	with	database	objects.	But
iteration	with	a	for	loop	works:

for	key	in	db:

				print(key,	db[key])

As	with	other	files,	you	should	close	the	database	when	you	are	done:

>>>	db.close()



Pickling
A	limitation	of	dbm	is	that	the	keys	and	values	have	to	be	strings	or	bytes.	If	you	try	to	use
any	other	type,	you	get	an	error.

The	pickle	module	can	help.	It	translates	almost	any	type	of	object	into	a	string	suitable
for	storage	in	a	database,	and	then	translates	strings	back	into	objects.

pickle.dumps	takes	an	object	as	a	parameter	and	returns	a	string	representation	(dumps	is
short	for	“dump	string”):

>>>	import	pickle

>>>	t	=	[1,	2,	3]

>>>	pickle.dumps(t)

b'\x80\x03]q\x00(K\x01K\x02K\x03e.'

The	format	isn’t	obvious	to	human	readers;	it	is	meant	to	be	easy	for	pickle	to	interpret.
pickle.loads	(“load	string”)	reconstitutes	the	object:

>>>	t1	=	[1,	2,	3]

>>>	s	=	pickle.dumps(t1)

>>>	t2	=	pickle.loads(s)

>>>	t2

[1,	2,	3]

Although	the	new	object	has	the	same	value	as	the	old,	it	is	not	(in	general)	the	same
object:

>>>	t1	==	t2

True

>>>	t1	is	t2

False

In	other	words,	pickling	and	then	unpickling	has	the	same	effect	as	copying	the	object.

You	can	use	pickle	to	store	non-strings	in	a	database.	In	fact,	this	combination	is	so
common	that	it	has	been	encapsulated	in	a	module	called	shelve.



Pipes
Most	operating	systems	provide	a	command-line	interface,	also	known	as	a	shell.	Shells
usually	provide	commands	to	navigate	the	file	system	and	launch	applications.	For
example,	in	Unix	you	can	change	directories	with	cd,	display	the	contents	of	a	directory
with	ls,	and	launch	a	web	browser	by	typing	(for	example)	firefox.

Any	program	that	you	can	launch	from	the	shell	can	also	be	launched	from	Python	using	a
pipe	object,	which	represents	a	running	program.

For	example,	the	Unix	command	ls	-l	normally	displays	the	contents	of	the	current
directory	in	long	format.	You	can	launch	ls	with	os.popen1:

>>>	cmd	=	'ls	-l'

>>>	fp	=	os.popen(cmd)

The	argument	is	a	string	that	contains	a	shell	command.	The	return	value	is	an	object	that
behaves	like	an	open	file.	You	can	read	the	output	from	the	ls	process	one	line	at	a	time
with	readline	or	get	the	whole	thing	at	once	with	read:

>>>	res	=	fp.read()

When	you	are	done,	you	close	the	pipe	like	a	file:

>>>	stat	=	fp.close()

>>>	print(stat)

None

The	return	value	is	the	final	status	of	the	ls	process;	None	means	that	it	ended	normally
(with	no	errors).

For	example,	most	Unix	systems	provide	a	command	called	md5sum	that	reads	the	contents
of	a	file	and	computes	a	“checksum”.	You	can	read	about	MD5	at
http://en.wikipedia.org/wiki/Md5.	This	command	provides	an	efficient	way	to	check
whether	two	files	have	the	same	contents.	The	probability	that	different	contents	yield	the
same	checksum	is	very	small	(that	is,	unlikely	to	happen	before	the	universe	collapses).

You	can	use	a	pipe	to	run	md5sum	from	Python	and	get	the	result:

>>>	filename	=	'book.tex'

>>>	cmd	=	'md5sum	'	+	filename

>>>	fp	=	os.popen(cmd)

>>>	res	=	fp.read()

>>>	stat	=	fp.close()

>>>	print(res)

1e0033f0ed0656636de0d75144ba32e0		book.tex

>>>	print(stat)

None

http://en.wikipedia.org/wiki/Md5


Writing	Modules
Any	file	that	contains	Python	code	can	be	imported	as	a	module.	For	example,	suppose
you	have	a	file	named	wc.py	with	the	following	code:

def	linecount(filename):

				count	=	0

				for	line	in	open(filename):

								count	+=	1

				return	count

print(linecount('wc.py'))

If	you	run	this	program,	it	reads	itself	and	prints	the	number	of	lines	in	the	file,	which	is	7.
You	can	also	import	it	like	this:

>>>	import	wc

7

Now	you	have	a	module	object	wc:

>>>	wc

<module	'wc'	from	'wc.py'>

The	module	object	provides	linecount:

>>>	wc.linecount('wc.py')

7

So	that’s	how	you	write	modules	in	Python.

The	only	problem	with	this	example	is	that	when	you	import	the	module	it	runs	the	test
code	at	the	bottom.	Normally	when	you	import	a	module,	it	defines	new	functions	but	it
doesn’t	run	them.

Programs	that	will	be	imported	as	modules	often	use	the	following	idiom:

if	__name__	==	'__main__':

				print(linecount('wc.py'))

__name__	is	a	built-in	variable	that	is	set	when	the	program	starts.	If	the	program	is
running	as	a	script,	__name__	has	the	value	'__main__';	in	that	case,	the	test	code	runs.
Otherwise,	if	the	module	is	being	imported,	the	test	code	is	skipped.

As	an	exercise,	type	this	example	into	a	file	named	wc.py	and	run	it	as	a	script.	Then	run
the	Python	interpreter	and	import	wc.	What	is	the	value	of	__name__	when	the	module	is
being	imported?

Warning:	If	you	import	a	module	that	has	already	been	imported,	Python	does	nothing.	It
does	not	re-read	the	file,	even	if	it	has	changed.

If	you	want	to	reload	a	module,	you	can	use	the	built-in	function	reload,	but	it	can	be



tricky,	so	the	safest	thing	to	do	is	restart	the	interpreter	and	then	import	the	module	again.



Debugging
When	you	are	reading	and	writing	files,	you	might	run	into	problems	with	whitespace.
These	errors	can	be	hard	to	debug	because	spaces,	tabs	and	newlines	are	normally
invisible:

>>>	s	=	'1	2\t	3\n	4'

>>>	print(s)

1	2	 	3

	4

The	built-in	function	repr	can	help.	It	takes	any	object	as	an	argument	and	returns	a	string
representation	of	the	object.	For	strings,	it	represents	whitespace	characters	with	backslash
sequences:

>>>	print(repr(s))

'1	2\t	3\n	4'

This	can	be	helpful	for	debugging.

One	other	problem	you	might	run	into	is	that	different	systems	use	different	characters	to
indicate	the	end	of	a	line.	Some	systems	use	a	newline,	represented	\n.	Others	use	a	return
character,	represented	\r.	Some	use	both.	If	you	move	files	between	different	systems,
these	inconsistencies	can	cause	problems.

For	most	systems,	there	are	applications	to	convert	from	one	format	to	another.	You	can
find	them	(and	read	more	about	this	issue)	at	http://en.wikipedia.org/wiki/Newline.	Or,	of
course,	you	could	write	one	yourself.

http://en.wikipedia.org/wiki/Newline


Glossary
persistent:

Pertaining	to	a	program	that	runs	indefinitely	and	keeps	at	least	some	of	its	data	in
permanent	storage.

format	operator:

An	operator,	%,	that	takes	a	format	string	and	a	tuple	and	generates	a	string	that
includes	the	elements	of	the	tuple	formatted	as	specified	by	the	format	string.

format	string:

A	string,	used	with	the	format	operator,	that	contains	format	sequences.

format	sequence:

A	sequence	of	characters	in	a	format	string,	like	%d,	that	specifies	how	a	value	should
be	formatted.

text	file:

A	sequence	of	characters	stored	in	permanent	storage	like	a	hard	drive.

directory:

A	named	collection	of	files,	also	called	a	folder.

path:

A	string	that	identifies	a	file.

relative	path:

A	path	that	starts	from	the	current	directory.

absolute	path:

A	path	that	starts	from	the	topmost	directory	in	the	file	system.

catch:

To	prevent	an	exception	from	terminating	a	program	by	using	the	try	and	except
statements.

database:

A	file	whose	contents	are	organized	like	a	dictionary	with	keys	that	correspond	to
values.

bytes	object:

An	object	similar	to	a	string.

shell:

A	program	that	allows	users	to	type	commands	and	then	executes	them	by	starting
other	programs.



pipe	object:

An	object	that	represents	a	running	program,	allowing	a	Python	program	to	run
commands	and	read	the	results.



Exercises
Exercise	14-1.

Write	a	function	called	sed	that	takes	as	arguments	a	pattern	string,	a	replacement	string,
and	two	filenames;	it	should	read	the	first	file	and	write	the	contents	into	the	second	file
(creating	it	if	necessary).	If	the	pattern	string	appears	anywhere	in	the	file,	it	should	be
replaced	with	the	replacement	string.

If	an	error	occurs	while	opening,	reading,	writing	or	closing	files,	your	program	should
catch	the	exception,	print	an	error	message,	and	exit.

Solution:	http://thinkpython2.com/code/sed.py.

Exercise	14-2.

If	you	download	my	solution	to	Exercise	12-2	from
http://thinkpython2.com/code/anagram_sets.py,	you’ll	see	that	it	creates	a	dictionary	that
maps	from	a	sorted	string	of	letters	to	the	list	of	words	that	can	be	spelled	with	those
letters.	For	example,	'opst'	maps	to	the	list	['opts',	'post',	'pots',	'spot',
'stop',	'tops'].

Write	a	module	that	imports	anagram_sets	and	provides	two	new	functions:
store_anagrams	should	store	the	anagram	dictionary	in	a	“shelf”;	read_anagrams	should
look	up	a	word	and	return	a	list	of	its	anagrams.

Solution:	http://thinkpython2.com/code/anagram_db.py

Exercise	14-3.

In	a	large	collection	of	MP3	files,	there	may	be	more	than	one	copy	of	the	same	song,
stored	in	different	directories	or	with	different	filenames.	The	goal	of	this	exercise	is	to
search	for	duplicates.

1.	 Write	a	program	that	searches	a	directory	and	all	of	its	subdirectories,	recursively,
and	returns	a	list	of	complete	paths	for	all	files	with	a	given	suffix	(like	.mp3).	Hint:
os.path	provides	several	useful	functions	for	manipulating	file-	and	path	names.

2.	 To	recognize	duplicates,	you	can	use	md5sum	to	compute	a	“checksum”	for	each	files.
If	two	files	have	the	same	checksum,	they	probably	have	the	same	contents.

3.	 To	double-check,	you	can	use	the	Unix	command	diff.

Solution:	http://thinkpython2.com/code/find_duplicates.py.
1	popen	is	deprecated	now,	which	means	we	are	supposed	to	stop	using	it	and	start	using
the	subprocess	module.	But	for	simple	cases,	I	find	subprocess	more	complicated	than
necessary.	So	I	am	going	to	keep	using	popen	until	they	take	it	away.

http://thinkpython2.com/code/sed.py
http://thinkpython2.com/code/anagram_sets.py
http://thinkpython2.com/code/anagram_db.py
http://thinkpython2.com/code/find_duplicates.py




Chapter	15.	Classes	and	Objects

At	this	point	you	know	how	to	use	functions	to	organize	code	and	built-in	types	to
organize	data.	The	next	step	is	to	learn	“object-oriented	programming”,	which	uses
programmer-defined	types	to	organize	both	code	and	data.	Object-oriented	programming
is	a	big	topic;	it	will	take	a	few	chapters	to	get	there.

Code	examples	from	this	chapter	are	available	from
http://thinkpython2.com/code/Point1.py;	solutions	to	the	exercises	are	available	from
http://thinkpython2.com/code/Point1_soln.py.

http://thinkpython2.com/code/Point1.py
http://thinkpython2.com/code/Point1_soln.py


Programmer-Defined	Types
We	have	used	many	of	Python’s	built-in	types;	now	we	are	going	to	define	a	new	type.	As
an	example,	we	will	create	a	type	called	Point	that	represents	a	point	in	two-dimensional
space.

In	mathematical	notation,	points	are	often	written	in	parentheses	with	a	comma	separating
the	coordinates.	For	example,	(0,0)	represents	the	origin,	and	(x,y)	represents	the	point	x
units	to	the	right	and	y	units	up	from	the	origin.

There	are	several	ways	we	might	represent	points	in	Python:

We	could	store	the	coordinates	separately	in	two	variables,	x	and	y.

We	could	store	the	coordinates	as	elements	in	a	list	or	tuple.

We	could	create	a	new	type	to	represent	points	as	objects.

Creating	a	new	type	is	more	complicated	than	the	other	options,	but	it	has	advantages	that
will	be	apparent	soon.

A	programmer-defined	type	is	also	called	a	class.	A	class	definition	looks	like	this:

class	Point:

				"""Represents	a	point	in	2-D	space."""

The	header	indicates	that	the	new	class	is	called	Point.	The	body	is	a	docstring	that
explains	what	the	class	is	for.	You	can	define	variables	and	methods	inside	a	class
definition,	but	we	will	get	back	to	that	later.

Defining	a	class	named	Point	creates	a	class	object:

>>>	Point

<class	'__main__.Point'>

Because	Point	is	defined	at	the	top	level,	its	“full	name”	is	__main__.Point.

The	class	object	is	like	a	factory	for	creating	objects.	To	create	a	Point,	you	call	Point	as
if	it	were	a	function:

>>>	blank	=	Point()

>>>	blank

<__main__.Point	object	at	0xb7e9d3ac>

The	return	value	is	a	reference	to	a	Point	object,	which	we	assign	to	blank.

Creating	a	new	object	is	called	instantiation,	and	the	object	is	an	instance	of	the	class.

When	you	print	an	instance,	Python	tells	you	what	class	it	belongs	to	and	where	it	is
stored	in	memory	(the	prefix	0x	means	that	the	following	number	is	in	hexadecimal).



Every	object	is	an	instance	of	some	class,	so	“object”	and	“instance”	are	interchangeable.
But	in	this	chapter	I	use	“instance”	to	indicate	that	I	am	talking	about	a	programmer-
defined	type.



Attributes
You	can	assign	values	to	an	instance	using	dot	notation:

>>>	blank.x	=	3.0

>>>	blank.y	=	4.0

This	syntax	is	similar	to	the	syntax	for	selecting	a	variable	from	a	module,	such	as
math.pi	or	string.whitespace.	In	this	case,	though,	we	are	assigning	values	to	named
elements	of	an	object.	These	elements	are	called	attributes.

As	a	noun,	“AT-trib-ute”	is	pronounced	with	emphasis	on	the	first	syllable,	as	opposed	to
“a-TRIB-ute”,	which	is	a	verb.

The	following	diagram	shows	the	result	of	these	assignments.	A	state	diagram	that	shows
an	object	and	its	attributes	is	called	an	object	diagram;	see	Figure	15-1.

Figure	15-1.	Object	diagram.

The	variable	blank	refers	to	a	Point	object,	which	contains	two	attributes.	Each	attribute
refers	to	a	floating-point	number.

You	can	read	the	value	of	an	attribute	using	the	same	syntax:

>>>	blank.y

4.0

>>>	x	=	blank.x

>>>	x

3.0

The	expression	blank.x	means,	“Go	to	the	object	blank	refers	to	and	get	the	value	of	x.”
In	the	example,	we	assign	that	value	to	a	variable	named	x.	There	is	no	conflict	between
the	variable	x	and	the	attribute	x.

You	can	use	dot	notation	as	part	of	any	expression.	For	example:

>>>	'(%g,	%g)'	%	(blank.x,	blank.y)

'(3.0,	4.0)'

>>>	distance	=	math.sqrt(blank.x**2	+	blank.y**2)

>>>	distance

5.0



You	can	pass	an	instance	as	an	argument	in	the	usual	way.	For	example:

def	print_point(p):

				print('(%g,	%g)'	%	(p.x,	p.y))

print_point	takes	a	point	as	an	argument	and	displays	it	in	mathematical	notation.	To
invoke	it,	you	can	pass	blank	as	an	argument:

>>>	print_point(blank)

(3.0,	4.0)

Inside	the	function,	p	is	an	alias	for	blank,	so	if	the	function	modifies	p,	blank	changes.

As	an	exercise,	write	a	function	called	distance_between_points	that	takes	two	Points	as
arguments	and	returns	the	distance	between	them.



Rectangles
Sometimes	it	is	obvious	what	the	attributes	of	an	object	should	be,	but	other	times	you
have	to	make	decisions.	For	example,	imagine	you	are	designing	a	class	to	represent
rectangles.	What	attributes	would	you	use	to	specify	the	location	and	size	of	a	rectangle?
You	can	ignore	angle;	to	keep	things	simple,	assume	that	the	rectangle	is	either	vertical	or
horizontal.

There	are	at	least	two	possibilities:

You	could	specify	one	corner	of	the	rectangle	(or	the	center),	the	width,	and	the	height.

You	could	specify	two	opposing	corners.

At	this	point	it	is	hard	to	say	whether	either	is	better	than	the	other,	so	we’ll	implement	the
first	one,	just	as	an	example.

Here	is	the	class	definition:

class	Rectangle:

				"""Represents	a	rectangle.	

				attributes:	width,	height,	corner.

				"""

The	docstring	lists	the	attributes:	width	and	height	are	numbers;	corner	is	a	Point	object
that	specifies	the	lower-left	corner.

To	represent	a	rectangle,	you	have	to	instantiate	a	Rectangle	object	and	assign	values	to
the	attributes:

box	=	Rectangle()

box.width	=	100.0

box.height	=	200.0

box.corner	=	Point()

box.corner.x	=	0.0

box.corner.y	=	0.0

The	expression	box.corner.x	means,	“Go	to	the	object	box	refers	to	and	select	the
attribute	named	corner;	then	go	to	that	object	and	select	the	attribute	named	x.”

Figure	15-2	shows	the	state	of	this	object.	An	object	that	is	an	attribute	of	another	object	is
embedded.



Figure	15-2.	Object	diagram.



Instances	as	Return	Values
Functions	can	return	instances.	For	example,	find_center	takes	a	Rectangle	as	an
argument	and	returns	a	Point	that	contains	the	coordinates	of	the	center	of	the	Rectangle:

def	find_center(rect):

				p	=	Point()

				p.x	=	rect.corner.x	+	rect.width/2

				p.y	=	rect.corner.y	+	rect.height/2

				return	p

Here	is	an	example	that	passes	box	as	an	argument	and	assigns	the	resulting	Point	to
center:

>>>	center	=	find_center(box)

>>>	print_point(center)

(50,	100)



Objects	Are	Mutable
You	can	change	the	state	of	an	object	by	making	an	assignment	to	one	of	its	attributes.	For
example,	to	change	the	size	of	a	rectangle	without	changing	its	position,	you	can	modify
the	values	of	width	and	height:

box.width	=	box.width	+	50

box.height	=	box.height	+	100

You	can	also	write	functions	that	modify	objects.	For	example,	grow_rectangle	takes	a
Rectangle	object	and	two	numbers,	dwidth	and	dheight,	and	adds	the	numbers	to	the
width	and	height	of	the	rectangle:

def	grow_rectangle(rect,	dwidth,	dheight):

				rect.width	+=	dwidth

				rect.height	+=	dheight

Here	is	an	example	that	demonstrates	the	effect:

>>>	box.width,	box.height

(150.0,	300.0)

>>>	grow_rectangle(box,	50,	100)

>>>	box.width,	box.height

(200.0,	400.0)

Inside	the	function,	rect	is	an	alias	for	box,	so	when	the	function	modifies	rect,	box
changes.

As	an	exercise,	write	a	function	named	move_rectangle	that	takes	a	Rectangle	and	two
numbers	named	dx	and	dy.	It	should	change	the	location	of	the	rectangle	by	adding	dx	to
the	x	coordinate	of	corner	and	adding	dy	to	the	y	coordinate	of	corner.



Copying
Aliasing	can	make	a	program	difficult	to	read	because	changes	in	one	place	might	have
unexpected	effects	in	another	place.	It	is	hard	to	keep	track	of	all	the	variables	that	might
refer	to	a	given	object.

Copying	an	object	is	often	an	alternative	to	aliasing.	The	copy	module	contains	a	function
called	copy	that	can	duplicate	any	object:

>>>	p1	=	Point()

>>>	p1.x	=	3.0

>>>	p1.y	=	4.0

>>>	import	copy

>>>	p2	=	copy.copy(p1)

p1	and	p2	contain	the	same	data,	but	they	are	not	the	same	Point:

>>>	print_point(p1)

(3,	4)

>>>	print_point(p2)

(3,	4)

>>>	p1	is	p2

False

>>>	p1	==	p2

False

The	is	operator	indicates	that	p1	and	p2	are	not	the	same	object,	which	is	what	we
expected.	But	you	might	have	expected	==	to	yield	True	because	these	points	contain	the
same	data.	In	that	case,	you	will	be	disappointed	to	learn	that	for	instances,	the	default
behavior	of	the	==	operator	is	the	same	as	the	is	operator;	it	checks	object	identity,	not
object	equivalence.	That’s	because	for	programmer-defined	types,	Python	doesn’t	know
what	should	be	considered	equivalent.	At	least,	not	yet.

If	you	use	copy.copy	to	duplicate	a	Rectangle,	you	will	find	that	it	copies	the	Rectangle
object	but	not	the	embedded	Point:

>>>	box2	=	copy.copy(box)

>>>	box2	is	box

False

>>>	box2.corner	is	box.corner

True

Figure	15-3	shows	what	the	object	diagram	looks	like.	This	operation	is	called	a	shallow
copy	because	it	copies	the	object	and	any	references	it	contains,	but	not	the	embedded
objects.



Figure	15-3.	Object	diagram.

For	most	applications,	this	is	not	what	you	want.	In	this	example,	invoking
grow_rectangle	on	one	of	the	Rectangles	would	not	affect	the	other,	but	invoking
move_rectangle	on	either	would	affect	both!	This	behavior	is	confusing	and	error-prone.

Fortunately,	the	copy	module	provides	a	method	named	deepcopy	that	copies	not	only	the
object	but	also	the	objects	it	refers	to,	and	the	objects	they	refer	to,	and	so	on.	You	will	not
be	surprised	to	learn	that	this	operation	is	called	a	deep	copy.

>>>	box3	=	copy.deepcopy(box)

>>>	box3	is	box

False

>>>	box3.corner	is	box.corner

False

box3	and	box	are	completely	separate	objects.

As	an	exercise,	write	a	version	of	move_rectangle	that	creates	and	returns	a	new
Rectangle	instead	of	modifying	the	old	one.



Debugging
When	you	start	working	with	objects,	you	are	likely	to	encounter	some	new	exceptions.	If
you	try	to	access	an	attribute	that	doesn’t	exist,	you	get	an	AttributeError:

>>>	p	=	Point()

>>>	p.x	=	3

>>>	p.y	=	4

>>>	p.z

AttributeError:	Point	instance	has	no	attribute	'z'

If	you	are	not	sure	what	type	an	object	is,	you	can	ask:

>>>	type(p)

<class	'__main__.Point'>

You	can	also	use	isinstance	to	check	whether	an	object	is	an	instance	of	a	class:

>>>	isinstance(p,	Point)

True

If	you	are	not	sure	whether	an	object	has	a	particular	attribute,	you	can	use	the	built-in
function	hasattr:

>>>	hasattr(p,	'x')

True

>>>	hasattr(p,	'z')

False

The	first	argument	can	be	any	object;	the	second	argument	is	a	string	that	contains	the
name	of	the	attribute.

You	can	also	use	a	try	statement	to	see	if	the	object	has	the	attributes	you	need:

try:

				x	=	p.x

except	AttributeError:

				x	=	0

This	approach	can	make	it	easier	to	write	functions	that	work	with	different	types;	more
on	that	topic	is	coming	up	in	“Polymorphism”.



Glossary
class:

A	programmer-defined	type.	A	class	definition	creates	a	new	class	object.

class	object:

An	object	that	contains	information	about	a	programmer-defined	type.	The	class
object	can	be	used	to	create	instances	of	the	type.

instance:

An	object	that	belongs	to	a	class.

instantiate:

To	create	a	new	object.

attribute:

One	of	the	named	values	associated	with	an	object.

embedded	object:

An	object	that	is	stored	as	an	attribute	of	another	object.

shallow	copy:

To	copy	the	contents	of	an	object,	including	any	references	to	embedded	objects;
implemented	by	the	copy	function	in	the	copy	module.

deep	copy:

To	copy	the	contents	of	an	object	as	well	as	any	embedded	objects,	and	any	objects
embedded	in	them,	and	so	on;	implemented	by	the	deepcopy	function	in	the	copy
module.

object	diagram:

A	diagram	that	shows	objects,	their	attributes,	and	the	values	of	the	attributes.



Exercises
Exercise	15-1.

Write	a	definition	for	a	class	named	Circle	with	attributes	center	and	radius,	where
center	is	a	Point	object	and	radius	is	a	number.

Instantiate	a	Circle	object	that	represents	a	circle	with	its	center	at	 	and
radius	75.

Write	a	function	named	point_in_circle	that	takes	a	Circle	and	a	Point	and	returns	True
if	the	Point	lies	in	or	on	the	boundary	of	the	circle.

Write	a	function	named	rect_in_circle	that	takes	a	Circle	and	a	Rectangle	and	returns
True	if	the	Rectangle	lies	entirely	in	or	on	the	boundary	of	the	circle.

Write	a	function	named	rect_circle_overlap	that	takes	a	Circle	and	a	Rectangle	and
returns	True	if	any	of	the	corners	of	the	Rectangle	fall	inside	the	circle.	Or	as	a	more
challenging	version,	return	True	if	any	part	of	the	Rectangle	falls	inside	the	circle.

Solution:	http://thinkpython2.com/code/Circle.py.

Exercise	15-2.

Write	a	function	called	draw_rect	that	takes	a	Turtle	object	and	a	Rectangle	and	uses	the
Turtle	to	draw	the	Rectangle.	See	Chapter	4	for	examples	using	Turtle	objects.

Write	a	function	called	draw_circle	that	takes	a	Turtle	and	a	Circle	and	draws	the	Circle.

Solution:	http://thinkpython2.com/code/draw.py.

http://thinkpython2.com/code/Circle.py
http://thinkpython2.com/code/draw.py




Chapter	16.	Classes	and	Functions

Now	that	we	know	how	to	create	new	types,	the	next	step	is	to	write	functions	that	take
programmer-defined	objects	as	parameters	and	return	them	as	results.	In	this	chapter	I	also
present	“functional	programming	style”	and	two	new	program	development	plans.

Code	examples	from	this	chapter	are	available	from
http://thinkpython2.com/code/Time1.py.	Solutions	to	the	exercises	are	at
http://thinkpython2.com/code/Time1_soln.py.

http://thinkpython2.com/code/Time1.py
http://thinkpython2.com/code/Time1_soln.py


Time
As	another	example	of	a	programmer-defined	type,	we’ll	define	a	class	called	Time	that
records	the	time	of	day.	The	class	definition	looks	like	this:

class	Time:

				"""Represents	the	time	of	day.

							

				attributes:	hour,	minute,	second

				"""

We	can	create	a	new	Time	object	and	assign	attributes	for	hours,	minutes,	and	seconds:

time	=	Time()

time.hour	=	11

time.minute	=	59

time.second	=	30

The	state	diagram	for	the	Time	object	looks	like	Figure	16-1.

As	an	exercise,	write	a	function	called	print_time	that	takes	a	Time	object	and	prints	it	in
the	form	hour:minute:second.	Hint:	the	format	sequence	'%.2d'	prints	an	integer	using
at	least	two	digits,	including	a	leading	zero	if	necessary.

Write	a	boolean	function	called	is_after	that	takes	two	Time	objects,	t1	and	t2,	and
returns	True	if	t1	follows	t2	chronologically	and	False	otherwise.	Challenge:	don’t	use
an	if	statement.

Figure	16-1.	Object	diagram.



Pure	Functions
In	the	next	few	sections,	we’ll	write	two	functions	that	add	time	values.	They	demonstrate
two	kinds	of	functions:	pure	functions	and	modifiers.	They	also	demonstrate	a
development	plan	I’ll	call	prototype	and	patch,	which	is	a	way	of	tackling	a	complex
problem	by	starting	with	a	simple	prototype	and	incrementally	dealing	with	the
complications.

Here	is	a	simple	prototype	of	add_time:

def	add_time(t1,	t2):

				sum	=	Time()

				sum.hour	=	t1.hour	+	t2.hour

				sum.minute	=	t1.minute	+	t2.minute

				sum.second	=	t1.second	+	t2.second

				return	sum

The	function	creates	a	new	Time	object,	initializes	its	attributes,	and	returns	a	reference	to
the	new	object.	This	is	called	a	pure	function	because	it	does	not	modify	any	of	the
objects	passed	to	it	as	arguments	and	it	has	no	effect,	like	displaying	a	value	or	getting
user	input,	other	than	returning	a	value.

To	test	this	function,	I’ll	create	two	Time	objects:	start	contains	the	start	time	of	a	movie,
like	Monty	Python	and	the	Holy	Grail,	and	duration	contains	the	runtime	of	the	movie,
which	is	1	hour	35	minutes.

add_time	figures	out	when	the	movie	will	be	done:

>>>	start	=	Time()

>>>	start.hour	=	9

>>>	start.minute	=	45

>>>	start.second	=		0

>>>	duration	=	Time()

>>>	duration.hour	=	1

>>>	duration.minute	=	35

>>>	duration.second	=	0

>>>	done	=	add_time(start,	duration)

>>>	print_time(done)

10:80:00

The	result,	10:80:00,	might	not	be	what	you	were	hoping	for.	The	problem	is	that	this
function	does	not	deal	with	cases	where	the	number	of	seconds	or	minutes	adds	up	to
more	than	sixty.	When	that	happens,	we	have	to	“carry”	the	extra	seconds	into	the	minute
column	or	the	extra	minutes	into	the	hour	column.

Here’s	an	improved	version:

def	add_time(t1,	t2):

				sum	=	Time()

				sum.hour	=	t1.hour	+	t2.hour

				sum.minute	=	t1.minute	+	t2.minute

				sum.second	=	t1.second	+	t2.second

				if	sum.second	>=	60:



								sum.second	-=	60

								sum.minute	+=	1

				if	sum.minute	>=	60:

								sum.minute	-=	60

								sum.hour	+=	1

				return	sum

Although	this	function	is	correct,	it	is	starting	to	get	big.	We	will	see	a	shorter	alternative
later.



Modifiers
Sometimes	it	is	useful	for	a	function	to	modify	the	objects	it	gets	as	parameters.	In	that
case,	the	changes	are	visible	to	the	caller.	Functions	that	work	this	way	are	called
modifiers.

increment,	which	adds	a	given	number	of	seconds	to	a	Time	object,	can	be	written
naturally	as	a	modifier.	Here	is	a	rough	draft:

def	increment(time,	seconds):

				time.second	+=	seconds

				if	time.second	>=	60:

								time.second	-=	60

								time.minute	+=	1

				if	time.minute	>=	60:

								time.minute	-=	60

								time.hour	+=	1

The	first	line	performs	the	basic	operation;	the	remainder	deals	with	the	special	cases	we
saw	before.

Is	this	function	correct?	What	happens	if	seconds	is	much	greater	than	60?

In	that	case,	it	is	not	enough	to	carry	once;	we	have	to	keep	doing	it	until	time.second	is
less	than	60.	One	solution	is	to	replace	the	if	statements	with	while	statements.	That
would	make	the	function	correct,	but	not	very	efficient.	As	an	exercise,	write	a	correct
version	of	increment	that	doesn’t	contain	any	loops.

Anything	that	can	be	done	with	modifiers	can	also	be	done	with	pure	functions.	In	fact,
some	programming	languages	only	allow	pure	functions.	There	is	some	evidence	that
programs	that	use	pure	functions	are	faster	to	develop	and	less	error-prone	than	programs
that	use	modifiers.	But	modifiers	are	convenient	at	times,	and	functional	programs	tend	to
be	less	efficient.

In	general,	I	recommend	that	you	write	pure	functions	whenever	it	is	reasonable	and	resort
to	modifiers	only	if	there	is	a	compelling	advantage.	This	approach	might	be	called	a
functional	programming	style.

As	an	exercise,	write	a	“pure”	version	of	increment	that	creates	and	returns	a	new	Time
object	rather	than	modifying	the	parameter.



Prototyping	versus	Planning
The	development	plan	I	am	demonstrating	is	called	“prototype	and	patch”.	For	each
function,	I	wrote	a	prototype	that	performed	the	basic	calculation	and	then	tested	it,
patching	errors	along	the	way.

This	approach	can	be	effective,	especially	if	you	don’t	yet	have	a	deep	understanding	of
the	problem.	But	incremental	corrections	can	generate	code	that	is	unnecessarily
complicated	(since	it	deals	with	many	special	cases)	and	unreliable	(since	it	is	hard	to
know	if	you	have	found	all	the	errors).

An	alternative	is	designed	development,	in	which	high-level	insight	into	the	problem	can
make	the	programming	much	easier.	In	this	case,	the	insight	is	that	a	Time	object	is	really
a	three-digit	number	in	base	60	(see	http://en.wikipedia.org/wiki/Sexagesimal.)!	The
second	attribute	is	the	“ones	column”,	the	minute	attribute	is	the	“sixties	column”,	and	the
hour	attribute	is	the	“thirty-six	hundreds	column”.

When	we	wrote	add_time	and	increment,	we	were	effectively	doing	addition	in	base	60,
which	is	why	we	had	to	carry	from	one	column	to	the	next.

This	observation	suggests	another	approach	to	the	whole	problem	—	we	can	convert	Time
objects	to	integers	and	take	advantage	of	the	fact	that	the	computer	knows	how	to	do
integer	arithmetic.

Here	is	a	function	that	converts	Times	to	integers:

def	time_to_int(time):

				minutes	=	time.hour	*	60	+	time.minute

				seconds	=	minutes	*	60	+	time.second

				return	seconds

And	here	is	a	function	that	converts	an	integer	to	a	Time	(recall	that	divmod	divides	the
first	argument	by	the	second	and	returns	the	quotient	and	remainder	as	a	tuple):

def	int_to_time(seconds):

				time	=	Time()

				minutes,	time.second	=	divmod(seconds,	60)

				time.hour,	time.minute	=	divmod(minutes,	60)

				return	time

You	might	have	to	think	a	bit,	and	run	some	tests,	to	convince	yourself	that	these	functions
are	correct.	One	way	to	test	them	is	to	check	that	time_to_int(int_to_time(x))	==	x
for	many	values	of	x.	This	is	an	example	of	a	consistency	check.

Once	you	are	convinced	they	are	correct,	you	can	use	them	to	rewrite	add_time:

def	add_time(t1,	t2):

				seconds	=	time_to_int(t1)	+	time_to_int(t2)

				return	int_to_time(seconds)

This	version	is	shorter	than	the	original,	and	easier	to	verify.	As	an	exercise,	rewrite

http://en.wikipedia.org/wiki/Sexagesimal


increment	using	time_to_int	and	int_to_time.

In	some	ways,	converting	from	base	60	to	base	10	and	back	is	harder	than	just	dealing
with	times.	Base	conversion	is	more	abstract;	our	intuition	for	dealing	with	time	values	is
better.

But	if	we	have	the	insight	to	treat	times	as	base	60	numbers	and	make	the	investment	of
writing	the	conversion	functions	(time_to_int	and	int_to_time),	we	get	a	program	that
is	shorter,	easier	to	read	and	debug,	and	more	reliable.

It	is	also	easier	to	add	features	later.	For	example,	imagine	subtracting	two	Times	to	find
the	duration	between	them.	The	naive	approach	would	be	to	implement	subtraction	with
borrowing.	Using	the	conversion	functions	would	be	easier	and	more	likely	to	be	correct.

Ironically,	sometimes	making	a	problem	harder	(or	more	general)	makes	it	easier	(because
there	are	fewer	special	cases	and	fewer	opportunities	for	error).



Debugging
A	Time	object	is	well-formed	if	the	values	of	minute	and	second	are	between	0	and	60
(including	0	but	not	60)	and	if	hour	is	positive.	hour	and	minute	should	be	integral	values,
but	we	might	allow	second	to	have	a	fraction	part.

Requirements	like	these	are	called	invariants	because	they	should	always	be	true.	To	put
it	a	different	way,	if	they	are	not	true,	something	has	gone	wrong.

Writing	code	to	check	invariants	can	help	detect	errors	and	find	their	causes.	For	example,
you	might	have	a	function	like	valid_time	that	takes	a	Time	object	and	returns	False	if	it
violates	an	invariant:

def	valid_time(time):

				if	time.hour	<	0	or	time.minute	<	0	or	time.second	<	0:

								return	False

				if	time.minute	>=	60	or	time.second	>=	60:

								return	False

				return	True

At	the	beginning	of	each	function	you	could	check	the	arguments	to	make	sure	they	are
valid:

def	add_time(t1,	t2):

				if	not	valid_time(t1)	or	not	valid_time(t2):

								raise	ValueError('invalid	Time	object	in	add_time')

				seconds	=	time_to_int(t1)	+	time_to_int(t2)

				return	int_to_time(seconds)

Or	you	could	use	an	assert	statement,	which	checks	a	given	invariant	and	raises	an
exception	if	it	fails:

def	add_time(t1,	t2):

				assert	valid_time(t1)	and	valid_time(t2)

				seconds	=	time_to_int(t1)	+	time_to_int(t2)

				return	int_to_time(seconds)

assert	statements	are	useful	because	they	distinguish	code	that	deals	with	normal
conditions	from	code	that	checks	for	errors.



Glossary
prototype	and	patch:

A	development	plan	that	involves	writing	a	rough	draft	of	a	program,	testing,	and
correcting	errors	as	they	are	found.

designed	development:

A	development	plan	that	involves	high-level	insight	into	the	problem	and	more
planning	than	incremental	development	or	prototype	development.

pure	function:

A	function	that	does	not	modify	any	of	the	objects	it	receives	as	arguments.	Most
pure	functions	are	fruitful.

modifier:

A	function	that	changes	one	or	more	of	the	objects	it	receives	as	arguments.	Most
modifiers	are	void;	that	is,	they	return	None.

functional	programming	style:

A	style	of	program	design	in	which	the	majority	of	functions	are	pure.

invariant:

A	condition	that	should	always	be	true	during	the	execution	of	a	program.

assert	statement:

A	statement	that	check	a	condition	and	raises	an	exception	if	it	fails.



Exercises
Code	examples	from	this	chapter	are	available	from
http://thinkpython2.com/code/Time1.py;	solutions	to	the	exercises	are	available	from
http://thinkpython2.com/code/Time1_soln.py.

Exercise	16-1.

Write	a	function	called	mul_time	that	takes	a	Time	object	and	a	number	and	returns	a	new
Time	object	that	contains	the	product	of	the	original	Time	and	the	number.

Then	use	mul_time	to	write	a	function	that	takes	a	Time	object	that	represents	the
finishing	time	in	a	race,	and	a	number	that	represents	the	distance,	and	returns	a	Time
object	that	represents	the	average	pace	(time	per	mile).

Exercise	16-2.

The	datetime	module	provides	time	objects	that	are	similar	to	the	Time	objects	in	this
chapter,	but	they	provide	a	rich	set	of	methods	and	operators.	Read	the	documentation	at
http://docs.python.org/3/library/datetime.html.

1.	 Use	the	datetime	module	to	write	a	program	that	gets	the	current	date	and	prints	the
day	of	the	week.

2.	 Write	a	program	that	takes	a	birthday	as	input	and	prints	the	user’s	age	and	the
number	of	days,	hours,	minutes	and	seconds	until	their	next	birthday.

3.	 For	two	people	born	on	different	days,	there	is	a	day	when	one	is	twice	as	old	as	the
other.	That’s	their	Double	Day.	Write	a	program	that	takes	two	birthdays	and
computes	their	Double	Day.

4.	 For	a	little	more	challenge,	write	the	more	general	version	that	computes	the	day
when	one	person	is	n	times	older	than	the	other.

Solution:	http://thinkpython2.com/code/double.py.

http://thinkpython2.com/code/Time1.py
http://thinkpython2.com/code/Time1_soln.py
http://docs.python.org/3/library/datetime.html
http://thinkpython2.com/code/double.py




Chapter	17.	Classes	and	Methods

Although	we	are	using	some	of	Python’s	object-oriented	features,	the	programs	from	the
last	two	chapters	are	not	really	object-oriented	because	they	don’t	represent	the
relationships	between	programmer-defined	types	and	the	functions	that	operate	on	them.
The	next	step	is	to	transform	those	functions	into	methods	that	make	the	relationships
explicit.

Code	examples	from	this	chapter	are	available	from
http://thinkpython2.com/code/Time2.py,	and	solutions	to	the	exercises	are	in
http://thinkpython2.com/code/Point2_soln.py.

http://thinkpython2.com/code/Time2.py
http://thinkpython2.com/code/Point2_soln.py


Object-Oriented	Features
Python	is	an	object-oriented	programming	language,	which	means	that	it	provides
features	that	support	object-oriented	programming,	which	has	these	defining
characteristics:

Programs	include	class	and	method	definitions.

Most	of	the	computation	is	expressed	in	terms	of	operations	on	objects.

Objects	often	represent	things	in	the	real	world,	and	methods	often	correspond	to	the
ways	things	in	the	real	world	interact.

For	example,	the	Time	class	defined	in	Chapter	16	corresponds	to	the	way	people	record
the	time	of	day,	and	the	functions	we	defined	correspond	to	the	kinds	of	things	people	do
with	times.	Similarly,	the	Point	and	Rectangle	classes	in	Chapter	15	correspond	to	the
mathematical	concepts	of	a	point	and	a	rectangle.

So	far,	we	have	not	taken	advantage	of	the	features	Python	provides	to	support	object-
oriented	programming.	These	features	are	not	strictly	necessary;	most	of	them	provide
alternative	syntax	for	things	we	have	already	done.	But	in	many	cases,	the	alternative	is
more	concise	and	more	accurately	conveys	the	structure	of	the	program.

For	example,	in	Time1.py	there	is	no	obvious	connection	between	the	class	definition	and
the	function	definitions	that	follow.	With	some	examination,	it	is	apparent	that	every
function	takes	at	least	one	Time	object	as	an	argument.

This	observation	is	the	motivation	for	methods;	a	method	is	a	function	that	is	associated
with	a	particular	class.	We	have	seen	methods	for	strings,	lists,	dictionaries	and	tuples.	In
this	chapter,	we	will	define	methods	for	programmer-defined	types.

Methods	are	semantically	the	same	as	functions,	but	there	are	two	syntactic	differences:

Methods	are	defined	inside	a	class	definition	in	order	to	make	the	relationship	between
the	class	and	the	method	explicit.

The	syntax	for	invoking	a	method	is	different	from	the	syntax	for	calling	a	function.

In	the	next	few	sections,	we	will	take	the	functions	from	the	previous	two	chapters	and
transform	them	into	methods.	This	transformation	is	purely	mechanical;	you	can	do	it	by
following	a	sequence	of	steps.	If	you	are	comfortable	converting	from	one	form	to
another,	you	will	be	able	to	choose	the	best	form	for	whatever	you	are	doing.



Printing	Objects
In	Chapter	16,	we	defined	a	class	named	Time	and	in	“Time”,	you	wrote	a	function	named
print_time:

class	Time:

				"""Represents	the	time	of	day."""

def	print_time(time):

				print('%.2d:%.2d:%.2d'	%	(time.hour,	time.minute,	time.second))

To	call	this	function,	you	have	to	pass	a	Time	object	as	an	argument:

>>>	start	=	Time()

>>>	start.hour	=	9

>>>	start.minute	=	45

>>>	start.second	=	00

>>>	print_time(start)

09:45:00

To	make	print_time	a	method,	all	we	have	to	do	is	move	the	function	definition	inside
the	class	definition.	Notice	the	change	in	indentation.

class	Time:

				def	print_time(time):

								print('%.2d:%.2d:%.2d'	%	(time.hour,	time.minute,	time.second))

Now	there	are	two	ways	to	call	print_time.	The	first	(and	less	common)	way	is	to	use
function	syntax:

>>>	Time.print_time(start)

09:45:00

In	this	use	of	dot	notation,	Time	is	the	name	of	the	class,	and	print_time	is	the	name	of
the	method.	start	is	passed	as	a	parameter.

The	second	(and	more	concise)	way	is	to	use	method	syntax:

>>>	start.print_time()

09:45:00

In	this	use	of	dot	notation,	print_time	is	the	name	of	the	method	(again),	and	start	is	the
object	the	method	is	invoked	on,	which	is	called	the	subject.	Just	as	the	subject	of	a
sentence	is	what	the	sentence	is	about,	the	subject	of	a	method	invocation	is	what	the
method	is	about.

Inside	the	method,	the	subject	is	assigned	to	the	first	parameter,	so	in	this	case	start	is
assigned	to	time.

By	convention,	the	first	parameter	of	a	method	is	called	self,	so	it	would	be	more
common	to	write	print_time	like	this:



class	Time:

				def	print_time(self):

								print('%.2d:%.2d:%.2d'	%	(self.hour,	self.minute,	self.second))

The	reason	for	this	convention	is	an	implicit	metaphor:

The	syntax	for	a	function	call,	print_time(start),	suggests	that	the	function	is	the
active	agent.	It	says	something	like,	“Hey	print_time!	Here’s	an	object	for	you	to
print.”

In	object-oriented	programming,	the	objects	are	the	active	agents.	A	method	invocation
like	start.print_time()	says	“Hey	start!	Please	print	yourself.”

This	change	in	perspective	might	be	more	polite,	but	it	is	not	obvious	that	it	is	useful.	In
the	examples	we	have	seen	so	far,	it	may	not	be.	But	sometimes	shifting	responsibility
from	the	functions	onto	the	objects	makes	it	possible	to	write	more	versatile	functions	(or
methods),	and	makes	it	easier	to	maintain	and	reuse	code.

As	an	exercise,	rewrite	time_to_int	(from	“Prototyping	versus	Planning”)	as	a	method.
You	might	be	tempted	to	rewrite	int_to_time	as	a	method,	too,	but	that	doesn’t	really
make	sense	because	there	would	be	no	object	to	invoke	it	on.



Another	Example
Here’s	a	version	of	increment	(from	“Modifiers”)	rewritten	as	a	method:

#	inside	class	Time:

				def	increment(self,	seconds):

								seconds	+=	self.time_to_int()

								return	int_to_time(seconds)

This	version	assumes	that	time_to_int	is	written	as	a	method.	Also,	note	that	it	is	a	pure
function,	not	a	modifier.

Here’s	how	you	would	invoke	increment:

>>>	start.print_time()

09:45:00

>>>	end	=	start.increment(1337)

>>>	end.print_time()

10:07:17

The	subject,	start,	gets	assigned	to	the	first	parameter,	self.	The	argument,	1337,	gets
assigned	to	the	second	parameter,	seconds.

This	mechanism	can	be	confusing,	especially	if	you	make	an	error.	For	example,	if	you
invoke	increment	with	two	arguments,	you	get:

>>>	end	=	start.increment(1337,	460)

TypeError:	increment()	takes	2	positional	arguments	but	3	were	given

The	error	message	is	initially	confusing,	because	there	are	only	two	arguments	in
parentheses.	But	the	subject	is	also	considered	an	argument,	so	all	together	that’s	three.

By	the	way,	a	positional	argument	is	an	argument	that	doesn’t	have	a	parameter	name;
that	is,	it	is	not	a	keyword	argument.	In	this	function	call:

sketch(parrot,	cage,	dead=True)

parrot	and	cage	are	positional,	and	dead	is	a	keyword	argument.



A	More	Complicated	Example
Rewriting	is_after	(from	“Time”)	is	slightly	more	complicated	because	it	takes	two
Time	objects	as	parameters.	In	this	case	it	is	conventional	to	name	the	first	parameter	self
and	the	second	parameter	other:

#	inside	class	Time:

				def	is_after(self,	other):

								return	self.time_to_int()	>	other.time_to_int()

To	use	this	method,	you	have	to	invoke	it	on	one	object	and	pass	the	other	as	an	argument:

>>>	end.is_after(start)

True

One	nice	thing	about	this	syntax	is	that	it	almost	reads	like	English:	“end	is	after	start?”



The	init	Method
The	init	method	(short	for	“initialization”)	is	a	special	method	that	gets	invoked	when	an
object	is	instantiated.	Its	full	name	is	__init__	(two	underscore	characters,	followed	by
init,	and	then	two	more	underscores).	An	init	method	for	the	Time	class	might	look	like
this:

#	inside	class	Time:

				def	__init__(self,	hour=0,	minute=0,	second=0):

								self.hour	=	hour

								self.minute	=	minute

								self.second	=	second

It	is	common	for	the	parameters	of	__init__	to	have	the	same	names	as	the	attributes.	The
statement

								self.hour	=	hour

stores	the	value	of	the	parameter	hour	as	an	attribute	of	self.

The	parameters	are	optional,	so	if	you	call	Time	with	no	arguments,	you	get	the	default
values:

>>>	time	=	Time()

>>>	time.print_time()

00:00:00

If	you	provide	one	argument,	it	overrides	hour:

>>>	time	=	Time	(9)

>>>	time.print_time()

09:00:00

If	you	provide	two	arguments,	they	override	hour	and	minute:

>>>	time	=	Time(9,	45)

>>>	time.print_time()

09:45:00

And	if	you	provide	three	arguments,	they	override	all	three	default	values.

As	an	exercise,	write	an	init	method	for	the	Point	class	that	takes	x	and	y	as	optional
parameters	and	assigns	them	to	the	corresponding	attributes.



The	__str__	Method
__str__	is	a	special	method,	like	__init__,	that	is	supposed	to	return	a	string
representation	of	an	object.

For	example,	here	is	a	str	method	for	Time	objects:

#	inside	class	Time:

				def	__str__(self):

								return	'%.2d:%.2d:%.2d'	%	(self.hour,	self.minute,	self.second)

When	you	print	an	object,	Python	invokes	the	str	method:

>>>	time	=	Time(9,	45)

>>>	print(time)

09:45:00

When	I	write	a	new	class,	I	almost	always	start	by	writing	__init__,	which	makes	it
easier	to	instantiate	objects,	and	__str__,	which	is	useful	for	debugging.

As	an	exercise,	write	a	str	method	for	the	Point	class.	Create	a	Point	object	and	print	it.



Operator	Overloading
By	defining	other	special	methods,	you	can	specify	the	behavior	of	operators	on
programmer-defined	types.	For	example,	if	you	define	a	method	named	__add__	for	the
Time	class,	you	can	use	the	+	operator	on	Time	objects.

Here	is	what	the	definition	might	look	like:

#	inside	class	Time:

				def	__add__(self,	other):

								seconds	=	self.time_to_int()	+	other.time_to_int()

								return	int_to_time(seconds)

And	here	is	how	you	could	use	it:

>>>	start	=	Time(9,	45)

>>>	duration	=	Time(1,	35)

>>>	print(start	+	duration)

11:20:00

When	you	apply	the	+	operator	to	Time	objects,	Python	invokes	__add__.	When	you	print
the	result,	Python	invokes	__str__.	So	there	is	a	lot	happening	behind	the	scenes!

Changing	the	behavior	of	an	operator	so	that	it	works	with	programmer-defined	types	is
called	operator	overloading.	For	every	operator	in	Python	there	is	a	corresponding
special	method,	like	__add__.	For	more	details,	see
http://docs.python.org/3/reference/datamodel.html#specialnames.

As	an	exercise,	write	an	add	method	for	the	Point	class.

http://docs.python.org/3/reference/datamodel.html#specialnames


Type-Based	Dispatch
In	the	previous	section	we	added	two	Time	objects,	but	you	also	might	want	to	add	an
integer	to	a	Time	object.	The	following	is	a	version	of	__add__	that	checks	the	type	of
other	and	invokes	either	add_time	or	increment:

#	inside	class	Time:

				def	__add__(self,	other):

								if	isinstance(other,	Time):

												return	self.add_time(other)

								else:

												return	self.increment(other)

				def	add_time(self,	other):

								seconds	=	self.time_to_int()	+	other.time_to_int()

								return	int_to_time(seconds)

				def	increment(self,	seconds):

								seconds	+=	self.time_to_int()

								return	int_to_time(seconds)

The	built-in	function	isinstance	takes	a	value	and	a	class	object,	and	returns	True	if	the
value	is	an	instance	of	the	class.

If	other	is	a	Time	object,	__add__	invokes	add_time.	Otherwise	it	assumes	that	the
parameter	is	a	number	and	invokes	increment.	This	operation	is	called	a	type-based
dispatch	because	it	dispatches	the	computation	to	different	methods	based	on	the	type	of
the	arguments.

Here	are	examples	that	use	the	+	operator	with	different	types:

>>>	start	=	Time(9,	45)

>>>	duration	=	Time(1,	35)

>>>	print(start	+	duration)

11:20:00

>>>	print(start	+	1337)

10:07:17

Unfortunately,	this	implementation	of	addition	is	not	commutative.	If	the	integer	is	the
first	operand,	you	get

>>>	print(1337	+	start)

TypeError:	unsupported	operand	type(s)	for	+:	'int'	and	'instance'

The	problem	is,	instead	of	asking	the	Time	object	to	add	an	integer,	Python	is	asking	an
integer	to	add	a	Time	object,	and	it	doesn’t	know	how.	But	there	is	a	clever	solution	for
this	problem:	the	special	method	__radd__,	which	stands	for	“right-side	add”.	This
method	is	invoked	when	a	Time	object	appears	on	the	right	side	of	the	+	operator.	Here’s
the	definition:

#	inside	class	Time:

				def	__radd__(self,	other):

								return	self.__add__(other)



And	here’s	how	it’s	used:

>>>	print(1337	+	start)

10:07:17

As	an	exercise,	write	an	add	method	for	Points	that	works	with	either	a	Point	object	or	a
tuple:

If	the	second	operand	is	a	Point,	the	method	should	return	a	new	Point	whose	x
coordinate	is	the	sum	of	the	x	coordinates	of	the	operands,	and	likewise	for	the	y
coordinates.

If	the	second	operand	is	a	tuple,	the	method	should	add	the	first	element	of	the	tuple	to
the	x	coordinate	and	the	second	element	to	the	y	coordinate,	and	return	a	new	Point
with	the	result.



Polymorphism
Type-based	dispatch	is	useful	when	it	is	necessary,	but	(fortunately)	it	is	not	always
necessary.	Often	you	can	avoid	it	by	writing	functions	that	work	correctly	for	arguments
with	different	types.

Many	of	the	functions	we	wrote	for	strings	also	work	for	other	sequence	types.	For
example,	in	“Dictionary	as	a	Collection	of	Counters”	we	used	histogram	to	count	the
number	of	times	each	letter	appears	in	a	word:

def	histogram(s):

				d	=	dict()

				for	c	in	s:

								if	c	not	in	d:

												d[c]	=	1

								else:

												d[c]	=	d[c]+1

				return	d

This	function	also	works	for	lists,	tuples,	and	even	dictionaries,	as	long	as	the	elements	of
s	are	hashable,	so	they	can	be	used	as	keys	in	d:

>>>	t	=	['spam',	'egg',	'spam',	'spam',	'bacon',	'spam']

>>>	histogram(t)

{'bacon':	1,	'egg':	1,	'spam':	4}

Functions	that	work	with	several	types	are	called	polymorphic.	Polymorphism	can
facilitate	code	reuse.	For	example,	the	built-in	function	sum,	which	adds	the	elements	of	a
sequence,	works	as	long	as	the	elements	of	the	sequence	support	addition.

Since	Time	objects	provide	an	add	method,	they	work	with	sum:

>>>	t1	=	Time(7,	43)

>>>	t2	=	Time(7,	41)

>>>	t3	=	Time(7,	37)

>>>	total	=	sum([t1,	t2,	t3])

>>>	print(total)

23:01:00

In	general,	if	all	of	the	operations	inside	a	function	work	with	a	given	type,	the	function
works	with	that	type.

The	best	kind	of	polymorphism	is	the	unintentional	kind,	where	you	discover	that	a
function	you	already	wrote	can	be	applied	to	a	type	you	never	planned	for.



Interface	and	Implementation
One	of	the	goals	of	object-oriented	design	is	to	make	software	more	maintainable,	which
means	that	you	can	keep	the	program	working	when	other	parts	of	the	system	change,	and
modify	the	program	to	meet	new	requirements.

A	design	principle	that	helps	achieve	that	goal	is	to	keep	interfaces	separate	from
implementations.	For	objects,	that	means	that	the	methods	a	class	provides	should	not
depend	on	how	the	attributes	are	represented.

For	example,	in	this	chapter	we	developed	a	class	that	represents	a	time	of	day.	Methods
provided	by	this	class	include	time_to_int,	is_after,	and	add_time.

We	could	implement	those	methods	in	several	ways.	The	details	of	the	implementation
depend	on	how	we	represent	time.	In	this	chapter,	the	attributes	of	a	Time	object	are	hour,
minute,	and	second.

As	an	alternative,	we	could	replace	these	attributes	with	a	single	integer	representing	the
number	of	seconds	since	midnight.	This	implementation	would	make	some	methods,	like
is_after,	easier	to	write,	but	it	makes	other	methods	harder.

After	you	deploy	a	new	class,	you	might	discover	a	better	implementation.	If	other	parts	of
the	program	are	using	your	class,	it	might	be	time-consuming	and	error-prone	to	change
the	interface.

But	if	you	designed	the	interface	carefully,	you	can	change	the	implementation	without
changing	the	interface,	which	means	that	other	parts	of	the	program	don’t	have	to	change.



Debugging
It	is	legal	to	add	attributes	to	objects	at	any	point	in	the	execution	of	a	program,	but	if	you
have	objects	with	the	same	type	that	don’t	have	the	same	attributes,	it	is	easy	to	make
mistakes.	It	is	considered	a	good	idea	to	initialize	all	of	an	object’s	attributes	in	the	init
method.

If	you	are	not	sure	whether	an	object	has	a	particular	attribute,	you	can	use	the	built-in
function	hasattr	(see	“Debugging”).

Another	way	to	access	attributes	is	the	built-in	function	vars,	which	takes	an	object	and
returns	a	dictionary	that	maps	from	attribute	names	(as	strings)	to	their	values:

>>>	p	=	Point(3,	4)

>>>	vars(p)

{'y':	4,	'x':	3}

For	purposes	of	debugging,	you	might	find	it	useful	to	keep	this	function	handy:

def	print_attributes(obj):

				for	attr	in	vars(obj):

								print(attr,	getattr(obj,	attr))

print_attributes	traverses	the	dictionary	and	prints	each	attribute	name	and	its
corresponding	value.

The	built-in	function	getattr	takes	an	object	and	an	attribute	name	(as	a	string)	and
returns	the	attribute’s	value.



Glossary
object-oriented	language:

A	language	that	provides	features,	such	as	programmer-defined	types	and	methods,
that	facilitate	object-oriented	programming.

object-oriented	programming:

A	style	of	programming	in	which	data	and	the	operations	that	manipulate	it	are
organized	into	classes	and	methods.

method:

A	function	that	is	defined	inside	a	class	definition	and	is	invoked	on	instances	of	that
class.

subject:

The	object	a	method	is	invoked	on.

positional	argument:

An	argument	that	does	not	include	a	parameter	name,	so	it	is	not	a	keyword
argument.

operator	overloading:

Changing	the	behavior	of	an	operator	like	+	so	it	works	with	a	programmer-defined
type.

type-based	dispatch:

A	programming	pattern	that	checks	the	type	of	an	operand	and	invokes	different
functions	for	different	types.

polymorphic:

Pertaining	to	a	function	that	can	work	with	more	than	one	type.

information	hiding:

The	principle	that	the	interface	provided	by	an	object	should	not	depend	on	its
implementation,	in	particular	the	representation	of	its	attributes.



Exercises
Exercise	17-1.

Download	the	code	from	this	chapter	from	http://thinkpython2.com/code/Time2.py.
Change	the	attributes	of	Time	to	be	a	single	integer	representing	seconds	since	midnight.
Then	modify	the	methods	(and	the	function	int_to_time)	to	work	with	the	new
implementation.	You	should	not	have	to	modify	the	test	code	in	main.	When	you	are	done,
the	output	should	be	the	same	as	before.

Solution:	http://thinkpython2.com/code/Time2_soln.py

Exercise	17-2.

This	exercise	is	a	cautionary	tale	about	one	of	the	most	common,	and	difficult	to	find,
errors	in	Python.	Write	a	definition	for	a	class	named	Kangaroo	with	the	following
methods:

1.	 An	__init__	method	that	initializes	an	attribute	named	pouch_contents	to	an	empty
list.

2.	 A	method	named	put_in_pouch	that	takes	an	object	of	any	type	and	adds	it	to
pouch_contents.

3.	 A	__str__	method	that	returns	a	string	representation	of	the	Kangaroo	object	and	the
contents	of	the	pouch.

Test	your	code	by	creating	two	Kangaroo	objects,	assigning	them	to	variables	named
kanga	and	roo,	and	then	adding	roo	to	the	contents	of	kanga’s	pouch.

Download	http://thinkpython2.com/code/BadKangaroo.py.	It	contains	a	solution	to	the
previous	problem	with	one	big,	nasty	bug.	Find	and	fix	the	bug.

If	you	get	stuck,	you	can	download	http://thinkpython2.com/code/GoodKangaroo.py,
which	explains	the	problem	and	demonstrates	a	solution.

http://thinkpython2.com/code/Time2.py
http://thinkpython2.com/code/Time2_soln.py
http://thinkpython2.com/code/BadKangaroo.py
http://thinkpython2.com/code/GoodKangaroo.py




Chapter	18.	Inheritance

The	language	feature	most	often	associated	with	object-oriented	programming	is
inheritance.	Inheritance	is	the	ability	to	define	a	new	class	that	is	a	modified	version	of	an
existing	class.	In	this	chapter	I	demonstrate	inheritance	using	classes	that	represent	playing
cards,	decks	of	cards,	and	poker	hands.

If	you	don’t	play	poker,	you	can	read	about	it	at	http://en.wikipedia.org/wiki/Poker,	but
you	don’t	have	to;	I’ll	tell	you	what	you	need	to	know	for	the	exercises.

Code	examples	from	this	chapter	are	available	from
http://thinkpython2.com/code/Card.py.

http://en.wikipedia.org/wiki/Poker
http://thinkpython2.com/code/Card.py


Card	Objects
There	are	52	cards	in	a	deck,	each	of	which	belongs	to	1	of	4	suits	and	1	of	13	ranks.	The
suits	are	Spades,	Hearts,	Diamonds,	and	Clubs	(in	descending	order	in	bridge).	The	ranks
are	Ace,	2,	3,	4,	5,	6,	7,	8,	9,	10,	Jack,	Queen,	and	King.	Depending	on	the	game	that	you
are	playing,	an	Ace	may	be	higher	than	King	or	lower	than	2.

If	we	want	to	define	a	new	object	to	represent	a	playing	card,	it	is	obvious	what	the
attributes	should	be:	rank	and	suit.	It	is	not	as	obvious	what	type	the	attributes	should	be.
One	possibility	is	to	use	strings	containing	words	like	'Spade'	for	suits	and	'Queen'	for
ranks.	One	problem	with	this	implementation	is	that	it	would	not	be	easy	to	compare	cards
to	see	which	had	a	higher	rank	or	suit.

An	alternative	is	to	use	integers	to	encode	the	ranks	and	suits.	In	this	context,	“encode”
means	that	we	are	going	to	define	a	mapping	between	numbers	and	suits,	or	between
numbers	and	ranks.	This	kind	of	encoding	is	not	meant	to	be	a	secret	(that	would	be
“encryption”).

For	example,	this	table	shows	the	suits	and	the	corresponding	integer	codes:

Spades ↦ 3

Hearts ↦ 2

Diamonds ↦ 1

Clubs ↦ 0

This	code	makes	it	easy	to	compare	cards;	because	higher	suits	map	to	higher	numbers,
we	can	compare	suits	by	comparing	their	codes.

The	mapping	for	ranks	is	fairly	obvious;	each	of	the	numerical	ranks	maps	to	the
corresponding	integer,	and	for	face	cards:

Jack ↦ 11

Queen ↦ 12

King ↦ 13

I	am	using	the	↦	symbol	to	make	it	clear	that	these	mappings	are	not	part	of	the	Python
program.	They	are	part	of	the	program	design,	but	they	don’t	appear	explicitly	in	the	code.

The	class	definition	for	Card	looks	like	this:

class	Card:

				"""Represents	a	standard	playing	card."""

				def	__init__(self,	suit=0,	rank=2):

								self.suit	=	suit

								self.rank	=	rank

As	usual,	the	init	method	takes	an	optional	parameter	for	each	attribute.	The	default	card	is



the	2	of	Clubs.

To	create	a	Card,	you	call	Card	with	the	suit	and	rank	of	the	card	you	want:

queen_of_diamonds	=	Card(1,	12)



Class	Attributes
In	order	to	print	Card	objects	in	a	way	that	people	can	easily	read,	we	need	a	mapping
from	the	integer	codes	to	the	corresponding	ranks	and	suits.	A	natural	way	to	do	that	is
with	lists	of	strings.	We	assign	these	lists	to	class	attributes:

#	inside	class	Card:

				suit_names	=	['Clubs',	'Diamonds',	'Hearts',	'Spades']

				rank_names	=	[None,	'Ace',	'2',	'3',	'4',	'5',	'6',	'7',	

														'8',	'9',	'10',	'Jack',	'Queen',	'King']

				def	__str__(self):

								return	'%s	of	%s'	%	(Card.rank_names[self.rank],

																													Card.suit_names[self.suit])

Variables	like	suit_names	and	rank_names,	which	are	defined	inside	a	class	but	outside	of
any	method,	are	called	class	attributes	because	they	are	associated	with	the	class	object
Card.

This	term	distinguishes	them	from	variables	like	suit	and	rank,	which	are	called	instance
attributes	because	they	are	associated	with	a	particular	instance.

Both	kinds	of	attribute	are	accessed	using	dot	notation.	For	example,	in	__str__,	self	is	a
Card	object,	and	self.rank	is	its	rank.	Similarly,	Card	is	a	class	object,	and
Card.rank_names	is	a	list	of	strings	associated	with	the	class.

Every	card	has	its	own	suit	and	rank,	but	there	is	only	one	copy	of	suit_names	and
rank_names.

Putting	it	all	together,	the	expression	Card.rank_names[self.rank]	means	“use	the
attribute	rank	from	the	object	self	as	an	index	into	the	list	rank_names	from	the	class
Card,	and	select	the	appropriate	string.”

The	first	element	of	rank_names	is	None	because	there	is	no	card	with	rank	zero.	By
including	None	as	a	place-keeper,	we	get	a	mapping	with	the	nice	property	that	the	index	2
maps	to	the	string	'2',	and	so	on.	To	avoid	this	tweak,	we	could	have	used	a	dictionary
instead	of	a	list.

With	the	methods	we	have	so	far,	we	can	create	and	print	cards:

>>>	card1	=	Card(2,	11)

>>>	print(card1)

Jack	of	Hearts

Figure	18-1	is	a	diagram	of	the	Card	class	object	and	one	Card	instance.	Card	is	a	class
object;	its	type	is	type.	card1	is	an	instance	of	Card,	so	its	type	is	Card.	To	save	space,	I
didn’t	draw	the	contents	of	suit_names	and	rank_names.



Figure	18-1.	Object	diagram.



Comparing	Cards
For	built-in	types,	there	are	relational	operators	(<,	>,	==,	etc.)	that	compare	values	and
determine	when	one	is	greater	than,	less	than,	or	equal	to	another.	For	programmer-defined
types,	we	can	override	the	behavior	of	the	built-in	operators	by	providing	a	method	named
__lt__,	which	stands	for	“less	than”.

__lt__	takes	two	parameters,	self	and	other,	and	True	if	self	is	strictly	less	than	other.

The	correct	ordering	for	cards	is	not	obvious.	For	example,	which	is	better,	the	3	of	Clubs
or	the	2	of	Diamonds?	One	has	a	higher	rank,	but	the	other	has	a	higher	suit.	In	order	to
compare	cards,	you	have	to	decide	whether	rank	or	suit	is	more	important.

The	answer	might	depend	on	what	game	you	are	playing,	but	to	keep	things	simple,	we’ll
make	the	arbitrary	choice	that	suit	is	more	important,	so	all	of	the	Spades	outrank	all	of
the	Diamonds,	and	so	on.

With	that	decided,	we	can	write	__lt__:

#	inside	class	Card:

				def	__lt__(self,	other):

								#	check	the	suits

								if	self.suit	<	other.suit:	return	True

								if	self.suit	>	other.suit:	return	False

								#	suits	are	the	same…	check	ranks

								return	self.rank	<	other.rank

You	can	write	this	more	concisely	using	tuple	comparison:

#	inside	class	Card:

				def	__lt__(self,	other):

								t1	=	self.suit,	self.rank

								t2	=	other.suit,	other.rank

								return	t1	<	t2

As	an	exercise,	write	an	__lt__	method	for	Time	objects.	You	can	use	tuple	comparison,
but	you	also	might	consider	comparing	integers.



Decks
Now	that	we	have	Cards,	the	next	step	is	to	define	Decks.	Since	a	deck	is	made	up	of
cards,	it	is	natural	for	each	Deck	to	contain	a	list	of	cards	as	an	attribute.

The	following	is	a	class	definition	for	Deck.	The	init	method	creates	the	attribute	cards
and	generates	the	standard	set	of	52	cards:

class	Deck:

				def	__init__(self):

								self.cards	=	[]

								for	suit	in	range(4):

												for	rank	in	range(1,	14):

																card	=	Card(suit,	rank)

																self.cards.append(card)

The	easiest	way	to	populate	the	deck	is	with	a	nested	loop.	The	outer	loop	enumerates	the
suits	from	0	to	3.	The	inner	loop	enumerates	the	ranks	from	1	to	13.	Each	iteration	creates
a	new	Card	with	the	current	suit	and	rank,	and	appends	it	to	self.cards.



Printing	the	Deck
Here	is	a	__str__	method	for	Deck:

#inside	class	Deck:

				def	__str__(self):

								res	=	[]

								for	card	in	self.cards:

												res.append(str(card))

								return	'\n'.join(res)

This	method	demonstrates	an	efficient	way	to	accumulate	a	large	string:	building	a	list	of
strings	and	then	using	the	string	method	join.	The	built-in	function	str	invokes	the
__str__	method	on	each	card	and	returns	the	string	representation.

Since	we	invoke	join	on	a	newline	character,	the	cards	are	separated	by	newlines.	Here’s
what	the	result	looks	like:

>>>	deck	=	Deck()

>>>	print(deck)

Ace	of	Clubs

2	of	Clubs

3	of	Clubs…

10	of	Spades

Jack	of	Spades

Queen	of	Spades

King	of	Spades

Even	though	the	result	appears	on	52	lines,	it	is	one	long	string	that	contains	newlines.



Add,	Remove,	Shuffle	and	Sort
To	deal	cards,	we	would	like	a	method	that	removes	a	card	from	the	deck	and	returns	it.
The	list	method	pop	provides	a	convenient	way	to	do	that:

#inside	class	Deck:

				def	pop_card(self):

								return	self.cards.pop()

Since	pop	removes	the	last	card	in	the	list,	we	are	dealing	from	the	bottom	of	the	deck.

To	add	a	card,	we	can	use	the	list	method	append:

#inside	class	Deck:

				def	add_card(self,	card):

								self.cards.append(card)

A	method	like	this	that	uses	another	method	without	doing	much	work	is	sometimes	called
a	veneer.	The	metaphor	comes	from	woodworking,	where	a	veneer	is	a	thin	layer	of	good
quality	wood	glued	to	the	surface	of	a	cheaper	piece	of	wood	to	improve	the	appearance.

In	this	case	add_card	is	a	“thin”	method	that	expresses	a	list	operation	in	terms
appropriate	for	decks.	It	improves	the	appearance,	or	interface,	of	the	implementation.

As	another	example,	we	can	write	a	Deck	method	named	shuffle	using	the	function
shuffle	from	the	random	module:

#	inside	class	Deck:

												

				def	shuffle(self):

								random.shuffle(self.cards)

Don’t	forget	to	import	random.

As	an	exercise,	write	a	Deck	method	named	sort	that	uses	the	list	method	sort	to	sort	the
cards	in	a	Deck.	sort	uses	the	__lt__	method	we	defined	to	determine	the	order.



Inheritance
Inheritance	is	the	ability	to	define	a	new	class	that	is	a	modified	version	of	an	existing
class.	As	an	example,	let’s	say	we	want	a	class	to	represent	a	“hand”,	that	is,	the	cards	held
by	one	player.	A	hand	is	similar	to	a	deck:	both	are	made	up	of	a	collection	of	cards,	and
both	require	operations	like	adding	and	removing	cards.

A	hand	is	also	different	from	a	deck;	there	are	operations	we	want	for	hands	that	don’t
make	sense	for	a	deck.	For	example,	in	poker	we	might	compare	two	hands	to	see	which
one	wins.	In	bridge,	we	might	compute	a	score	for	a	hand	in	order	to	make	a	bid.

This	relationship	between	classes	—	similar,	but	different	—	lends	itself	to	inheritance.	To
define	a	new	class	that	inherits	from	an	existing	class,	you	put	the	name	of	the	existing
class	in	parentheses:

class	Hand(Deck):

				"""Represents	a	hand	of	playing	cards."""

This	definition	indicates	that	Hand	inherits	from	Deck;	that	means	we	can	use	methods	like
pop_card	and	add_card	for	Hands	as	well	as	Decks.

When	a	new	class	inherits	from	an	existing	one,	the	existing	one	is	called	the	parent	and
the	new	class	is	called	the	child.

In	this	example,	Hand	inherits	__init__	from	Deck,	but	it	doesn’t	really	do	what	we	want:
instead	of	populating	the	hand	with	52	new	cards,	the	init	method	for	Hands	should
initialize	cards	with	an	empty	list.

If	we	provide	an	init	method	in	the	Hand	class,	it	overrides	the	one	in	the	Deck	class:

#	inside	class	Hand:

				def	__init__(self,	label=''):

								self.cards	=	[]

								self.label	=	label

When	you	create	a	Hand,	Python	invokes	this	init	method,	not	the	one	in	Deck.

>>>	hand	=	Hand('new	hand')

>>>	hand.cards

[]

>>>	hand.label

'new	hand'

The	other	methods	are	inherited	from	Deck,	so	we	can	use	pop_card	and	add_card	to	deal
a	card:

>>>	deck	=	Deck()

>>>	card	=	deck.pop_card()

>>>	hand.add_card(card)

>>>	print(hand)

King	of	Spades



A	natural	next	step	is	to	encapsulate	this	code	in	a	method	called	move_cards:

#inside	class	Deck:

				def	move_cards(self,	hand,	num):

								for	i	in	range(num):

												hand.add_card(self.pop_card())

move_cards	takes	two	arguments,	a	Hand	object	and	the	number	of	cards	to	deal.	It
modifies	both	self	and	hand,	and	returns	None.

In	some	games,	cards	are	moved	from	one	hand	to	another,	or	from	a	hand	back	to	the
deck.	You	can	use	move_cards	for	any	of	these	operations:	self	can	be	either	a	Deck	or	a
Hand,	and	hand,	despite	the	name,	can	also	be	a	Deck.

Inheritance	is	a	useful	feature.	Some	programs	that	would	be	repetitive	without	inheritance
can	be	written	more	elegantly	with	it.	Inheritance	can	facilitate	code	reuse,	since	you	can
customize	the	behavior	of	parent	classes	without	having	to	modify	them.	In	some	cases,
the	inheritance	structure	reflects	the	natural	structure	of	the	problem,	which	makes	the
design	easier	to	understand.

On	the	other	hand,	inheritance	can	make	programs	difficult	to	read.	When	a	method	is
invoked,	it	is	sometimes	not	clear	where	to	find	its	definition.	The	relevant	code	may	be
spread	across	several	modules.	Also,	many	of	the	things	that	can	be	done	using	inheritance
can	be	done	as	well	or	better	without	it.



Class	Diagrams
So	far	we	have	seen	stack	diagrams,	which	show	the	state	of	a	program,	and	object
diagrams,	which	show	the	attributes	of	an	object	and	their	values.	These	diagrams
represent	a	snapshot	in	the	execution	of	a	program,	so	they	change	as	the	program	runs.

They	are	also	highly	detailed;	for	some	purposes,	too	detailed.	A	class	diagram	is	a	more
abstract	representation	of	the	structure	of	a	program.	Instead	of	showing	individual
objects,	it	shows	classes	and	the	relationships	between	them.

There	are	several	kinds	of	relationship	between	classes:

Objects	in	one	class	might	contain	references	to	objects	in	another	class.	For	example,
each	Rectangle	contains	a	reference	to	a	Point,	and	each	Deck	contains	references	to
many	Cards.	This	kind	of	relationship	is	called	HAS-A,	as	in,	“a	Rectangle	has	a
Point.”

One	class	might	inherit	from	another.	This	relationship	is	called	IS-A,	as	in,	“a	Hand	is
a	kind	of	a	Deck.”

One	class	might	depend	on	another	in	the	sense	that	objects	in	one	class	take	objects	in
the	second	class	as	parameters,	or	use	objects	in	the	second	class	as	part	of	a
computation.	This	kind	of	relationship	is	called	a	dependency.

A	class	diagram	is	a	graphical	representation	of	these	relationships.	For	example,
Figure	18-2	shows	the	relationships	between	Card,	Deck	and	Hand.

Figure	18-2.	Class	diagram.

The	arrow	with	a	hollow	triangle	head	represents	an	IS-A	relationship;	in	this	case	it
indicates	that	Hand	inherits	from	Deck.

The	standard	arrowhead	represents	a	HAS-A	relationship;	in	this	case	a	Deck	has
references	to	Card	objects.



The	star	(*)	near	the	arrowhead	is	a	multiplicity;	it	indicates	how	many	Cards	a	Deck	has.
A	multiplicity	can	be	a	simple	number	like	52,	a	range	like	5..7	or	a	star,	which	indicates
that	a	Deck	can	have	any	number	of	Cards.

There	are	no	dependencies	in	this	diagram.	They	would	normally	be	shown	with	a	dashed
arrow.	Or	if	there	are	a	lot	of	dependencies,	they	are	sometimes	omitted.

A	more	detailed	diagram	might	show	that	a	Deck	actually	contains	a	list	of	Cards,	but
built-in	types	like	list	and	dict	are	usually	not	included	in	class	diagrams.



Data	Encapsulation
The	previous	chapters	demonstrate	a	development	plan	we	might	call	“object-oriented
design”.	We	identified	objects	we	needed	—	like	Point,	Rectangle	and	Time	—	and
defined	classes	to	represent	them.	In	each	case	there	is	an	obvious	correspondence
between	the	object	and	some	entity	in	the	real	world	(or	at	least	a	mathematical	world).

But	sometimes	it	is	less	obvious	what	objects	you	need	and	how	they	should	interact.	In
that	case	you	need	a	different	development	plan.	In	the	same	way	that	we	discovered
function	interfaces	by	encapsulation	and	generalization,	we	can	discover	class	interfaces
by	data	encapsulation.

Markov	analysis,	from	“Markov	Analysis”,	provides	a	good	example.	If	you	download	my
code	from	http://thinkpython2.com/code/markov.py,	you’ll	see	that	it	uses	two	global
variables	—	suffix_map	and	prefix	—	that	are	read	and	written	from	several	functions.

suffix_map	=	{}								

prefix	=	()

Because	these	variables	are	global,	we	can	only	run	one	analysis	at	a	time.	If	we	read	two
texts,	their	prefixes	and	suffixes	would	be	added	to	the	same	data	structures	(which	makes
for	some	interesting	generated	text).

To	run	multiple	analyses,	and	keep	them	separate,	we	can	encapsulate	the	state	of	each
analysis	in	an	object.	Here’s	what	that	looks	like:

class	Markov:

				def	__init__(self):

								self.suffix_map	=	{}

								self.prefix	=	()

Next,	we	transform	the	functions	into	methods.	For	example,	here’s	process_word:

				def	process_word(self,	word,	order=2):

								if	len(self.prefix)	<	order:

												self.prefix	+=	(word,)

												return

								try:

												self.suffix_map[self.prefix].append(word)

								except	KeyError:

												#	if	there	is	no	entry	for	this	prefix,	make	one

												self.suffix_map[self.prefix]	=	[word]

								self.prefix	=	shift(self.prefix,	word)

Transforming	a	program	like	this	—	changing	the	design	without	changing	the	behavior
—	is	another	example	of	refactoring	(see	“Refactoring”).

This	example	suggests	a	development	plan	for	designing	objects	and	methods:

1.	 Start	by	writing	functions	that	read	and	write	global	variables	(when	necessary).

http://thinkpython2.com/code/markov.py


2.	 Once	you	get	the	program	working,	look	for	associations	between	global	variables
and	the	functions	that	use	them.

3.	 Encapsulate	related	variables	as	attributes	of	an	object.

4.	 Transform	the	associated	functions	into	methods	of	the	new	class.

As	an	exercise,	download	my	Markov	code	from	http://thinkpython2.com/code/markov.py,
and	follow	the	steps	described	above	to	encapsulate	the	global	variables	as	attributes	of	a
new	class	called	Markov.

Solution:	http://thinkpython2.com/code/Markov.py	(note	the	capital	M).

http://thinkpython2.com/code/markov.py
http://thinkpython2.com/code/Markov.py


Debugging
Inheritance	can	make	debugging	difficult	because	when	you	invoke	a	method	on	an	object,
it	might	be	hard	to	figure	out	which	method	will	be	invoked.

Suppose	you	are	writing	a	function	that	works	with	Hand	objects.	You	would	like	it	to
work	with	all	kinds	of	Hands,	like	PokerHands,	BridgeHands,	etc.	If	you	invoke	a	method
like	shuffle,	you	might	get	the	one	defined	in	Deck,	but	if	any	of	the	subclasses	override
this	method,	you’ll	get	that	version	instead.	This	behavior	is	usually	a	good	thing,	but	it
can	be	confusing.

Any	time	you	are	unsure	about	the	flow	of	execution	through	your	program,	the	simplest
solution	is	to	add	print	statements	at	the	beginning	of	the	relevant	methods.	If
Deck.shuffle	prints	a	message	that	says	something	like	Running	Deck.shuffle,	then	as
the	program	runs	it	traces	the	flow	of	execution.

As	an	alternative,	you	could	use	this	function,	which	takes	an	object	and	a	method	name
(as	a	string)	and	returns	the	class	that	provides	the	definition	of	the	method:

def	find_defining_class(obj,	meth_name):

				for	ty	in	type(obj).mro():

								if	meth_name	in	ty.__dict__:

												return	ty

Here’s	an	example:

>>>	hand	=	Hand()

>>>	find_defining_class(hand,	'shuffle')

<class	'Card.Deck'>

So	the	shuffle	method	for	this	Hand	is	the	one	in	Deck.

find_defining_class	uses	the	mro	method	to	get	the	list	of	class	objects	(types)	that	will
be	searched	for	methods.	“MRO”	stands	for	“method	resolution	order”,	which	is	the
sequence	of	classes	Python	searches	to	“resolve”	a	method	name.

Here’s	a	design	suggestion:	when	you	override	a	method,	the	interface	of	the	new	method
should	be	the	same	as	the	old.	It	should	take	the	same	parameters,	return	the	same	type,
and	obey	the	same	preconditions	and	postconditions.	If	you	follow	this	rule,	you	will	find
that	any	function	designed	to	work	with	an	instance	of	a	parent	class,	like	a	Deck,	will	also
work	with	instances	of	child	classes	like	a	Hand	and	PokerHand.

If	you	violate	this	rule,	which	is	called	the	“Liskov	substitution	principle”,	your	code	will
collapse	like	(sorry)	a	house	of	cards.



Glossary
encode:

To	represent	one	set	of	values	using	another	set	of	values	by	constructing	a	mapping
between	them.

class	attribute:

An	attribute	associated	with	a	class	object.	Class	attributes	are	defined	inside	a	class
definition	but	outside	any	method.

instance	attribute:

An	attribute	associated	with	an	instance	of	a	class.

veneer:

A	method	or	function	that	provides	a	different	interface	to	another	function	without
doing	much	computation.

inheritance:

The	ability	to	define	a	new	class	that	is	a	modified	version	of	a	previously	defined
class.

parent	class:

The	class	from	which	a	child	class	inherits.

child	class:

A	new	class	created	by	inheriting	from	an	existing	class;	also	called	a	“subclass”.

IS-A	relationship:

A	relationship	between	a	child	class	and	its	parent	class.

HAS-A	relationship:

A	relationship	between	two	classes	where	instances	of	one	class	contain	references	to
instances	of	the	other.

dependency:

A	relationship	between	two	classes	where	instances	of	one	class	use	instances	of	the
other	class,	but	do	not	store	them	as	attributes.

class	diagram:

A	diagram	that	shows	the	classes	in	a	program	and	the	relationships	between	them.

multiplicity:

A	notation	in	a	class	diagram	that	shows,	for	a	HAS-A	relationship,	how	many
references	there	are	to	instances	of	another	class.

data	encapsulation:



A	program	development	plan	that	involves	a	prototype	using	global	variables	and	a
final	version	that	makes	the	global	variables	into	instance	attributes.



Exercises
Exercise	18-1.

For	the	following	program,	draw	a	UML	class	diagram	that	shows	these	classes	and	the
relationships	among	them.
class	PingPongParent:

				pass

class	Ping(PingPongParent):

				def	__init__(self,	pong):

								self.pong	=	pong

class	Pong(PingPongParent):

				def	__init__(self,	pings=None):

								if	pings	is	None:

												self.pings	=	[]

								else:

												self.pings	=	pings

				def	add_ping(self,	ping):

								self.pings.append(ping)

pong	=	Pong()

ping	=	Ping(pong)

pong.add_ping(ping)

Exercise	18-2.

Write	a	Deck	method	called	deal_hands	that	takes	two	parameters:	the	number	of	hands
and	the	number	of	cards	per	hand.	It	should	create	the	appropriate	number	of	Hand
objects,	deal	the	appropriate	number	of	cards	per	hand,	and	return	a	list	of	Hands.

Exercise	18-3.

The	following	are	the	possible	hands	in	poker,	in	increasing	order	of	value	and	decreasing
order	of	probability:

pair:

Two	cards	with	the	same	rank.

two	pair:

Two	pairs	of	cards	with	the	same	rank.

three	of	a	kind:

Three	cards	with	the	same	rank.

straight:

Five	cards	with	ranks	in	sequence	(aces	can	be	high	or	low,	so	Ace-2-3-4-5	is	a
straight	and	so	is	10-Jack-Queen-King-Ace,	but	Queen-King-Ace-2-3	is	not.)

flush:

Five	cards	with	the	same	suit.

full	house:



Three	cards	with	one	rank,	two	cards	with	another.

four	of	a	kind:

Four	cards	with	the	same	rank.

straight	flush:

Five	cards	in	sequence	(as	defined	above)	and	with	the	same	suit.

The	goal	of	these	exercises	is	to	estimate	the	probability	of	drawing	these	various	hands.

1.	 Download	the	following	files	from	http://thinkpython2.com/code:

Card.py:

A	complete	version	of	the	Card,	Deck	and	Hand	classes	in	this	chapter.

PokerHand.py:

An	incomplete	implementation	of	a	class	that	represents	a	poker	hand,	and
some	code	that	tests	it.

2.	 If	you	run	PokerHand.py,	it	deals	seven	7-card	poker	hands	and	checks	to	see	if	any
of	them	contains	a	flush.	Read	this	code	carefully	before	you	go	on.

3.	 Add	methods	to	PokerHand.py	named	has_pair,	has_twopair,	etc.	that	return	True
or	False	according	to	whether	or	not	the	hand	meets	the	relevant	criteria.	Your	code
should	work	correctly	for	“hands”	that	contain	any	number	of	cards	(although	5	and
7	are	the	most	common	sizes).

4.	 Write	a	method	named	classify	that	figures	out	the	highest-value	classification	for
a	hand	and	sets	the	label	attribute	accordingly.	For	example,	a	7-card	hand	might
contain	a	flush	and	a	pair;	it	should	be	labeled	“flush”.

5.	 When	you	are	convinced	that	your	classification	methods	are	working,	the	next	step
is	to	estimate	the	probabilities	of	the	various	hands.	Write	a	function	in
PokerHand.py	that	shuffles	a	deck	of	cards,	divides	it	into	hands,	classifies	the
hands,	and	counts	the	number	of	times	various	classifications	appear.

6.	 Print	a	table	of	the	classifications	and	their	probabilities.	Run	your	program	with
larger	and	larger	numbers	of	hands	until	the	output	values	converge	to	a	reasonable
degree	of	accuracy.	Compare	your	results	to	the	values	at
http://en.wikipedia.org/wiki/Hand_rankings.

Solution:	http://thinkpython2.com/code/PokerHandSoln.py.

http://thinkpython2.com/code
http://en.wikipedia.org/wiki/Hand_rankings
http://thinkpython2.com/code/PokerHandSoln.py




Chapter	19.	The	Goodies

One	of	my	goals	for	this	book	has	been	to	teach	you	as	little	Python	as	possible.	When
there	were	two	ways	to	do	something,	I	picked	one	and	avoided	mentioning	the	other.	Or
sometimes	I	put	the	second	one	into	an	exercise.

Now	I	want	to	go	back	for	some	of	the	good	bits	that	got	left	behind.	Python	provides	a
number	of	features	that	are	not	really	necessary	—	you	can	write	good	code	without	them
—	but	with	them	you	can	sometimes	write	code	that’s	more	concise,	readable	or	efficient,
and	sometimes	all	three.



Conditional	Expressions
We	saw	conditional	statements	in	“Conditional	Execution”.	Conditional	statements	are
often	used	to	choose	one	of	two	values;	for	example:

if	x	>	0:

				y	=	math.log(x)

else:

				y	=	float('nan')

This	statement	checks	whether	x	is	positive.	If	so,	it	computes	math.log.	If	not,	math.log
would	raise	a	ValueError.	To	avoid	stopping	the	program,	we	generate	a	“NaN”,	which	is
a	special	floating-point	value	that	represents	“Not	a	Number”.

We	can	write	this	statement	more	concisely	using	a	conditional	expression:

y	=	math.log(x)	if	x	>	0	else	float('nan')

You	can	almost	read	this	line	like	English:	“y	gets	log-x	if	x	is	greater	than	0;	otherwise	it
gets	NaN”.

Recursive	functions	can	sometimes	be	rewritten	using	conditional	expressions.	For
example,	here	is	a	recursive	version	of	factorial:

def	factorial(n):

				if	n	==	0:

								return	1

				else:

								return	n	*	factorial(n-1)

We	can	rewrite	it	like	this:

def	factorial(n):

				return	1	if	n	==	0	else	n	*	factorial(n-1)

Another	use	of	conditional	expressions	is	handling	optional	arguments.	For	example,	here
is	the	init	method	from	GoodKangaroo	(see	Exercise	17-2):

				def	__init__(self,	name,	contents=None):

								self.name	=	name

								if	contents	==	None:

												contents	=	[]

								self.pouch_contents	=	contents

We	can	rewrite	this	one	like	this:

				def	__init__(self,	name,	contents=None):

								self.name	=	name

								self.pouch_contents	=	[]	if	contents	==	None	else	contents

In	general,	you	can	replace	a	conditional	statement	with	a	conditional	expression	if	both
branches	contain	simple	expressions	that	are	either	returned	or	assigned	to	the	same



variable.



List	Comprehensions
In	“Map,	Filter	and	Reduce”	we	saw	the	map	and	filter	patterns.	For	example,	this
function	takes	a	list	of	strings,	maps	the	string	method	capitalize	to	the	elements,	and
returns	a	new	list	of	strings:

def	capitalize_all(t):

				res	=	[]

				for	s	in	t:

								res.append(s.capitalize())

				return	res

We	can	write	this	more	concisely	using	a	list	comprehension:

def	capitalize_all(t):

				return	[s.capitalize()	for	s	in	t]

The	bracket	operators	indicate	that	we	are	constructing	a	new	list.	The	expression	inside
the	brackets	specifies	the	elements	of	the	list,	and	the	for	clause	indicates	what	sequence
we	are	traversing.

The	syntax	of	a	list	comprehension	is	a	little	awkward	because	the	loop	variable,	s	in	this
example,	appears	in	the	expression	before	we	get	to	the	definition.

List	comprehensions	can	also	be	used	for	filtering.	For	example,	this	function	selects	only
the	elements	of	t	that	are	uppercase,	and	returns	a	new	list:

def	only_upper(t):

				res	=	[]

				for	s	in	t:

								if	s.isupper():

												res.append(s)

				return	res

We	can	rewrite	it	using	a	list	comprehension:

def	only_upper(t):

				return	[s	for	s	in	t	if	s.isupper()]

List	comprehensions	are	concise	and	easy	to	read,	at	least	for	simple	expressions.	And
they	are	usually	faster	than	the	equivalent	for	loops,	sometimes	much	faster.	So	if	you	are
mad	at	me	for	not	mentioning	them	earlier,	I	understand.

But,	in	my	defense,	list	comprehensions	are	harder	to	debug	because	you	can’t	put	a	print
statement	inside	the	loop.	I	suggest	that	you	use	them	only	if	the	computation	is	simple
enough	that	you	are	likely	to	get	it	right	the	first	time.	And	for	beginners	that	means	never.



Generator	Expressions
Generator	expressions	are	similar	to	list	comprehensions,	but	with	parentheses	instead	of
square	brackets:

>>>	g	=	(x**2	for	x	in	range(5))

>>>	g

<generator	object	<genexpr>	at	0x7f4c45a786c0>

The	result	is	a	generator	object	that	knows	how	to	iterate	through	a	sequence	of	values.
But	unlike	a	list	comprehension,	it	does	not	compute	the	values	all	at	once;	it	waits	to	be
asked.	The	built-in	function	next	gets	the	next	value	from	the	generator:

>>>	next(g)

0

>>>	next(g)

1

When	you	get	to	the	end	of	the	sequence,	next	raises	a	StopIteration	exception.	You	can
also	use	a	for	loop	to	iterate	through	the	values:

>>>	for	val	in	g:

...					print(val)

4

9

16

The	generator	object	keeps	track	of	where	it	is	in	the	sequence,	so	the	for	loop	picks	up
where	next	left	off.	Once	the	generator	is	exhausted,	it	continues	to	raise	StopException:

>>>	next(g)

StopIteration

Generator	expressions	are	often	used	with	functions	like	sum,	max,	and	min:

>>>	sum(x**2	for	x	in	range(5))

30



any	and	all
Python	provides	a	built-in	function,	any,	that	takes	a	sequence	of	boolean	values	and
returns	True	if	any	of	the	values	are	True.	It	works	on	lists:

>>>	any([False,	False,	True])

True

But	it	is	often	used	with	generator	expressions:

>>>	any(letter	==	't'	for	letter	in	'monty')

True

That	example	isn’t	very	useful	because	it	does	the	same	thing	as	the	in	operator.	But	we
could	use	any	to	rewrite	some	of	the	search	functions	we	wrote	in	“Search”.	For	example,
we	could	write	avoids	like	this:

def	avoids(word,	forbidden):

				return	not	any(letter	in	forbidden	for	letter	in	word)

The	function	almost	reads	like	English:	“word	avoids	forbidden	if	there	are	not	any
forbidden	letters	in	word.”

Using	any	with	a	generator	expression	is	efficient	because	it	stops	immediately	if	it	finds	a
True	value,	so	it	doesn’t	have	to	evaluate	the	whole	sequence.

Python	provides	another	built-in	function,	all,	that	returns	True	if	every	element	of	the
sequence	is	True.	As	an	exercise,	use	all	to	rewrite	uses_all	from	“Search”.



Sets
In	“Dictionary	Subtraction”	I	use	dictionaries	to	find	the	words	that	appear	in	a	document
but	not	in	a	word	list.	The	function	I	wrote	takes	d1,	which	contains	the	words	from	the
document	as	keys,	and	d2,	which	contains	the	list	of	words.	It	returns	a	dictionary	that
contains	the	keys	from	d1	that	are	not	in	d2:

def	subtract(d1,	d2):

				res	=	dict()

				for	key	in	d1:

								if	key	not	in	d2:

												res[key]	=	None

				return	res

In	all	of	these	dictionaries,	the	values	are	None	because	we	never	use	them.	As	a	result,	we
waste	some	storage	space.

Python	provides	another	built-in	type,	called	a	set,	that	behaves	like	a	collection	of
dictionary	keys	with	no	values.	Adding	elements	to	a	set	is	fast;	so	is	checking
membership.	And	sets	provide	methods	and	operators	to	compute	common	set	operations.

For	example,	set	subtraction	is	available	as	a	method	called	difference	or	as	an	operator,
-.	So	we	can	rewrite	subtract	like	this:

def	subtract(d1,	d2):

				return	set(d1)	-	set(d2)

The	result	is	a	set	instead	of	a	dictionary,	but	for	operations	like	iteration,	the	behavior	is
the	same.

Some	of	the	exercises	in	this	book	can	be	done	concisely	and	efficiently	with	sets.	For
example,	here	is	a	solution	to	has_duplicates,	from	Exercise	10-7,	that	uses	a	dictionary:

def	has_duplicates(t):

				d	=	{}

				for	x	in	t:

								if	x	in	d:

												return	True

								d[x]	=	True

				return	False

When	an	element	appears	for	the	first	time,	it	is	added	to	the	dictionary.	If	the	same
element	appears	again,	the	function	returns	True.

Using	sets,	we	can	write	the	same	function	like	this:

def	has_duplicates(t):

				return	len(set(t))	<	len(t)

An	element	can	only	appear	in	a	set	once,	so	if	an	element	in	t	appears	more	than	once,
the	set	will	be	smaller	than	t.	If	there	are	no	duplicates,	the	set	will	be	the	same	size	as	t.



We	can	also	use	sets	to	do	some	of	the	exercises	in	Chapter	9.	For	example,	here’s	a
version	of	uses_only	with	a	loop:

def	uses_only(word,	available):

				for	letter	in	word:	

								if	letter	not	in	available:

												return	False

				return	True

uses_only	checks	whether	all	letters	in	word	are	in	available.	We	can	rewrite	it	like	this:

def	uses_only(word,	available):

				return	set(word)	<=	set(available)

The	<=	operator	checks	whether	one	set	is	a	subset	or	another,	including	the	possibility
that	they	are	equal,	which	is	true	if	all	the	letters	in	word	appear	in	available.

As	an	exercise,	rewrite	avoids	using	sets.



Counters
A	Counter	is	like	a	set,	except	that	if	an	element	appears	more	than	once,	the	Counter
keeps	track	of	how	many	times	it	appears.	If	you	are	familiar	with	the	mathematical	idea
of	a	multiset,	a	Counter	is	a	natural	way	to	represent	a	multiset.

Counter	is	defined	in	a	standard	module	called	collections,	so	you	have	to	import	it.	You
can	initialize	a	Counter	with	a	string,	list,	or	anything	else	that	supports	iteration:

>>>	from	collections	import	Counter

>>>	count	=	Counter('parrot')

>>>	count

Counter({'r':	2,	't':	1,	'o':	1,	'p':	1,	'a':	1})

Counters	behave	like	dictionaries	in	many	ways;	they	map	from	each	key	to	the	number	of
times	it	appears.	As	in	dictionaries,	the	keys	have	to	be	hashable.

Unlike	dictionaries,	Counters	don’t	raise	an	exception	if	you	access	an	element	that
doesn’t	appear.	Instead,	they	return	0:

>>>	count['d']

0

We	can	use	Counters	to	rewrite	is_anagram	from	Exercise	10-6:

def	is_anagram(word1,	word2):

				return	Counter(word1)	==	Counter(word2)

If	two	words	are	anagrams,	they	contain	the	same	letters	with	the	same	counts,	so	their
Counters	are	equivalent.

Counters	provide	methods	and	operators	to	perform	set-like	operations,	including
addition,	subtraction,	union	and	intersection.	And	they	provide	an	often-useful	method,
most_common,	which	returns	a	list	of	value-frequency	pairs,	sorted	from	most	common	to
least:

>>>	count	=	Counter('parrot')

>>>	for	val,	freq	in	count.most_common(3):

...					print(val,	freq)

r	2

p	1

a	1



defaultdict
The	collections	module	also	provides	defaultdict,	which	is	like	a	dictionary	except
that	if	you	access	a	key	that	doesn’t	exist,	it	can	generate	a	new	value	on	the	fly.

When	you	create	a	defaultdict,	you	provide	a	function	that’s	used	to	create	new	values.
A	function	used	to	create	objects	is	sometimes	called	a	factory.	The	built-in	functions	that
create	lists,	sets,	and	other	types	can	be	used	as	factories:

>>>	from	collections	import	defaultdict

>>>	d	=	defaultdict(list)

Notice	that	the	argument	is	list,	which	is	a	class	object,	not	list(),	which	is	a	new	list.
The	function	you	provide	doesn’t	get	called	unless	you	access	a	key	that	doesn’t	exist:

>>>	t	=	d['new	key']

>>>	t

[]

The	new	list,	which	we’re	calling	t,	is	also	added	to	the	dictionary.	So	if	we	modify	t,	the
change	appears	in	d:

>>>	t.append('new	value')

>>>	d

defaultdict(<class	'list'>,	{'new	key':	['new	value']})

If	you	are	making	a	dictionary	of	lists,	you	can	often	write	simpler	code	using
defaultdict.	In	my	solution	to	Exercise	12-2,	which	you	can	get	from
http://thinkpython2.com/code/anagram_sets.py,	I	make	a	dictionary	that	maps	from	a
sorted	string	of	letters	to	the	list	of	words	that	can	be	spelled	with	those	letters.	For
example,	'opst'	maps	to	the	list	['opts',	'post',	'pots',	'spot',	'stop',
'tops'].

Here’s	the	original	code:

def	all_anagrams(filename):

				d	=	{}

				for	line	in	open(filename):

								word	=	line.strip().lower()

								t	=	signature(word)

								if	t	not	in	d:

												d[t]	=	[word]

								else:

												d[t].append(word)

				return	d

This	can	be	simplified	using	setdefault,	which	you	might	have	used	in	Exercise	11-2:

def	all_anagrams(filename):

				d	=	{}

				for	line	in	open(filename):

								word	=	line.strip().lower()

								t	=	signature(word)

								d.setdefault(t,	[]).append(word)

http://thinkpython2.com/code/anagram_sets.py


				return	d

This	solution	has	the	drawback	that	it	makes	a	new	list	every	time,	regardless	of	whether	it
is	needed.	For	lists,	that’s	no	big	deal,	but	if	the	factory	function	is	complicated,	it	might
be.

We	can	avoid	this	problem	and	simplify	the	code	using	a	defaultdict:

def	all_anagrams(filename):

				d	=	defaultdict(list)

				for	line	in	open(filename):

								word	=	line.strip().lower()

								t	=	signature(word)

								d[t].append(word)

				return	d

My	solution	to	Exercise	18-3,	which	you	can	download	from
http://thinkpython2.com/code/PokerHandSoln.py,	uses	setdefault	in	the	function
has_straightflush.	This	solution	has	the	drawback	of	creating	a	Hand	object	every	time
through	the	loop,	whether	it	is	needed	or	not.	As	an	exercise,	rewrite	it	using	a
defaultdict.

http://thinkpython2.com/code/PokerHandSoln.py


Named	Tuples
Many	simple	objects	are	basically	collections	of	related	values.	For	example,	the	Point
object	defined	in	Chapter	15	contains	two	numbers,	x	and	y.	When	you	define	a	class	like
this,	you	usually	start	with	an	init	method	and	a	str	method:

class	Point:

				def	__init__(self,	x=0,	y=0):

								self.x	=	x

								self.y	=	y

				def	__str__(self):

								return	'(%g,	%g)'	%	(self.x,	self.y)

This	is	a	lot	of	code	to	convey	a	small	amount	of	information.	Python	provides	a	more
concise	way	to	say	the	same	thing:

from	collections	import	namedtuple

Point	=	namedtuple('Point',	['x',	'y'])

The	first	argument	is	the	name	of	the	class	you	want	to	create.	The	second	is	a	list	of	the
attributes	Point	objects	should	have,	as	strings.	The	return	value	from	namedtuple	is	a
class	object:

>>>	Point

<class	'__main__.Point'>

Point	automatically	provides	methods	like	__init__	and	__str__	so	you	don’t	have	to
write	them.

To	create	a	Point	object,	you	use	the	Point	class	as	a	function:

>>>	p	=	Point(1,	2)

>>>	p

Point(x=1,	y=2)

The	init	method	assigns	the	arguments	to	attributes	using	the	names	you	provided.	The	str
method	prints	a	representation	of	the	Point	object	and	its	attributes.

You	can	access	the	elements	of	the	named	tuple	by	name:

>>>	p.x,	p.y

(1,	2)

But	you	can	also	treat	a	named	tuple	as	a	tuple:

>>>	p[0],	p[1]

(1,	2)

>>>	x,	y	=	p

>>>	x,	y

(1,	2)



Named	tuples	provide	a	quick	way	to	define	simple	classes.	The	drawback	is	that	simple
classes	don’t	always	stay	simple.	You	might	decide	later	that	you	want	to	add	methods	to	a
named	tuple.	In	that	case,	you	could	define	a	new	class	that	inherits	from	the	named	tuple:

class	Pointier(Point):

				#	add	more	methods	here

Or	you	could	switch	to	a	conventional	class	definition.



Gathering	Keyword	Args
In	“Variable-Length	Argument	Tuples”,	we	saw	how	to	write	a	function	that	gathers	its
arguments	into	a	tuple:

def	printall(*args):

				print(args)

You	can	call	this	function	with	any	number	of	positional	arguments	(that	is,	arguments	that
don’t	have	keywords):

>>>	printall(1,	2.0,	'3')

(1,	2.0,	'3')

But	the	*	operator	doesn’t	gather	keyword	arguments:

>>>	printall(1,	2.0,	third='3')

TypeError:	printall()	got	an	unexpected	keyword	argument	'third'

To	gather	keyword	arguments,	you	can	use	the	**	operator:

def	printall(*args,	**kwargs):

				print(args,	kwargs)

You	can	call	the	keyword	gathering	parameter	anything	you	want,	but	kwargs	is	a
common	choice.	The	result	is	a	dictionary	that	maps	keywords	to	values:

>>>	printall(1,	2.0,	third='3')

(1,	2.0)	{'third':	'3'}

If	you	have	a	dictionary	of	keywords	and	values,	you	can	use	the	scatter	operator,	**,	to
call	a	function:

>>>	d	=	dict(x=1,	y=2)

>>>	Point(**d)

Point(x=1,	y=2)

Without	the	scatter	operator,	the	function	would	treat	d	as	a	single	positional	argument,	so
it	would	assign	d	to	x	and	complain	because	there’s	nothing	to	assign	to	y:

>>>	d	=	dict(x=1,	y=2)

>>>	Point(d)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	__new__()	missing	1	required	positional	argument:	'y'

When	you	are	working	with	functions	that	have	a	large	number	of	parameters,	it	is	often
useful	to	create	and	pass	around	dictionaries	that	specify	frequently	used	options.



Glossary
conditional	expression:

An	expression	that	has	one	of	two	values,	depending	on	a	condition.

list	comprehension:

An	expression	with	a	for	loop	in	square	brackets	that	yields	a	new	list.

generator	expression:

An	expression	with	a	for	loop	in	parentheses	that	yields	a	generator	object.

multiset:

A	mathematical	entity	that	represents	a	mapping	between	the	elements	of	a	set	and
the	number	of	times	they	appear.

factory:

A	function,	usually	passed	as	a	parameter,	used	to	create	objects.



Exercises
Exercise	19-1.

The	following	is	a	function	that	computes	the	binomial	coefficient	recursively:
def	binomial_coeff(n,	k):

				"""Compute	the	binomial	coefficient	"n	choose	k".

				n:	number	of	trials

				k:	number	of	successes

				returns:	int

				"""

				if	k	==	0:

								return	1

				if	n	==	0:

								return	0

				res	=	binomial_coeff(n-1,	k)	+	binomial_coeff(n-1,	k-1)

				return	res

Rewrite	the	body	of	the	function	using	nested	conditional	expressions.

One	note:	this	function	is	not	very	efficient	because	it	ends	up	computing	the	same	values
over	and	over.	You	could	make	it	more	efficient	by	memoizing	(see	“Memos”).	But	you
will	find	that	it’s	harder	to	memoize	if	you	write	it	using	conditional	expressions.





Chapter	20.	Debugging

When	you	are	debugging,	you	should	distinguish	among	different	kinds	of	errors	in	order
to	track	them	down	more	quickly:

Syntax	errors	are	discovered	by	the	interpreter	when	it	is	translating	the	source	code
into	byte	code.	They	indicate	that	there	is	something	wrong	with	the	structure	of	the
program.	Example:	Omitting	the	colon	at	the	end	of	a	def	statement	generates	the
somewhat	redundant	message	SyntaxError:	invalid	syntax.

Runtime	errors	are	produced	by	the	interpreter	if	something	goes	wrong	while	the
program	is	running.	Most	runtime	error	messages	include	information	about	where	the
error	occurred	and	what	functions	were	executing.	Example:	An	infinite	recursion
eventually	causes	the	runtime	error	maximum	recursion	depth	exceeded.

Semantic	errors	are	problems	with	a	program	that	runs	without	producing	error
messages	but	doesn’t	do	the	right	thing.	Example:	An	expression	may	not	be	evaluated
in	the	order	you	expect,	yielding	an	incorrect	result.

The	first	step	in	debugging	is	to	figure	out	which	kind	of	error	you	are	dealing	with.
Although	the	following	sections	are	organized	by	error	type,	some	techniques	are
applicable	in	more	than	one	situation.



Syntax	Errors
Syntax	errors	are	usually	easy	to	fix	once	you	figure	out	what	they	are.	Unfortunately,	the
error	messages	are	often	not	helpful.	The	most	common	messages	are	SyntaxError:
invalid	syntax	and	SyntaxError:	invalid	token,	neither	of	which	is	very	informative.

On	the	other	hand,	the	message	does	tell	you	where	in	the	program	the	problem	occurred.
Actually,	it	tells	you	where	Python	noticed	a	problem,	which	is	not	necessarily	where	the
error	is.	Sometimes	the	error	is	prior	to	the	location	of	the	error	message,	often	on	the
preceding	line.

If	you	are	building	the	program	incrementally,	you	should	have	a	good	idea	about	where
the	error	is.	It	will	be	in	the	last	line	you	added.

If	you	are	copying	code	from	a	book,	start	by	comparing	your	code	to	the	book’s	code
very	carefully.	Check	every	character.	At	the	same	time,	remember	that	the	book	might	be
wrong,	so	if	you	see	something	that	looks	like	a	syntax	error,	it	might	be.

Here	are	some	ways	to	avoid	the	most	common	syntax	errors:

1.	 Make	sure	you	are	not	using	a	Python	keyword	for	a	variable	name.

2.	 Check	that	you	have	a	colon	at	the	end	of	the	header	of	every	compound	statement,
including	for,	while,	if,	and	def	statements.

3.	 Make	sure	that	any	strings	in	the	code	have	matching	quotation	marks.	Make	sure
that	all	quotation	marks	are	straight	quotes,	not	curly	quotes.

4.	 If	you	have	multiline	strings	with	triple	quotes	(single	or	double),	make	sure	you
have	terminated	the	string	properly.	An	unterminated	string	may	cause	an	invalid
token	error	at	the	end	of	your	program,	or	it	may	treat	the	following	part	of	the
program	as	a	string	until	it	comes	to	the	next	string.	In	the	second	case,	it	might	not
produce	an	error	message	at	all!

5.	 An	unclosed	opening	operator	—	(,	{,	or	[	—	makes	Python	continue	with	the	next
line	as	part	of	the	current	statement.	Generally,	an	error	occurs	almost	immediately
in	the	next	line.

6.	 Check	for	the	classic	=	instead	of	==	inside	a	conditional.

7.	 Check	the	indentation	to	make	sure	it	lines	up	the	way	it	is	supposed	to.	Python	can
handle	space	and	tabs,	but	if	you	mix	them	it	can	cause	problems.	The	best	way	to
avoid	this	problem	is	to	use	a	text	editor	that	knows	about	Python	and	generates
consistent	indentation.

8.	 If	you	have	non-ASCII	characters	in	the	code	(including	strings	and	comments),	that
might	cause	a	problem,	although	Python	3	usually	handles	non-ASCII	characters.	Be
careful	if	you	paste	in	text	from	a	web	page	or	other	source.



If	nothing	works,	move	on	to	the	next	section…



I	keep	making	changes	and	it	makes	no	difference.
If	the	interpreter	says	there	is	an	error	and	you	don’t	see	it,	that	might	be	because	you	and
the	interpreter	are	not	looking	at	the	same	code.	Check	your	programming	environment	to
make	sure	that	the	program	you	are	editing	is	the	one	Python	is	trying	to	run.

If	you	are	not	sure,	try	putting	an	obvious	and	deliberate	syntax	error	at	the	beginning	of
the	program.	Now	run	it	again.	If	the	interpreter	doesn’t	find	the	new	error,	you	are	not
running	the	new	code.

There	are	a	few	likely	culprits:

You	edited	the	file	and	forgot	to	save	the	changes	before	running	it	again.	Some
programming	environments	do	this	for	you,	but	some	don’t.

You	changed	the	name	of	the	file,	but	you	are	still	running	the	old	name.

Something	in	your	development	environment	is	configured	incorrectly.

If	you	are	writing	a	module	and	using	import,	make	sure	you	don’t	give	your	module
the	same	name	as	one	of	the	standard	Python	modules.

If	you	are	using	import	to	read	a	module,	remember	that	you	have	to	restart	the
interpreter	or	use	reload	to	read	a	modified	file.	If	you	import	the	module	again,	it
doesn’t	do	anything.

If	you	get	stuck	and	you	can’t	figure	out	what	is	going	on,	one	approach	is	to	start	again
with	a	new	program	like	“Hello,	World!”,	and	make	sure	you	can	get	a	known	program	to
run.	Then	gradually	add	the	pieces	of	the	original	program	to	the	new	one.



Runtime	Errors
Once	your	program	is	syntactically	correct,	Python	can	read	it	and	at	least	start	running	it.
What	could	possibly	go	wrong?



My	program	does	absolutely	nothing.
This	problem	is	most	common	when	your	file	consists	of	functions	and	classes	but	does
not	actually	invoke	a	function	to	start	execution.	This	may	be	intentional	if	you	only	plan
to	import	this	module	to	supply	classes	and	functions.

If	it	is	not	intentional,	make	sure	there	is	a	function	call	in	the	program,	and	make	sure	the
flow	of	execution	reaches	it	(see	“Flow	of	execution”	below).



My	program	hangs.
If	a	program	stops	and	seems	to	be	doing	nothing,	it	is	“hanging”.	Often	that	means	that	it
is	caught	in	an	infinite	loop	or	infinite	recursion.

If	there	is	a	particular	loop	that	you	suspect	is	the	problem,	add	a	print	statement
immediately	before	the	loop	that	says	“entering	the	loop”	and	another	immediately
after	that	says	“exiting	the	loop”.	
Run	the	program.	If	you	get	the	first	message	and	not	the	second,	you’ve	got	an	infinite
loop.	Go	to	the	“Infinite	loop”	section	below.

Most	of	the	time,	an	infinite	recursion	will	cause	the	program	to	run	for	a	while	and
then	produce	a	“RuntimeError:	Maximum	recursion	depth	exceeded”	error.	If	that
happens,	go	to	the	“Infinite	recursion”	section	below.	
If	you	are	not	getting	this	error	but	you	suspect	there	is	a	problem	with	a	recursive
method	or	function,	you	can	still	use	the	techniques	in	the	“Infinite	recursion”	section.

If	neither	of	those	steps	works,	start	testing	other	loops	and	other	recursive	functions
and	methods.

If	that	doesn’t	work,	then	it	is	possible	that	you	don’t	understand	the	flow	of	execution
in	your	program.	Go	to	the	“Flow	of	execution”	section	below.

Infinite	loop

If	you	think	you	have	an	infinite	loop	and	you	think	you	know	what	loop	is	causing	the
problem,	add	a	print	statement	at	the	end	of	the	loop	that	prints	the	values	of	the
variables	in	the	condition	and	the	value	of	the	condition.

For	example:

while	x	>	0	and	y	<	0	:

				#	do	something	to	x

				#	do	something	to	y

				print('x:	',	x)

				print('y:	',	y)

				print("condition:	",	(x	>	0	and	y	<	0))

Now	when	you	run	the	program,	you	will	see	three	lines	of	output	for	each	time	through
the	loop.	The	last	time	through	the	loop,	the	condition	should	be	False.	If	the	loop	keeps
going,	you	will	be	able	to	see	the	values	of	x	and	y,	and	you	might	figure	out	why	they	are
not	being	updated	correctly.

Infinite	recursion

Most	of	the	time,	infinite	recursion	causes	the	program	to	run	for	a	while	and	then	produce
a	Maximum	recursion	depth	exceeded	error.

If	you	suspect	that	a	function	is	causing	an	infinite	recursion,	make	sure	that	there	is	a
base	case.	There	should	be	some	condition	that	causes	the	function	to	return	without



making	a	recursive	invocation.	If	not,	you	need	to	rethink	the	algorithm	and	identify	a
base	case.

If	there	is	a	base	case	but	the	program	doesn’t	seem	to	be	reaching	it,	add	a	print
statement	at	the	beginning	of	the	function	that	prints	the	parameters.	Now	when	you	run
the	program,	you	will	see	a	few	lines	of	output	every	time	the	function	is	invoked,	and	you
will	see	the	parameter	values.	If	the	parameters	are	not	moving	toward	the	base	case,	you
will	get	some	ideas	about	why	not.

Flow	of	execution

If	you	are	not	sure	how	the	flow	of	execution	is	moving	through	your	program,	add	print
statements	to	the	beginning	of	each	function	with	a	message	like	“entering	function	foo”,
where	foo	is	the	name	of	the	function.

Now	when	you	run	the	program,	it	will	print	a	trace	of	each	function	as	it	is	invoked.



When	I	run	the	program	I	get	an	exception.
If	something	goes	wrong	during	runtime,	Python	prints	a	message	that	includes	the	name
of	the	exception,	the	line	of	the	program	where	the	problem	occurred,	and	a	traceback.

The	traceback	identifies	the	function	that	is	currently	running,	and	then	the	function	that
called	it,	and	then	the	function	that	called	that,	and	so	on.	In	other	words,	it	traces	the
sequence	of	function	calls	that	got	you	to	where	you	are,	including	the	line	number	in	your
file	where	each	call	occurred.

The	first	step	is	to	examine	the	place	in	the	program	where	the	error	occurred	and	see	if
you	can	figure	out	what	happened.	These	are	some	of	the	most	common	runtime	errors:

NameError:

You	are	trying	to	use	a	variable	that	doesn’t	exist	in	the	current	environment.	Check
if	the	name	is	spelled	right,	or	at	least	consistently.	And	remember	that	local	variables
are	local;	you	cannot	refer	to	them	from	outside	the	function	where	they	are	defined.

TypeError:

There	are	several	possible	causes:

You	are	trying	to	use	a	value	improperly.	Example:	indexing	a	string,	list,	or	tuple
with	something	other	than	an	integer.

There	is	a	mismatch	between	the	items	in	a	format	string	and	the	items	passed	for
conversion.	This	can	happen	if	either	the	number	of	items	does	not	match	or	an
invalid	conversion	is	called	for.

You	are	passing	the	wrong	number	of	arguments	to	a	function.	For	methods,	look
at	the	method	definition	and	check	that	the	first	parameter	is	self.	Then	look	at
the	method	invocation;	make	sure	you	are	invoking	the	method	on	an	object	with
the	right	type	and	providing	the	other	arguments	correctly.

KeyError:

You	are	trying	to	access	an	element	of	a	dictionary	using	a	key	that	the	dictionary
does	not	contain.	If	the	keys	are	strings,	remember	that	capitalization	matters.

AttributeError:

You	are	trying	to	access	an	attribute	or	method	that	does	not	exist.	Check	the
spelling!	You	can	use	the	built-in	function	vars	to	list	the	attributes	that	do	exist.

If	an	AttributeError	indicates	that	an	object	has	NoneType,	that	means	that	it	is	None.
So	the	problem	is	not	the	attribute	name,	but	the	object.

The	reason	the	object	is	none	might	be	that	you	forgot	to	return	a	value	from	a
function;	if	you	get	to	the	end	of	a	function	without	hitting	a	return	statement,	it
returns	None.	Another	common	cause	is	using	the	result	from	a	list	method,	like	sort,
that	returns	None.



IndexError:

The	index	you	are	using	to	access	a	list,	string,	or	tuple	is	greater	than	its	length
minus	one.	Immediately	before	the	site	of	the	error,	add	a	print	statement	to	display
the	value	of	the	index	and	the	length	of	the	array.	Is	the	array	the	right	size?	Is	the
index	the	right	value?

The	Python	debugger	(pdb)	is	useful	for	tracking	down	exceptions	because	it	allows	you
to	examine	the	state	of	the	program	immediately	before	the	error.	You	can	read	about	pdb
at	https://docs.python.org/3/library/pdb.html.

https://docs.python.org/3/library/pdb.html


I	added	so	many	print	statements	I	get	inundated	with	output.
One	of	the	problems	with	using	print	statements	for	debugging	is	that	you	can	end	up
buried	in	output.	There	are	two	ways	to	proceed:	simplify	the	output	or	simplify	the
program.

To	simplify	the	output,	you	can	remove	or	comment	out	print	statements	that	aren’t
helping,	or	combine	them,	or	format	the	output	so	it	is	easier	to	understand.

To	simplify	the	program,	there	are	several	things	you	can	do.	First,	scale	down	the
problem	the	program	is	working	on.	For	example,	if	you	are	searching	a	list,	search	a
small	list.	If	the	program	takes	input	from	the	user,	give	it	the	simplest	input	that	causes
the	problem.

Second,	clean	up	the	program.	Remove	dead	code	and	reorganize	the	program	to	make	it
as	easy	to	read	as	possible.	For	example,	if	you	suspect	that	the	problem	is	in	a	deeply
nested	part	of	the	program,	try	rewriting	that	part	with	simpler	structure.	If	you	suspect	a
large	function,	try	splitting	it	into	smaller	functions	and	testing	them	separately.

Often	the	process	of	finding	the	minimal	test	case	leads	you	to	the	bug.	If	you	find	that	a
program	works	in	one	situation	but	not	in	another,	that	gives	you	a	clue	about	what	is
going	on.

Similarly,	rewriting	a	piece	of	code	can	help	you	find	subtle	bugs.	If	you	make	a	change
that	you	think	shouldn’t	affect	the	program,	and	it	does,	that	can	tip	you	off.



Semantic	Errors
In	some	ways,	semantic	errors	are	the	hardest	to	debug,	because	the	interpreter	provides
no	information	about	what	is	wrong.	Only	you	know	what	the	program	is	supposed	to	do.

The	first	step	is	to	make	a	connection	between	the	program	text	and	the	behavior	you	are
seeing.	You	need	a	hypothesis	about	what	the	program	is	actually	doing.	One	of	the	things
that	makes	that	hard	is	that	computers	run	so	fast.

You	will	often	wish	that	you	could	slow	the	program	down	to	human	speed,	and	with
some	debuggers	you	can.	But	the	time	it	takes	to	insert	a	few	well-placed	print
statements	is	often	short	compared	to	setting	up	the	debugger,	inserting	and	removing
breakpoints,	and	“stepping”	the	program	to	where	the	error	is	occurring.



My	program	doesn’t	work.
You	should	ask	yourself	these	questions:

Is	there	something	the	program	was	supposed	to	do	but	which	doesn’t	seem	to	be
happening?	Find	the	section	of	the	code	that	performs	that	function	and	make	sure	it	is
executing	when	you	think	it	should.

Is	something	happening	that	shouldn’t?	Find	code	in	your	program	that	performs	that
function	and	see	if	it	is	executing	when	it	shouldn’t.

Is	a	section	of	code	producing	an	effect	that	is	not	what	you	expected?	Make	sure	that
you	understand	the	code	in	question,	especially	if	it	involves	functions	or	methods	in
other	Python	modules.	Read	the	documentation	for	the	functions	you	call.	Try	them	out
by	writing	simple	test	cases	and	checking	the	results.

In	order	to	program,	you	need	a	mental	model	of	how	programs	work.	If	you	write	a
program	that	doesn’t	do	what	you	expect,	often	the	problem	is	not	in	the	program;	it’s	in
your	mental	model.

The	best	way	to	correct	your	mental	model	is	to	break	the	program	into	its	components
(usually	the	functions	and	methods)	and	test	each	component	independently.	Once	you
find	the	discrepancy	between	your	model	and	reality,	you	can	solve	the	problem.

Of	course,	you	should	be	building	and	testing	components	as	you	develop	the	program.	If
you	encounter	a	problem,	there	should	be	only	a	small	amount	of	new	code	that	is	not
known	to	be	correct.



I’ve	got	a	big	hairy	expression	and	it	doesn’t	do	what	I	expect.
Writing	complex	expressions	is	fine	as	long	as	they	are	readable,	but	they	can	be	hard	to
debug.	It	is	often	a	good	idea	to	break	a	complex	expression	into	a	series	of	assignments	to
temporary	variables.

For	example:

self.hands[i].addCard(self.hands[self.findNeighbor(i)].popCard())

This	can	be	rewritten	as:

neighbor	=	self.findNeighbor(i)

pickedCard	=	self.hands[neighbor].popCard()

self.hands[i].addCard(pickedCard)

The	explicit	version	is	easier	to	read	because	the	variable	names	provide	additional
documentation,	and	it	is	easier	to	debug	because	you	can	check	the	types	of	the
intermediate	variables	and	display	their	values.

Another	problem	that	can	occur	with	big	expressions	is	that	the	order	of	evaluation	may

not	be	what	you	expect.	For	example,	if	you	are	translating	the	expression	 	into	Python,
you	might	write:

y	=	x	/	2	*	math.pi

That	is	not	correct	because	multiplication	and	division	have	the	same	precedence	and	are
evaluated	from	left	to	right.	So	this	expression	computes	 .

A	good	way	to	debug	expressions	is	to	add	parentheses	to	make	the	order	of	evaluation
explicit:

	y	=	x	/	(2	*	math.pi)

Whenever	you	are	not	sure	of	the	order	of	evaluation,	use	parentheses.	Not	only	will	the
program	be	correct	(in	the	sense	of	doing	what	you	intended),	it	will	also	be	more	readable
for	other	people	who	haven’t	memorized	the	order	of	operations.



I’ve	got	a	function	that	doesn’t	return	what	I	expect.
If	you	have	a	return	statement	with	a	complex	expression,	you	don’t	have	a	chance	to
print	the	result	before	returning.	Again,	you	can	use	a	temporary	variable.	For	example,
instead	of:

return	self.hands[i].removeMatches()

you	could	write:

count	=	self.hands[i].removeMatches()

return	count

Now	you	have	the	opportunity	to	display	the	value	of	count	before	returning.



I’m	really,	really	stuck	and	I	need	help.
First,	try	getting	away	from	the	computer	for	a	few	minutes.	Computers	emit	waves	that
affect	the	brain,	causing	these	symptoms:

Frustration	and	rage.

Superstitious	beliefs	(“the	computer	hates	me”)	and	magical	thinking	(“the	program
only	works	when	I	wear	my	hat	backward”).

Random	walk	programming	(the	attempt	to	program	by	writing	every	possible	program
and	choosing	the	one	that	does	the	right	thing).

If	you	find	yourself	suffering	from	any	of	these	symptoms,	get	up	and	go	for	a	walk.
When	you	are	calm,	think	about	the	program.	What	is	it	doing?	What	are	some	possible
causes	of	that	behavior?	When	was	the	last	time	you	had	a	working	program,	and	what	did
you	do	next?

Sometimes	it	just	takes	time	to	find	a	bug.	I	often	find	bugs	when	I	am	away	from	the
computer	and	let	my	mind	wander.	Some	of	the	best	places	to	find	bugs	are	on	trains,	in
the	shower,	and	in	bed	just	before	you	fall	asleep.



No,	I	really	need	help.
It	happens.	Even	the	best	programmers	occasionally	get	stuck.	Sometimes	you	work	on	a
program	so	long	that	you	can’t	see	the	error.	You	need	a	fresh	pair	of	eyes.

Before	you	bring	someone	else	in,	make	sure	you	are	prepared.	Your	program	should	be	as
simple	as	possible,	and	you	should	be	working	on	the	smallest	input	that	causes	the	error.
You	should	have	print	statements	in	the	appropriate	places	(and	the	output	they	produce
should	be	comprehensible).	You	should	understand	the	problem	well	enough	to	describe	it
concisely.

When	you	bring	someone	in	to	help,	be	sure	to	give	them	the	information	they	need:

If	there	is	an	error	message,	what	is	it	and	what	part	of	the	program	does	it	indicate?

What	was	the	last	thing	you	did	before	this	error	occurred?	What	were	the	last	lines	of
code	that	you	wrote,	or	what	is	the	new	test	case	that	fails?

What	have	you	tried	so	far,	and	what	have	you	learned?

When	you	find	the	bug,	take	a	second	to	think	about	what	you	could	have	done	to	find	it
faster.	Next	time	you	see	something	similar,	you	will	be	able	to	find	the	bug	more	quickly.

Remember,	the	goal	is	not	just	to	make	the	program	work.	The	goal	is	to	learn	how	to
make	the	program	work.





Chapter	21.	Analysis	of	Algorithms

This	appendix	is	an	edited	excerpt	from	Think	Complexity,	by	Allen	B.	Downey,	also
published	by	O’Reilly	Media	(2012).	When	you	are	done	with	this	book,	you	might
want	to	move	on	to	that	one.

Analysis	of	algorithms	is	a	branch	of	computer	science	that	studies	the	performance	of
algorithms,	especially	their	runtime	and	space	requirements.	See
http://en.wikipedia.org/wiki/Analysis_of_algorithms.

The	practical	goal	of	algorithm	analysis	is	to	predict	the	performance	of	different
algorithms	in	order	to	guide	design	decisions.

During	the	2008	United	States	presidential	campaign,	candidate	Barack	Obama	was	asked
to	perform	an	impromptu	analysis	when	he	visited	Google.	Chief	executive	Eric	Schmidt
jokingly	asked	him	for	“the	most	efficient	way	to	sort	a	million	32-bit	integers.”	Obama
had	apparently	been	tipped	off,	because	he	quickly	replied,	“I	think	the	bubble	sort	would
be	the	wrong	way	to	go.”	See	http://bit.ly/1MpIwTf.

This	is	true:	bubble	sort	is	conceptually	simple	but	slow	for	large	datasets.	The	answer
Schmidt	was	probably	looking	for	is	“radix	sort”
(http://en.wikipedia.org/wiki/Radix_sort).1

The	goal	of	algorithm	analysis	is	to	make	meaningful	comparisons	between	algorithms,
but	there	are	some	problems:

The	relative	performance	of	the	algorithms	might	depend	on	characteristics	of	the
hardware,	so	one	algorithm	might	be	faster	on	Machine	A,	another	on	Machine	B.	The
general	solution	to	this	problem	is	to	specify	a	machine	model	and	analyze	the	number
of	steps,	or	operations,	an	algorithm	requires	under	a	given	model.

Relative	performance	might	depend	on	the	details	of	the	dataset.	For	example,	some
sorting	algorithms	run	faster	if	the	data	are	already	partially	sorted;	other	algorithms
run	slower	in	this	case.	A	common	way	to	avoid	this	problem	is	to	analyze	the	worst-
case	scenario.	It	is	sometimes	useful	to	analyze	average-case	performance,	but	that’s
usually	harder,	and	it	might	not	be	obvious	what	set	of	cases	to	average	over.

Relative	performance	also	depends	on	the	size	of	the	problem.	A	sorting	algorithm	that
is	fast	for	small	lists	might	be	slow	for	long	lists.	The	usual	solution	to	this	problem	is
to	express	runtime	(or	number	of	operations)	as	a	function	of	problem	size,	and	group
functions	into	categories	depending	on	how	quickly	they	grow	as	problem	size
increases.

The	good	thing	about	this	kind	of	comparison	is	that	it	lends	itself	to	simple	classification
of	algorithms.	For	example,	if	I	know	that	the	runtime	of	Algorithm	A	tends	to	be

http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://bit.ly/1MpIwTf
http://en.wikipedia.org/wiki/Radix_sort


proportional	to	the	size	of	the	input,	n,	and	Algorithm	B	tends	to	be	proportional	to	n2,
then	I	expect	A	to	be	faster	than	B,	at	least	for	large	values	of	n.

This	kind	of	analysis	comes	with	some	caveats,	but	we’ll	get	to	that	later.



Order	of	Growth
Suppose	you	have	analyzed	two	algorithms	and	expressed	their	runtimes	in	terms	of	the
size	of	the	input:	Algorithm	A	takes	100n+1	steps	to	solve	a	problem	with	size	n;
Algorithm	B	takes	 	steps.

The	following	table	shows	the	runtime	of	these	algorithms	for	different	problem	sizes:

Input	size Runtime	of	Algorithm	A Runtime	of	Algorithm	B

10 1	001 111

100 10	001 10	101

1	000 100	001 1	001	001

10	000 1	000	001

At	n=10,	Algorithm	A	looks	pretty	bad;	it	takes	almost	10	times	longer	than	Algorithm	B.
But	for	n=100	they	are	about	the	same,	and	for	larger	values	A	is	much	better.

The	fundamental	reason	is	that	for	large	values	of	n,	any	function	that	contains	an	n2	term
will	grow	faster	than	a	function	whose	leading	term	is	n.	The	leading	term	is	the	term
with	the	highest	exponent.

For	Algorithm	A,	the	leading	term	has	a	large	coefficient,	100,	which	is	why	B	does	better
than	A	for	small	n.	But	regardless	of	the	coefficients,	there	will	always	be	some	value	of	n
where	 ,	for	any	values	of	a	and	b.

The	same	argument	applies	to	the	non-leading	terms.	Even	if	the	runtime	of	Algorithm	A
were	n+1000000,	it	would	still	be	better	than	Algorithm	B	for	sufficiently	large	n.

In	general,	we	expect	an	algorithm	with	a	smaller	leading	term	to	be	a	better	algorithm	for
large	problems,	but	for	smaller	problems,	there	may	be	a	crossover	point	where	another
algorithm	is	better.	The	location	of	the	crossover	point	depends	on	the	details	of	the
algorithms,	the	inputs,	and	the	hardware,	so	it	is	usually	ignored	for	purposes	of
algorithmic	analysis.	But	that	doesn’t	mean	you	can	forget	about	it.

If	two	algorithms	have	the	same	leading	order	term,	it	is	hard	to	say	which	is	better;	again,
the	answer	depends	on	the	details.	So	for	algorithmic	analysis,	functions	with	the	same
leading	term	are	considered	equivalent,	even	if	they	have	different	coefficients.

An	order	of	growth	is	a	set	of	functions	whose	growth	behavior	is	considered	equivalent.
For	example,	2n,	100n	and	n+1	belong	to	the	same	order	of	growth,	which	is	written	O(n)
in	Big-Oh	notation	and	often	called	linear	because	every	function	in	the	set	grows
linearly	with	n.

All	functions	with	the	leading	term	n2	belong	to	 ;	they	are	called	quadratic.

The	following	table	shows	some	of	the	orders	of	growth	that	appear	most	commonly	in



algorithmic	analysis,	in	increasing	order	of	badness.

Order	of	growth Name

O(1) constant

logarithmic	(for	any	b)

O(n) linear

linearithmic

quadratic

cubic

exponential	(for	any	c)

For	the	logarithmic	terms,	the	base	of	the	logarithm	doesn’t	matter;	changing	bases	is	the
equivalent	of	multiplying	by	a	constant,	which	doesn’t	change	the	order	of	growth.
Similarly,	all	exponential	functions	belong	to	the	same	order	of	growth	regardless	of	the
base	of	the	exponent.	Exponential	functions	grow	very	quickly,	so	exponential	algorithms
are	only	useful	for	small	problems.

Exercise	21-1.

Read	the	Wikipedia	page	on	Big-Oh	notation	at
http://en.wikipedia.org/wiki/Big_O_notation	and	answer	the	following	questions:

1.	 What	is	the	order	of	growth	of	 ?	What	about	 ?	What
about	 ?

2.	 What	is	the	order	of	growth	of	 ?	Before	you	start	multiplying,
remember	that	you	only	need	the	leading	term.

3.	 If	f	is	in	O(g),	for	some	unspecified	function	g,	what	can	we	say	about	af+b?

4.	 If	f1	and	f2	are	in	O(g),	what	can	we	say	about	 ?

5.	 If	f1	is	in	O(g)	and	f2	is	in	O(h),	what	can	we	say	about	 ?

6.	 If	f1	is	in	O(g)	and	f2	is	O(h),	what	can	we	say	about	 ?

Programmers	who	care	about	performance	often	find	this	kind	of	analysis	hard	to	swallow.
They	have	a	point:	sometimes	the	coefficients	and	the	non-leading	terms	make	a	real
difference.	Sometimes	the	details	of	the	hardware,	the	programming	language,	and	the
characteristics	of	the	input	make	a	big	difference.	And	for	small	problems,	asymptotic
behavior	is	irrelevant.

http://en.wikipedia.org/wiki/Big_O_notation


But	if	you	keep	those	caveats	in	mind,	algorithmic	analysis	is	a	useful	tool.	At	least	for
large	problems,	the	“better”	algorithms	is	usually	better,	and	sometimes	it	is	much	better.
The	difference	between	two	algorithms	with	the	same	order	of	growth	is	usually	a	constant
factor,	but	the	difference	between	a	good	algorithm	and	a	bad	algorithm	is	unbounded!



Analysis	of	Basic	Python	Operations
In	Python,	most	arithmetic	operations	are	constant	time;	multiplication	usually	takes
longer	than	addition	and	subtraction,	and	division	takes	even	longer,	but	these	runtimes
don’t	depend	on	the	magnitude	of	the	operands.	Very	large	integers	are	an	exception;	in
that	case	the	runtime	increases	with	the	number	of	digits.

Indexing	operations	—	reading	or	writing	elements	in	a	sequence	or	dictionary	—	are	also
constant	time,	regardless	of	the	size	of	the	data	structure.

A	for	loop	that	traverses	a	sequence	or	dictionary	is	usually	linear,	as	long	as	all	of	the
operations	in	the	body	of	the	loop	are	constant	time.	For	example,	adding	up	the	elements
of	a	list	is	linear:

				total	=	0

				for	x	in	t:

								total	+=	x

The	built-in	function	sum	is	also	linear	because	it	does	the	same	thing,	but	it	tends	to	be
faster	because	it	is	a	more	efficient	implementation;	in	the	language	of	algorithmic
analysis,	it	has	a	smaller	leading	coefficient.

As	a	rule	of	thumb,	if	the	body	of	a	loop	is	in	 	then	the	whole	loop	is	in	 .
The	exception	is	if	you	can	show	that	the	loop	exits	after	a	constant	number	of	iterations.

If	a	loop	runs	k	times	regardless	of	n,	then	the	loop	is	in	 ,	even	for	large	k.

Multiplying	by	k	doesn’t	change	the	order	of	growth,	but	neither	does	dividing.	So	if	the

body	of	a	loop	is	in	 	and	it	runs	n/k	times,	the	loop	is	in	 ,	even	for	large	k.

Most	string	and	tuple	operations	are	linear,	except	indexing	and	len,	which	are	constant
time.	The	built-in	functions	min	and	max	are	linear.	The	runtime	of	a	slice	operation	is
proportional	to	the	length	of	the	output,	but	independent	of	the	size	of	the	input.

String	concatenation	is	linear;	the	runtime	depends	on	the	sum	of	the	lengths	of	the
operands.

All	string	methods	are	linear,	but	if	the	lengths	of	the	strings	are	bounded	by	a	constant	—
for	example,	operations	on	single	characters	—	they	are	considered	constant	time.	The
string	method	join	is	linear;	the	runtime	depends	on	the	total	length	of	the	strings.

Most	list	methods	are	linear,	but	there	are	some	exceptions:

Adding	an	element	to	the	end	of	a	list	is	constant	time	on	average;	when	it	runs	out	of
room	it	occasionally	gets	copied	to	a	bigger	location,	but	the	total	time	for	n	operations
is	O(n),	so	the	average	time	for	each	operation	is	O(1).

Removing	an	element	from	the	end	of	a	list	is	constant	time.



Sorting	is	 .

Most	dictionary	operations	and	methods	are	constant	time,	but	there	are	some	exceptions:

The	runtime	of	update	is	proportional	to	the	size	of	the	dictionary	passed	as	a
parameter,	not	the	dictionary	being	updated.

keys,	values	and	items	are	constant	time	because	they	return	iterators.	But	if	you	loop
through	the	iterators,	the	loop	will	be	linear.

The	performance	of	dictionaries	is	one	of	the	minor	miracles	of	computer	science.	We	will
see	how	they	work	in	“Hashtables”.

Exercise	21-2.

Read	the	Wikipedia	page	on	sorting	algorithms	at
http://en.wikipedia.org/wiki/Sorting_algorithm	and	answer	the	following	questions:

1.	 What	is	a	“comparison	sort?”	What	is	the	best	worst-case	order	of	growth	for	a
comparison	sort?	What	is	the	best	worst-case	order	of	growth	for	any	sort	algorithm?

2.	 What	is	the	order	of	growth	of	bubble	sort,	and	why	does	Barack	Obama	think	it	is
“the	wrong	way	to	go?”

3.	 What	is	the	order	of	growth	of	radix	sort?	What	preconditions	do	we	need	to	use	it?

4.	 What	is	a	stable	sort	and	why	might	it	matter	in	practice?

5.	 What	is	the	worst	sorting	algorithm	(that	has	a	name)?

6.	 What	sort	algorithm	does	the	C	library	use?	What	sort	algorithm	does	Python	use?
Are	these	algorithms	stable?	You	might	have	to	Google	around	to	find	these
answers.

7.	 Many	of	the	non-comparison	sorts	are	linear,	so	why	does	does	Python	use	an	

	comparison	sort?

http://en.wikipedia.org/wiki/Sorting_algorithm


Analysis	of	Search	Algorithms
A	search	is	an	algorithm	that	takes	a	collection	and	a	target	item	and	determines	whether
the	target	is	in	the	collection,	often	returning	the	index	of	the	target.

The	simplest	search	algorithm	is	a	“linear	search”,	which	traverses	the	items	of	the
collection	in	order,	stopping	if	it	finds	the	target.	In	the	worst	case	it	has	to	traverse	the
entire	collection,	so	the	runtime	is	linear.

The	in	operator	for	sequences	uses	a	linear	search;	so	do	string	methods	like	find	and
count.

If	the	elements	of	the	sequence	are	in	order,	you	can	use	a	bisection	search,	which	is	

.	Bisection	search	is	similar	to	the	algorithm	you	might	use	to	look	a	word	up
in	a	dictionary	(a	paper	dictionary,	not	the	data	structure).	Instead	of	starting	at	the
beginning	and	checking	each	item	in	order,	you	start	with	the	item	in	the	middle	and	check
whether	the	word	you	are	looking	for	comes	before	or	after.	If	it	comes	before,	then	you
search	the	first	half	of	the	sequence.	Otherwise	you	search	the	second	half.	Either	way,
you	cut	the	number	of	remaining	items	in	half.

If	the	sequence	has	1,000,000	items,	it	will	take	about	20	steps	to	find	the	word	or
conclude	that	it’s	not	there.	So	that’s	about	50,000	times	faster	than	a	linear	search.

Bisection	search	can	be	much	faster	than	linear	search,	but	it	requires	the	sequence	to	be	in
order,	which	might	require	extra	work.

There	is	another	data	structure	called	a	hashtable	that	is	even	faster	—	it	can	do	a	search
in	constant	time	—	and	it	doesn’t	require	the	items	to	be	sorted.	Python	dictionaries	are
implemented	using	hashtables,	which	is	why	most	dictionary	operations,	including	the	in
operator,	are	constant	time.



Hashtables
To	explain	how	hashtables	work	and	why	their	performance	is	so	good,	I	start	with	a
simple	implementation	of	a	map	and	gradually	improve	it	until	it’s	a	hashtable.

I	use	Python	to	demonstrate	these	implementations,	but	in	real	life	you	wouldn’t	write
code	like	this	in	Python;	you	would	just	use	a	dictionary!	So	for	the	rest	of	this	chapter,
you	have	to	imagine	that	dictionaries	don’t	exist	and	you	want	to	implement	a	data
structure	that	maps	from	keys	to	values.	The	operations	you	have	to	implement	are:

add(k,	v):

Add	a	new	item	that	maps	from	key	k	to	value	v.	With	a	Python	dictionary,	d,	this
operation	is	written	d[k]	=	v.

get(k):

Look	up	and	return	the	value	that	corresponds	to	key	k.	With	a	Python	dictionary,	d,
this	operation	is	written	d[k]	or	d.get(k).

For	now,	I	assume	that	each	key	only	appears	once.	The	simplest	implementation	of	this
interface	uses	a	list	of	tuples,	where	each	tuple	is	a	key-value	pair:

class	LinearMap:

				def	__init__(self):

								self.items	=	[]

				def	add(self,	k,	v):

								self.items.append((k,	v))

				def	get(self,	k):

								for	key,	val	in	self.items:

												if	key	==	k:

																return	val

								raise	KeyError

add	appends	a	key-value	tuple	to	the	list	of	items,	which	takes	constant	time.

get	uses	a	for	loop	to	search	the	list:	if	it	finds	the	target	key	it	returns	the	corresponding
value;	otherwise	it	raises	a	KeyError.	So	get	is	linear.

An	alternative	is	to	keep	the	list	sorted	by	key.	Then	get	could	use	a	bisection	search,

which	is	 .	But	inserting	a	new	item	in	the	middle	of	a	list	is	linear,	so	this
might	not	be	the	best	option.	There	are	other	data	structures	that	can	implement	add	and
get	in	log	time,	but	that’s	still	not	as	good	as	constant	time,	so	let’s	move	on.

One	way	to	improve	LinearMap	is	to	break	the	list	of	key-value	pairs	into	smaller	lists.
Here’s	an	implementation	called	BetterMap,	which	is	a	list	of	100	LinearMaps.	As	we’ll
see	in	a	second,	the	order	of	growth	for	get	is	still	linear,	but	BetterMap	is	a	step	on	the
path	toward	hashtables:

class	BetterMap:



				def	__init__(self,	n=100):

								self.maps	=	[]

								for	i	in	range(n):

												self.maps.append(LinearMap())

				def	find_map(self,	k):

								index	=	hash(k)	%	len(self.maps)

								return	self.maps[index]

				def	add(self,	k,	v):

								m	=	self.find_map(k)

								m.add(k,	v)

				def	get(self,	k):

								m	=	self.find_map(k)

								return	m.get(k)

__init__	makes	a	list	of	n	LinearMaps.

find_map	is	used	by	add	and	get	to	figure	out	which	map	to	put	the	new	item	in,	or	which
map	to	search.

find_map	uses	the	built-in	function	hash,	which	takes	almost	any	Python	object	and
returns	an	integer.	A	limitation	of	this	implementation	is	that	it	only	works	with	hashable
keys.	Mutable	types	like	lists	and	dictionaries	are	unhashable.

Hashable	objects	that	are	considered	equivalent	return	the	same	hash	value,	but	the
converse	is	not	necessarily	true:	two	objects	with	different	values	can	return	the	same	hash
value.

find_map	uses	the	modulus	operator	to	wrap	the	hash	values	into	the	range	from	0	to
len(self.maps),	so	the	result	is	a	legal	index	into	the	list.	Of	course,	this	means	that
many	different	hash	values	will	wrap	onto	the	same	index.	But	if	the	hash	function	spreads
things	out	pretty	evenly	(which	is	what	hash	functions	are	designed	to	do),	then	we	expect
n/100	items	per	LinearMap.

Since	the	runtime	of	LinearMap.get	is	proportional	to	the	number	of	items,	we	expect
BetterMap	to	be	about	100	times	faster	than	LinearMap.	The	order	of	growth	is	still	linear,
but	the	leading	coefficient	is	smaller.	That’s	nice,	but	still	not	as	good	as	a	hashtable.

Here	(finally)	is	the	crucial	idea	that	makes	hashtables	fast:	if	you	can	keep	the	maximum
length	of	the	LinearMaps	bounded,	LinearMap.get	is	constant	time.	All	you	have	to	do	is
keep	track	of	the	number	of	items	and	when	the	number	of	items	per	LinearMap	exceeds	a
threshold,	resize	the	hashtable	by	adding	more	LinearMaps.

Here	is	an	implementation	of	a	hashtable:

class	HashMap:

				def	__init__(self):

								self.maps	=	BetterMap(2)

								self.num	=	0

				def	get(self,	k):

								return	self.maps.get(k)

				def	add(self,	k,	v):

								if	self.num	==	len(self.maps.maps):



												self.resize()

								self.maps.add(k,	v)

								self.num	+=	1

				def	resize(self):

								new_maps	=	BetterMap(self.num	*	2)

								for	m	in	self.maps.maps:

												for	k,	v	in	m.items:

																new_maps.add(k,	v)

								self.maps	=	new_maps

Each	HashMap	contains	a	BetterMap;	__init__	starts	with	just	2	LinearMaps	and
initializes	num,	which	keeps	track	of	the	number	of	items.

get	just	dispatches	to	BetterMap.	The	real	work	happens	in	add,	which	checks	the	number
of	items	and	the	size	of	the	BetterMap:	if	they	are	equal,	the	average	number	of	items	per
LinearMap	is	1,	so	it	calls	resize.

resize	make	a	new	BetterMap,	twice	as	big	as	the	previous	one,	and	then	“rehashes”	the
items	from	the	old	map	to	the	new.

Rehashing	is	necessary	because	changing	the	number	of	LinearMaps	changes	the
denominator	of	the	modulus	operator	in	find_map.	That	means	that	some	objects	that	used
to	hash	into	the	same	LinearMap	will	get	split	up	(which	is	what	we	wanted,	right?).

Rehashing	is	linear,	so	resize	is	linear,	which	might	seem	bad,	since	I	promised	that	add
would	be	constant	time.	But	remember	that	we	don’t	have	to	resize	every	time,	so	add	is
usually	constant	time	and	only	occasionally	linear.	The	total	amount	of	work	to	run	add	n
times	is	proportional	to	n,	so	the	average	time	of	each	add	is	constant	time!

To	see	how	this	works,	think	about	starting	with	an	empty	HashTable	and	adding	a
sequence	of	items.	We	start	with	two	LinearMaps,	so	the	first	two	adds	are	fast	(no
resizing	required).	Let’s	say	that	they	take	one	unit	of	work	each.	The	next	add	requires	a
resize,	so	we	have	to	rehash	the	first	two	items	(let’s	call	that	two	more	units	of	work)	and
then	add	the	third	item	(one	more	unit).	Adding	the	next	item	costs	one	unit,	so	the	total	so
far	is	six	units	of	work	for	four	items.

The	next	add	costs	five	units,	but	the	next	three	are	only	one	unit	each,	so	the	total	is	14
units	for	the	first	eight	adds.

The	next	add	costs	nine	units,	but	then	we	can	add	seven	more	before	the	next	resize,	so
the	total	is	30	units	for	the	first	16	adds.

After	32	adds,	the	total	cost	is	62	units,	and	I	hope	you	are	starting	to	see	a	pattern.	After	n
adds,	where	n	is	a	power	of	two,	the	total	cost	is	2n-2	units,	so	the	average	work	per	add	is
a	little	less	than	2	units.	When	n	is	a	power	of	two,	that’s	the	best	case;	for	other	values	of
n	the	average	work	is	a	little	higher,	but	that’s	not	important.	The	important	thing	is	that	it
is	O(1).



Figure	21-1	shows	how	this	works	graphically.	Each	block	represents	a	unit	of	work.	The
columns	show	the	total	work	for	each	add	in	order	from	left	to	right:	the	first	two	adds
cost	one	unit,	the	third	costs	three	units,	etc.

Figure	21-1.	The	cost	of	a	hashtable	add.

The	extra	work	of	rehashing	appears	as	a	sequence	of	increasingly	tall	towers	with
increasing	space	between	them.	Now	if	you	knock	over	the	towers,	spreading	the	cost	of
resizing	over	all	adds,	you	can	see	graphically	that	the	total	cost	after	n	adds	is	 .

An	important	feature	of	this	algorithm	is	that	when	we	resize	the	HashTable	it	grows
geometrically;	that	is,	we	multiply	the	size	by	a	constant.	If	you	increase	the	size
arithmetically	—	adding	a	fixed	number	each	time	—	the	average	time	per	add	is	linear.

You	can	download	my	implementation	of	HashMap	from
http://thinkpython2.com/code/Map.py,	but	remember	that	there	is	no	reason	to	use	it;	if
you	want	a	map,	just	use	a	Python	dictionary.

http://thinkpython2.com/code/Map.py


Glossary
analysis	of	algorithms:

A	way	to	compare	algorithms	in	terms	of	their	runtime	and/or	space	requirements.

machine	model:

A	simplified	representation	of	a	computer	used	to	describe	algorithms.

worst	case:

The	input	that	makes	a	given	algorithm	run	slowest	(or	require	the	most	space).

leading	term:

In	a	polynomial,	the	term	with	the	highest	exponent.

crossover	point:

The	problem	size	where	two	algorithms	require	the	same	runtime	or	space.

order	of	growth:

A	set	of	functions	that	all	grow	in	a	way	considered	equivalent	for	purposes	of
analysis	of	algorithms.	For	example,	all	functions	that	grow	linearly	belong	to	the
same	order	of	growth.

Big-Oh	notation:

Notation	for	representing	an	order	of	growth;	for	example,	O(n)	represents	the	set	of
functions	that	grow	linearly.

linear:

An	algorithm	whose	runtime	is	proportional	to	problem	size,	at	least	for	large
problem	sizes.

quadratic:

An	algorithm	whose	runtime	is	proportional	to	n2,	where	n	is	a	measure	of	problem
size.

search:

The	problem	of	locating	an	element	of	a	collection	(like	a	list	or	dictionary)	or
determining	that	it	is	not	present.

hashtable:

A	data	structure	that	represents	a	collection	of	key-value	pairs	and	performs	search	in
constant	time.

1	But	if	you	get	a	question	like	this	in	an	interview,	I	think	a	better	answer	is,	“The	fastest
way	to	sort	a	million	integers	is	to	use	whatever	sort	function	is	provided	by	the	language
I’m	using.	Its	performance	is	good	enough	for	the	vast	majority	of	applications,	but	if	it
turned	out	that	my	application	was	too	slow,	I	would	use	a	profiler	to	see	where	the	time



was	being	spent.	If	it	looked	like	a	faster	sort	algorithm	would	have	a	significant	effect	on
performance,	then	I	would	look	around	for	a	good	implementation	of	radix	sort.”





Index

A

abecedarian,	Traversal	with	a	for	Loop,	Exercises

abs	function,	Return	Values

absolute	path,	Filenames	and	Paths,	Glossary

access,	Lists	Are	Mutable

accumulator,	Glossary

histogram,	Word	Histogram

list,	Map,	Filter	and	Reduce

string,	Printing	the	Deck

sum,	Map,	Filter	and	Reduce

Ackermann	function,	Exercises,	Exercises

add	method,	Operator	Overloading

addition	with	carrying,	Algorithms

algorithm,	Algorithms,	Glossary,	Random	Words,	Analysis	of	Algorithms

MD5,	Exercises

square	root,	Exercises

aliasing,	Objects	and	Values,	Aliasing,	Glossary,	Attributes,	Copying,	Exercises

copying	to	avoid,	Debugging

all,	any	and	all

alphabet,	Exercises

alternative	execution,	Alternative	Execution



ambiguity,	Formal	and	Natural	Languages

anagram,	Exercises

anagram	set,	Exercises,	Exercises

analysis	of	algorithms,	Analysis	of	Algorithms,	Glossary

analysis	of	primitives,	Analysis	of	Basic	Python	Operations

and	operator,	Logical	Operators

any,	any	and	all

append	method,	List	Methods,	List	Arguments,	Exercises,	Decks,	Add,	Remove,
Shuffle	and	Sort

arc	function,	Exercises

Archimedian	spiral,	Exercises

argument,	Function	Calls,	Adding	New	Functions,	Parameters	and	Arguments,
Parameters	and	Arguments,	Glossary,	List	Arguments

gather,	Variable-Length	Argument	Tuples

keyword,	Generalization,	Glossary,	Gathering	Keyword	Args

list,	List	Arguments

optional,	String	Methods,	Glossary,	Exercises,	Lists	and	Strings,	Reverse	Lookup,
Conditional	Expressions

positional,	Another	Example,	Glossary,	Gathering	Keyword	Args

variable-length	tuple,	Variable-Length	Argument	Tuples

argument	scatter,	Variable-Length	Argument	Tuples

arithmetic	operator,	Arithmetic	Operators

assert	statement,	Debugging,	Glossary

assignment,	Glossary,	Reassignment,	A	List	Is	a	Sequence



augmented,	Map,	Filter	and	Reduce,	Glossary

item,	Strings	Are	Immutable,	Lists	Are	Mutable,	Tuples	Are	Immutable

tuple,	Tuple	Assignment,	Tuples	as	Return	Values,	Lists	and	Tuples,	Glossary

assignment	statement,	Assignment	Statements

attribute,	Debugging,	Interface	and	Implementation

class,	Class	Attributes,	Glossary

initializing,	Debugging

instance,	Attributes,	Glossary,	Class	Attributes,	Glossary

__dict__,	Debugging

AttributeError,	Debugging,	When	I	run	the	program	I	get	an	exception.

augmented	assignment,	Map,	Filter	and	Reduce,	Glossary

Austen,	Jane,	Word	Histogram

average	case,	Analysis	of	Algorithms

average	cost,	Hashtables

B

badness,	Order	of	Growth

base	case,	Stack	Diagrams	for	Recursive	Functions,	Glossary

benchmarking,	Data	Structures,	Glossary

BetterMap,	Hashtables

big,	hairy	expression,	I’ve	got	a	big	hairy	expression	and	it	doesn’t	do	what	I	expect.

Big-Oh	notation,	Order	of	Growth,	Glossary

binary	search,	Exercises

bingo,	Exercises



birthday,	Exercises

birthday	paradox,	Exercises

bisect	module,	Exercises

bisection	search,	Exercises,	Analysis	of	Search	Algorithms

bisection,	debugging	by,	Debugging

bitwise	operator,	Arithmetic	Operators

body,	Adding	New	Functions,	Glossary,	The	while	Statement

bool	type,	Boolean	Expressions

boolean	expression,	Boolean	Expressions,	Glossary

boolean	function,	Boolean	Functions

boolean	operator,	The	in	Operator

borrowing,	subtraction	with,	Algorithms,	Prototyping	versus	Planning

bounded,	Hashtables

bracket	operator,	A	String	Is	a	Sequence,	Lists	Are	Mutable,	Tuples	Are	Immutable

bracket,	squiggly,	A	Dictionary	Is	a	Mapping

branch,	Alternative	Execution,	Glossary

break	statement,	break

bubble	sort,	Analysis	of	Algorithms

bug,	Debugging,	Glossary,	Debugging

worst,	Exercises

built-in	function,	any,	any	and	all,	any	and	all

bytes	object,	Databases,	Glossary

C



calculator,	Exercises,	Exercises

call	graph,	Memos,	Glossary

Car	Talk,	Exercises,	Exercises,	Exercises,	Exercises,	Exercises

Card	class,	Card	Objects

card,	playing,	Inheritance

carrying,	addition	with,	Algorithms,	Pure	Functions,	Prototyping	versus	Planning

catch,	Glossary

chained	conditional,	Chained	Conditionals,	Glossary

character,	A	String	Is	a	Sequence

checksum,	Pipes,	Exercises

child	class,	Inheritance,	Glossary

choice	function,	Random	Numbers

circle	function,	Exercises

circular	definition,	More	Recursion

class,	Values	and	Types,	Programmer-Defined	Types,	Glossary

Card,	Card	Objects

child,	Inheritance,	Glossary

Deck,	Decks

Hand,	Inheritance

Kangaroo,	Exercises

parent,	Inheritance

Point,	Programmer-Defined	Types,	The	init	Method



Rectangle,	Rectangles

Time,	Time

class	attribute,	Class	Attributes,	Glossary

class	definition,	Programmer-Defined	Types

class	diagram,	Class	Diagrams,	Glossary

class	object,	Programmer-Defined	Types,	Glossary,	Named	Tuples

close	method,	Reading	and	Writing,	Databases,	Pipes

__cmp__	method,	Comparing	Cards

Collatz	conjecture,	The	while	Statement

collections,	Counters,	defaultdict,	Named	Tuples

colon,	Adding	New	Functions,	Syntax	Errors

comment,	Comments,	Glossary

commutativity,	String	Operations,	Type-Based	Dispatch

compare	function,	Return	Values

comparing	algorithms,	Analysis	of	Algorithms

comparison

string,	String	Comparison

tuple,	Tuples	Are	Immutable,	Comparing	Cards

comparison	sort,	Analysis	of	Basic	Python	Operations

composition,	Composition,	Parameters	and	Arguments,	Glossary,	Composition,
Decks

compound	statement,	Conditional	Execution,	Glossary

concatenation,	String	Operations,	Glossary,	Variables	and	Parameters	Are	Local,



Traversal	with	a	for	Loop,	Strings	Are	Immutable,	Lists	and	Strings

list,	List	Operations,	List	Arguments,	Exercises

condition,	Conditional	Execution,	Glossary,	The	while	Statement,	Infinite	loop

conditional,	Syntax	Errors

chained,	Chained	Conditionals,	Glossary

nested,	Nested	Conditionals,	Glossary

conditional	execution,	Conditional	Execution

conditional	expression,	Conditional	Expressions,	Glossary

conditional	statement,	Conditional	Execution,	Glossary,	Boolean	Functions,
Conditional	Expressions

consistency	check,	Debugging,	Prototyping	versus	Planning

constant	time,	Hashtables

contributors,	Contributor	List

conversion,	type,	Function	Calls

copy

deep,	Copying

shallow,	Copying

slice,	String	Slices,	List	Slices

to	avoid	aliasing,	Debugging

copy	module,	Copying

copying	objects,	Copying

count	method,	Exercises

counter,	Looping	and	Counting,	Glossary,	Dictionary	as	a	Collection	of	Counters,
Global	Variables



Counter,	Counters

counting	and	looping,	Looping	and	Counting

Creative	Commons,	Acknowledgments

crossover	point,	Order	of	Growth,	Glossary

crosswords,	Reading	Word	Lists

cumulative	sum,	Exercises

D

data	encapsulation,	Data	Encapsulation,	Glossary

data	structure,	Debugging,	Glossary,	Data	Structures

database,	Databases,	Glossary

database	object,	Databases

datetime	module,	Exercises

dbm	module,	Databases

dead	code,	Return	Values,	Glossary,	I	added	so	many	print	statements	I	get
inundated	with	output.

debugger	(pdb),	When	I	run	the	program	I	get	an	exception.

debugging,	Debugging,	Debugging,	Glossary,	Debugging,	Debugging,	Debugging,
Debugging,	Debugging,	Debugging,	Debugging,	Debugging,	Debugging,	Debugging,
Debugging,	Debugging,	Debugging,	Debugging,	Debugging,	List	Comprehensions,
Debugging

by	bisection,	Debugging

emotional	response,	Debugging,	I’m	really,	really	stuck	and	I	need	help.

experimental,	Debugging

rubber	duck,	Glossary

superstition,	I’m	really,	really	stuck	and	I	need	help.



deck,	Inheritance

Deck	class,	Decks

deck,	playing	cards,	Decks

declaration,	Global	Variables,	Glossary

decrement,	Updating	Variables,	Glossary

deep	copy,	Copying,	Glossary

deepcopy	function,	Copying

def	keyword,	Adding	New	Functions

default	value,	Optional	Parameters,	Glossary,	The	init	Method

avoiding	mutable,	Exercises

defaultdict,	defaultdict

definition

circular,	More	Recursion

class,	Programmer-Defined	Types

function,	Adding	New	Functions

recursive,	Exercises

del	operator,	Deleting	Elements

deletion,	element	of	list,	Deleting	Elements

delimiter,	Lists	and	Strings,	Glossary

designed	development,	Glossary

deterministic,	Random	Numbers,	Glossary

development	plan,	Glossary

data	encapsulation,	Data	Encapsulation,	Glossary



designed,	Prototyping	versus	Planning

encapsulation	and	generalization,	A	Development	Plan

incremental,	Incremental	Development,	Syntax	Errors

prototype	and	patch,	Pure	Functions,	Prototyping	versus	Planning

random	walk	programming,	Debugging,	I’m	really,	really	stuck	and	I	need	help.

reduction,	Search,	Looping	with	Indices,	Glossary

diagram

call	graph,	Glossary

class,	Class	Diagrams,	Glossary

object,	Attributes,	Rectangles,	Copying,	Glossary,	Time,	Class	Attributes

stack,	Stack	Diagrams,	List	Arguments

state,	Assignment	Statements,	Reassignment,	Debugging,	Lists	Are	Mutable,
Objects	and	Values,	Aliasing,	Dictionaries	and	Lists,	Dictionaries	and	Tuples,
Attributes,	Rectangles,	Copying,	Time,	Class	Attributes

__dict__	attribute,	Debugging

dict	function,	A	Dictionary	Is	a	Mapping

dictionary,	A	Dictionary	Is	a	Mapping,	A	Dictionary	Is	a	Mapping,	Glossary,
Dictionaries	and	Tuples,	When	I	run	the	program	I	get	an	exception.

initialize,	Dictionaries	and	Tuples

invert,	Dictionaries	and	Lists

lookup,	Reverse	Lookup

looping	with,	Looping	and	Dictionaries

reverse	lookup,	Reverse	Lookup

subtraction,	Dictionary	Subtraction



traversal,	Dictionaries	and	Tuples,	Debugging

dictionary	methods,	Analysis	of	Basic	Python	Operations

dbm	module,	Databases

dictionary	subtraction,	Sets

diff,	Exercises

Dijkstra,	Edsger,	Debugging

dir	function,	When	I	run	the	program	I	get	an	exception.

directory,	Filenames	and	Paths,	Glossary

walk,	Filenames	and	Paths

working,	Filenames	and	Paths

dispatch,	type-based,	Type-Based	Dispatch,	Polymorphism

divisibility,	Floor	Division	and	Modulus

division

floating-point,	Floor	Division	and	Modulus

floor,	Floor	Division	and	Modulus,	Debugging,	Glossary

divmod,	Tuples	as	Return	Values,	Prototyping	versus	Planning

docstring,	docstring,	Glossary,	Programmer-Defined	Types

dot	notation,	Math	Functions,	Glossary,	String	Methods,	Attributes,	Printing
Objects,	Class	Attributes

Double	Day,	Exercises

double	letters,	Exercises

Doyle,	Arthur	Conan,	Debugging

duplicate,	Exercises,	Exercises,	Exercises,	Sets

E



element,	A	List	Is	a	Sequence,	Glossary

element	deletion,	Deleting	Elements

elif	keyword,	Chained	Conditionals

Elkner,	Jeff,	The	Strange	History	of	This	Book,	Acknowledgments

ellipses,	Adding	New	Functions

else	keyword,	Alternative	Execution

email	address,	Tuple	Assignment

embedded	object,	Rectangles,	Glossary,	Exercises

copying,	Copying

emotional	debugging,	Debugging,	I’m	really,	really	stuck	and	I	need	help.

empty	list,	A	List	Is	a	Sequence

empty	string,	Glossary,	Lists	and	Strings

encapsulation,	Encapsulation,	Glossary,	Composition,	Exercises,	Looping	and
Counting,	Inheritance

encode,	Card	Objects,	Glossary

encrypt,	Card	Objects

end	of	line	character,	Debugging

enumerate	function,	Lists	and	Tuples

enumerate	object,	Lists	and	Tuples

epsilon,	Square	Roots

equality	and	assignment,	Reassignment

equivalence,	Objects	and	Values,	Copying

equivalent,	Glossary



error

runtime,	Debugging,	Infinite	Recursion,	Debugging,	Debugging

semantic,	Debugging,	Debugging,	Semantic	Errors

shape,	Debugging

syntax,	Debugging,	Debugging

error	checking,	Checking	Types

error	message,	Exercises,	Debugging,	Debugging,	Syntax	Errors

eval	function,	Exercises

evaluate,	Expressions	and	Statements

exception,	Debugging,	Glossary,	Debugging,	When	I	run	the	program	I	get	an
exception.

AttributeError,	Debugging,	When	I	run	the	program	I	get	an	exception.

IndexError,	len,	Debugging,	Lists	Are	Mutable,	When	I	run	the	program	I	get	an
exception.

IOError,	Catching	Exceptions

KeyError,	A	Dictionary	Is	a	Mapping,	When	I	run	the	program	I	get	an	exception.

LookupError,	Reverse	Lookup

NameError,	Variables	and	Parameters	Are	Local,	When	I	run	the	program	I	get
an	exception.

OverflowError,	Debugging

RuntimeError,	Infinite	Recursion

StopIteration,	Generator	Expressions

SyntaxError,	Composition

TypeError,	A	String	Is	a	Sequence,	Strings	Are	Immutable,	Dictionaries	and	Lists,



Tuples	Are	Immutable,	Variable-Length	Argument	Tuples,	Format	Operator,
Another	Example,	When	I	run	the	program	I	get	an	exception.

UnboundLocalError,	Global	Variables

ValueError,	Keyboard	Input,	Tuple	Assignment

exception,	catching,	Catching	Exceptions

execute,	Expressions	and	Statements,	Glossary

exists	function,	Filenames	and	Paths

experimental	debugging,	Debugging,	Debugging

exponent,	Order	of	Growth

exponential	growth,	Order	of	Growth

expression,	Expressions	and	Statements,	Glossary

big	and	hairy,	I’ve	got	a	big	hairy	expression	and	it	doesn’t	do	what	I	expect.

boolean,	Boolean	Expressions,	Glossary

conditional,	Conditional	Expressions,	Glossary

generator,	Generator	Expressions,	any	and	all,	Glossary

extend	method,	List	Methods

F

factorial,	Conditional	Expressions

factorial	function,	More	Recursion,	Checking	Types

factory,	Glossary

factory	function,	defaultdict,	defaultdict

False	special	value,	Boolean	Expressions

Fermat’s	Last	Theorem,	Exercises



fibonacci	function,	One	More	Example,	Memos

file,	Persistence

permission,	Catching	Exceptions

reading	and	writing,	Reading	and	Writing

file	object,	Reading	Word	Lists,	Glossary

filename,	Filenames	and	Paths

filter	pattern,	Map,	Filter	and	Reduce,	Glossary,	List	Comprehensions

find	function,	Searching

flag,	Global	Variables,	Glossary

float	function,	Function	Calls

float	type,	Values	and	Types

floating-point,	Values	and	Types,	Glossary,	Square	Roots,	Conditional	Expressions

floating-point	division,	Floor	Division	and	Modulus

floor	division,	Floor	Division	and	Modulus,	Debugging,	Glossary

flow	of	execution,	Flow	of	Execution,	Glossary,	One	More	Example,	Debugging,	The
while	Statement,	Debugging,	Flow	of	execution

flower,	Exercises

folder,	Filenames	and	Paths

for	loop,	Simple	Repetition,	Recursion,	Traversal	with	a	for	Loop,	Traversing	a	List,
Lists	and	Tuples,	List	Comprehensions

formal	language,	Formal	and	Natural	Languages,	Glossary

format	operator,	Format	Operator,	Glossary,	When	I	run	the	program	I	get	an
exception.

format	sequence,	Format	Operator,	Glossary



format	string,	Format	Operator,	Glossary

frame,	Stack	Diagrams,	Glossary,	Stack	Diagrams	for	Recursive	Functions,	More
Recursion,	Memos

Free	Documentation	License,	GNU,	The	Strange	History	of	This	Book,
Acknowledgments

frequency,	Dictionary	as	a	Collection	of	Counters

letter,	Exercises

word,	Word	Frequency	Analysis,	Exercises

fruitful	function,	Fruitful	Functions	and	Void	Functions,	Glossary

frustration,	I’m	really,	really	stuck	and	I	need	help.

function,	The	First	Program,	Functions,	Adding	New	Functions,	Glossary,	Object-
Oriented	Features

abs,	Return	Values

ack,	Exercises,	Exercises

arc,	Exercises

choice,	Random	Numbers

circle,	Exercises

compare,	Return	Values

deepcopy,	Copying

dict,	A	Dictionary	Is	a	Mapping

dir,	When	I	run	the	program	I	get	an	exception.

enumerate,	Lists	and	Tuples

eval,	Exercises

exists,	Filenames	and	Paths



factorial,	More	Recursion,	Conditional	Expressions

fibonacci,	One	More	Example,	Memos

find,	Searching

float,	Function	Calls

fruitful,	Fruitful	Functions	and	Void	Functions

getattr,	Debugging

getcwd,	Filenames	and	Paths

hasattr,	Debugging,	Debugging

input,	Keyboard	Input

int,	Function	Calls

isinstance,	Checking	Types,	Debugging,	Type-Based	Dispatch

len,	Exercises,	len,	A	Dictionary	Is	a	Mapping

list,	Lists	and	Strings

log,	Math	Functions

math,	Math	Functions

max,	Tuples	as	Return	Values,	Variable-Length	Argument	Tuples

min,	Tuples	as	Return	Values,	Variable-Length	Argument	Tuples

open,	Reading	Word	Lists,	Reading	Word	Lists,	Reading	and	Writing,	Catching
Exceptions,	Databases

polygon,	Exercises

popen,	Pipes

programmer	defined,	Parameters	and	Arguments,	Optional	Parameters

randint,	Exercises,	Random	Numbers



random,	Random	Numbers

recursive,	Recursion

reload,	Writing	Modules,	I	keep	making	changes	and	it	makes	no	difference.

repr,	Debugging

reversed,	Sequences	of	Sequences

shuffle,	Add,	Remove,	Shuffle	and	Sort

sorted,	Looping	and	Dictionaries,	Sequences	of	Sequences

sqrt,	Math	Functions,	Incremental	Development

str,	Function	Calls

sum,	Variable-Length	Argument	Tuples,	Generator	Expressions

trigonometric,	Math	Functions

tuple,	Tuples	Are	Immutable

type,	Debugging

void,	Fruitful	Functions	and	Void	Functions

zip,	Lists	and	Tuples

function	argument,	Parameters	and	Arguments

function	call,	Function	Calls,	Glossary

function	composition,	Composition

function	definition,	Adding	New	Functions,	Definitions	and	Uses,	Glossary,	Glossary

function	frame,	Stack	Diagrams,	Glossary,	Stack	Diagrams	for	Recursive	Functions,
More	Recursion,	Memos

function	object,	Exercises

function	parameter,	Parameters	and	Arguments



function	syntax,	Printing	Objects

function	type,	Adding	New	Functions

modifier,	Modifiers

pure,	Pure	Functions

function,	reasons	for,	Why	Functions?

function,	tuple	as	return	value,	Tuples	as	Return	Values

functional	programming	style,	Modifiers,	Glossary

G

gamma	function,	Checking	Types

gather,	Variable-Length	Argument	Tuples,	Glossary,	Gathering	Keyword	Args

GCD	(greatest	common	divisor),	Exercises

generalization,	Generalization,	Glossary,	Search,	Prototyping	versus	Planning

generator	expression,	Generator	Expressions,	any	and	all,	Glossary

generator	object,	Generator	Expressions

geometric	resizing,	Hashtables

get	method,	Dictionary	as	a	Collection	of	Counters

getattr	function,	Debugging

getcwd	function,	Filenames	and	Paths

global	statement,	Global	Variables,	Glossary

global	variable,	Global	Variables,	Glossary

update,	Global	Variables

GNU	Free	Documentation	License,	The	Strange	History	of	This	Book,
Acknowledgments

greatest	common	divisor	(GCD),	Exercises



grid,	Exercises

guardian	pattern,	Checking	Types,	Glossary,	Debugging

H

Hand	class,	Inheritance

hanging,	My	program	hangs.

HAS-A	relationship,	Class	Diagrams,	Glossary,	Glossary

hasattr	function,	Debugging,	Debugging

hash	function,	Dictionaries	and	Lists,	Glossary,	Hashtables

hashable,	Dictionaries	and	Lists,	Glossary,	Dictionaries	and	Tuples

HashMap,	Hashtables

hashtable,	Glossary,	Hashtables,	Glossary

header,	Adding	New	Functions,	Glossary,	Syntax	Errors

Hello,	World,	The	First	Program

hexadecimal,	Programmer-Defined	Types

high-level	language,	Glossary

histogram,	Dictionary	as	a	Collection	of	Counters,	Dictionary	as	a	Collection	of
Counters

random	choice,	Random	Numbers,	Random	Words

word	frequencies,	Word	Histogram

Holmes,	Sherlock,	Debugging

homophone,	Exercises

hypotenuse,	Incremental	Development

I



identical,	Glossary

identity,	Objects	and	Values,	Copying

if	statement,	Conditional	Execution

immutability,	Strings	Are	Immutable,	Strings	Are	Immutable,	Glossary,	Aliasing,
Dictionaries	and	Lists,	Tuples	Are	Immutable,	Sequences	of	Sequences

implementation,	Dictionary	as	a	Collection	of	Counters,	Glossary,	Data	Structures,
Interface	and	Implementation

import	statement,	Glossary,	Writing	Modules

in	operator,	Analysis	of	Search	Algorithms

in	operator,	The	in	Operator,	Search,	Lists	Are	Mutable,	A	Dictionary	Is	a	Mapping

increment,	Updating	Variables,	Glossary,	Modifiers,	Another	Example

incremental	development,	Glossary,	Syntax	Errors

indentation,	Adding	New	Functions,	Printing	Objects,	Syntax	Errors

index,	A	String	Is	a	Sequence,	A	String	Is	a	Sequence,	Debugging,	Glossary,	Lists	Are
Mutable,	A	Dictionary	Is	a	Mapping,	When	I	run	the	program	I	get	an	exception.

looping	with,	Looping	with	Indices,	Traversing	a	List

negative,	len

slice,	String	Slices,	List	Slices

starting	at	zero,	A	String	Is	a	Sequence,	Lists	Are	Mutable

IndexError,	len,	Debugging,	Lists	Are	Mutable,	When	I	run	the	program	I	get	an
exception.

indexing,	Analysis	of	Basic	Python	Operations

infinite	loop,	The	while	Statement,	Glossary,	My	program	hangs.,	Infinite	loop

infinite	recursion,	Infinite	Recursion,	Glossary,	Checking	Types,	My	program	hangs.,
Infinite	recursion



information	hiding,	Glossary

inheritance,	Inheritance,	Debugging,	Glossary,	Named	Tuples

init	method,	The	init	Method,	Debugging,	Card	Objects,	Decks,	Inheritance

initialization	(before	update),	Updating	Variables

initialization,	variable,	Glossary

input	function,	Keyboard	Input

instance,	Programmer-Defined	Types,	Glossary

as	argument,	Attributes

as	return	value,	Instances	as	Return	Values

instance	attribute,	Attributes,	Glossary,	Class	Attributes,	Glossary

instantiate,	Glossary

instantiation,	Programmer-Defined	Types

int	function,	Function	Calls

int	type,	Values	and	Types

integer,	Values	and	Types,	Glossary

interactive	mode,	Script	Mode,	Script	Mode,	Glossary,	Fruitful	Functions	and	Void
Functions

interface,	Interface	Design,	Debugging,	Glossary,	Interface	and	Implementation,
Debugging

interlocking	words,	Exercises

interpret,	Glossary

interpreter,	Running	Python

invariant,	Debugging,	Glossary



invert	dictionary,	Dictionaries	and	Lists

invocation,	String	Methods,	Glossary

IOError,	Catching	Exceptions

is	operator,	Objects	and	Values,	Copying

IS-A	relationship,	Class	Diagrams,	Glossary

isinstance	function,	Checking	Types,	Debugging,	Type-Based	Dispatch

item,	Strings	Are	Immutable,	Glossary,	A	List	Is	a	Sequence,	A	Dictionary	Is	a
Mapping

dictionary,	Glossary

item	assignment,	Strings	Are	Immutable,	Lists	Are	Mutable,	Tuples	Are	Immutable

item	update,	Traversing	a	List

items	method,	Dictionaries	and	Tuples

iteration,	The	while	Statement,	Glossary

iterator,	Lists	and	Tuples,	Lists	and	Tuples,	Dictionaries	and	Tuples,	Sequences	of
Sequences,	Glossary,	Analysis	of	Basic	Python	Operations

J

join,	Analysis	of	Basic	Python	Operations

join	method,	Lists	and	Strings,	Printing	the	Deck

K

Kangaroo	class,	Exercises

key,	A	Dictionary	Is	a	Mapping,	Glossary

key-value	pair,	A	Dictionary	Is	a	Mapping,	Glossary,	Dictionaries	and	Tuples

keyboard	input,	Keyboard	Input

KeyError,	A	Dictionary	Is	a	Mapping,	When	I	run	the	program	I	get	an	exception.,



Hashtables

keyword,	Variable	Names,	Glossary,	Syntax	Errors

def,	Adding	New	Functions

elif,	Chained	Conditionals

else,	Alternative	Execution

keyword	argument,	Generalization,	Glossary,	Gathering	Keyword	Args

Koch	curve,	Exercises

L

language

formal,	Formal	and	Natural	Languages

natural,	Formal	and	Natural	Languages

safe,	Debugging

Turing	complete,	More	Recursion

leading	coefficient,	Order	of	Growth

leading	term,	Order	of	Growth,	Glossary

leap	of	faith,	Leap	of	Faith

len	function,	Exercises,	len,	A	Dictionary	Is	a	Mapping

letter	frequency,	Exercises

letter	rotation,	Exercises,	Exercises

linear,	Glossary

linear	growth,	Order	of	Growth

linear	search,	Analysis	of	Search	Algorithms

LinearMap,	Hashtables



Linux,	Debugging

lipogram,	Exercises

Liskov	substitution	principle,	Debugging

list,	A	List	Is	a	Sequence,	Lists	and	Strings,	Glossary,	Sequences	of	Sequences,	List
Comprehensions

as	argument,	List	Arguments

concatenation,	List	Operations,	List	Arguments,	Exercises

copy,	List	Slices

element,	Lists	Are	Mutable

empty,	A	List	Is	a	Sequence

function,	Lists	and	Strings

index,	Lists	Are	Mutable

membership,	Lists	Are	Mutable

method,	List	Methods

nested,	A	List	Is	a	Sequence,	Traversing	a	List

of	objects,	Decks

of	tuples,	Lists	and	Tuples

operation,	List	Operations

repetition,	List	Operations

slice,	List	Slices

traversal,	Traversing	a	List

list	comprehension,	List	Comprehensions,	Glossary

list	methods,	Analysis	of	Basic	Python	Operations



literalness,	Formal	and	Natural	Languages

local	variable,	Variables	and	Parameters	Are	Local,	Glossary

log	function,	Math	Functions

logarithm,	Exercises

logarithmic	growth,	Order	of	Growth

logical	operator,	Boolean	Expressions,	Logical	Operators

lookup,	Glossary

lookup,	dictionary,	Reverse	Lookup

LookupError,	Reverse	Lookup

loop,	Simple	Repetition,	Glossary,	The	while	Statement,	Lists	and	Tuples

condition,	Infinite	loop

for,	Simple	Repetition,	Recursion,	Traversal	with	a	for	Loop,	Traversing	a	List

infinite,	The	while	Statement,	Infinite	loop

nested,	Decks

traversal,	Traversal	with	a	for	Loop

while,	The	while	Statement

loop	variable,	List	Comprehensions

looping

with	dictionaries,	Looping	and	Dictionaries

with	indices,	Looping	with	Indices,	Traversing	a	List

with	strings,	Looping	and	Counting

looping	and	counting,	Looping	and	Counting

low-level	language,	Glossary



ls	(Unix	command),	Pipes

M

machine	model,	Analysis	of	Algorithms,	Glossary

maintainable,	Interface	and	Implementation

map	pattern,	Map,	Filter	and	Reduce,	Glossary

map	to,	Card	Objects

mapping,	Glossary,	Markov	Analysis

Markov	analysis,	Markov	Analysis

mash-up,	Markov	Analysis

math	function,	Math	Functions

matplotlib,	Exercises

max	function,	Tuples	as	Return	Values,	Variable-Length	Argument	Tuples

McCloskey,	Robert,	Traversal	with	a	for	Loop

md5,	Pipes

MD5	algorithm,	Exercises

md5sum,	Exercises

membership

binary	search,	Exercises

bisection	search,	Exercises

dictionary,	A	Dictionary	Is	a	Mapping

list,	Lists	Are	Mutable

set,	Exercises

memo,	Memos,	Glossary



mental	model,	My	program	doesn’t	work.

metaphor,	method	invocation,	Printing	Objects

metathesis,	Exercises

method,	Glossary,	String	Methods,	Object-Oriented	Features,	Glossary

add,	Operator	Overloading

append,	List	Methods,	List	Arguments,	Decks,	Add,	Remove,	Shuffle	and	Sort

close,	Reading	and	Writing,	Databases,	Pipes

count,	Exercises

extend,	List	Methods

get,	Dictionary	as	a	Collection	of	Counters

init,	The	init	Method,	Card	Objects,	Decks,	Inheritance

items,	Dictionaries	and	Tuples

join,	Lists	and	Strings,	Printing	the	Deck

mro,	Debugging

pop,	Deleting	Elements,	Add,	Remove,	Shuffle	and	Sort

radd,	Type-Based	Dispatch

read,	Pipes

readline,	Reading	Word	Lists,	Pipes

remove,	Deleting	Elements

replace,	Word	Frequency	Analysis

setdefault,	Exercises

sort,	List	Methods,	Debugging,	Add,	Remove,	Shuffle	and	Sort



split,	Lists	and	Strings,	Tuple	Assignment

string,	Exercises

strip,	Reading	Word	Lists,	Word	Frequency	Analysis

translate,	Word	Frequency	Analysis

update,	Dictionaries	and	Tuples

values,	A	Dictionary	Is	a	Mapping

void,	List	Methods

__cmp__,	Comparing	Cards

__str__,	The	__str__	Method,	Printing	the	Deck

method	append,	Exercises

method	resolution	order,	Debugging

method	syntax,	Printing	Objects

method,	list,	List	Methods

Meyers,	Chris,	Acknowledgments

min	function,	Tuples	as	Return	Values,	Variable-Length	Argument	Tuples

Moby	Project,	Reading	Word	Lists

model,	mental,	My	program	doesn’t	work.

modifier,	Modifiers,	Glossary

module,	Math	Functions,	Glossary,	Glossary

bisect,	Exercises

collections,	Counters,	defaultdict,	Named	Tuples

copy,	Copying



datetime,	Exercises

dbm,	Databases

os,	Filenames	and	Paths

pickle,	Persistence,	Pickling

pprint,	Debugging

profile,	Data	Structures

random,	Exercises,	Random	Numbers,	Add,	Remove,	Shuffle	and	Sort

reload,	Writing	Modules,	I	keep	making	changes	and	it	makes	no	difference.

shelve,	Pickling

string,	Word	Frequency	Analysis

structshape,	Debugging

time,	Exercises

module	object,	Math	Functions,	Writing	Modules

module,	writing,	Writing	Modules

modulus	operator,	Floor	Division	and	Modulus,	Glossary

Monty	Python	and	the	Holy	Grail,	Pure	Functions

MP3,	Exercises

mro	method,	Debugging

multiline	string,	docstring,	Syntax	Errors

multiplicity	(in	class	diagram),	Class	Diagrams,	Glossary

multiset,	Counters

mutability,	Strings	Are	Immutable,	Lists	Are	Mutable,	List	Slices,	Aliasing,	Global
Variables,	Tuples	Are	Immutable,	Sequences	of	Sequences,	Objects	Are	Mutable



mutable	object,	as	default	value,	Exercises

N

namedtuple,	Named	Tuples

NameError,	Variables	and	Parameters	Are	Local,	When	I	run	the	program	I	get	an
exception.

NaN,	Conditional	Expressions

natural	language,	Formal	and	Natural	Languages,	Glossary

negative	index,	len

nested	conditional,	Nested	Conditionals,	Glossary

nested	list,	A	List	Is	a	Sequence,	Traversing	a	List,	Glossary

newline,	Keyboard	Input,	Printing	the	Deck

Newton’s	method,	Square	Roots

None	special	value,	Fruitful	Functions	and	Void	Functions,	Glossary,	Return	Values,
List	Methods,	Deleting	Elements

NoneType	type,	Fruitful	Functions	and	Void	Functions

not	operator,	Logical	Operators

number,	random,	Random	Numbers

O

Obama,	Barack,	Analysis	of	Algorithms

object,	Strings	Are	Immutable,	Glossary,	Objects	and	Values,	Objects	and	Values,
Glossary

bytes,	Databases,	Glossary

class,	Programmer-Defined	Types,	Programmer-Defined	Types,	Glossary,	Named
Tuples

copying,	Copying



Counter,	Counters

database,	Databases

defaultdict,	defaultdict

embedded,	Rectangles,	Glossary,	Exercises

enumerate,	Lists	and	Tuples

file,	Reading	Word	Lists,	Glossary

function,	Exercises

generator,	Generator	Expressions

module,	Writing	Modules

mutable,	Objects	Are	Mutable

namedtuple,	Named	Tuples

pipe,	Glossary

printing,	Printing	Objects

set,	Sets

zip,	Glossary

object	diagram,	Attributes,	Rectangles,	Copying,	Glossary,	Time,	Class	Attributes

object-oriented	design,	Interface	and	Implementation

object-oriented	language,	Glossary

object-oriented	programming,	Classes	and	Objects,	Object-Oriented	Features,
Glossary,	Inheritance

odometer,	Exercises

Olin	College,	The	Strange	History	of	This	Book

open	function,	Reading	Word	Lists,	Reading	Word	Lists,	Reading	and	Writing,



Catching	Exceptions,	Databases

operand,	Glossary

operator,	Glossary

and,	Logical	Operators

arithmetic,	Arithmetic	Operators

bitwise,	Arithmetic	Operators

boolean,	The	in	Operator

bracket,	A	String	Is	a	Sequence,	Lists	Are	Mutable,	Tuples	Are	Immutable

del,	Deleting	Elements

format,	Format	Operator,	Glossary,	When	I	run	the	program	I	get	an	exception.

in,	The	in	Operator,	Search,	Lists	Are	Mutable,	A	Dictionary	Is	a	Mapping

is,	Objects	and	Values,	Copying

logical,	Boolean	Expressions,	Logical	Operators

modulus,	Floor	Division	and	Modulus,	Glossary

not,	Logical	Operators

or,	Logical	Operators

overloading,	Glossary

relational,	Boolean	Expressions,	Comparing	Cards

slice,	String	Slices,	Exercises,	List	Slices,	List	Arguments,	Tuples	Are	Immutable

string,	String	Operations

update,	Map,	Filter	and	Reduce

operator	overloading,	Operator	Overloading,	Comparing	Cards



optional	argument,	String	Methods,	Glossary,	Exercises,	Lists	and	Strings,	Reverse
Lookup,	Conditional	Expressions

optional	parameter,	Optional	Parameters,	The	init	Method

or	operator,	Logical	Operators

order	of	growth,	Order	of	Growth,	Glossary

order	of	operations,	Order	of	Operations,	Glossary,	I’ve	got	a	big	hairy	expression
and	it	doesn’t	do	what	I	expect.

os	module,	Filenames	and	Paths

other	(parameter	name),	A	More	Complicated	Example

OverflowError,	Debugging

overloading,	Glossary

override,	Optional	Parameters,	Glossary,	The	init	Method,	Comparing	Cards,
Inheritance,	Debugging

P

palindrome,	Exercises,	Exercises,	Looping	with	Indices,	Exercises,	Exercises

parameter,	Parameters	and	Arguments,	Variables	and	Parameters	Are	Local,
Glossary,	List	Arguments

gather,	Variable-Length	Argument	Tuples

optional,	Optional	Parameters,	The	init	Method

other,	A	More	Complicated	Example

self,	Printing	Objects

parent	class,	Inheritance,	Inheritance,	Glossary

parentheses

argument	in,	Function	Calls

empty,	Adding	New	Functions,	String	Methods



parameters	in,	Parameters	and	Arguments,	Variables	and	Parameters	Are	Local

parent	class	in,	Inheritance

tuples	in,	Tuples	Are	Immutable

parse,	Formal	and	Natural	Languages,	Glossary

pass	statement,	Conditional	Execution

path,	Filenames	and	Paths,	Glossary

absolute,	Filenames	and	Paths

relative,	Filenames	and	Paths

pattern

filter,	Map,	Filter	and	Reduce,	Glossary,	List	Comprehensions

guardian,	Checking	Types,	Glossary,	Debugging

map,	Map,	Filter	and	Reduce,	Glossary

reduce,	Map,	Filter	and	Reduce,	Glossary

search,	Searching,	Glossary,	Search,	Reverse	Lookup,	any	and	all

swap,	Tuple	Assignment

pdb	(Python	debugger),	When	I	run	the	program	I	get	an	exception.

PEMDAS,	Order	of	Operations

permission,	file,	Catching	Exceptions

persistence,	Persistence,	Glossary

pi,	Math	Functions,	Exercises

pickle	module,	Persistence,	Pickling

pickling,	Pickling

pie,	Exercises



pipe,	Pipes

pipe	object,	Glossary

plain	text,	Reading	Word	Lists,	Word	Frequency	Analysis

planned	development,	Prototyping	versus	Planning

poetry,	Formal	and	Natural	Languages

Point	class,	Programmer-Defined	Types,	The	init	Method

point,	mathematical,	Programmer-Defined	Types

poker,	Inheritance,	Exercises

polygon	function,	Exercises

polymorphism,	Polymorphism,	Glossary

pop	method,	Deleting	Elements,	Add,	Remove,	Shuffle	and	Sort

popen	function,	Pipes

portability,	Glossary

positional	argument,	Another	Example,	Glossary,	Gathering	Keyword	Args

postcondition,	Debugging,	Debugging,	Debugging

pprint	module,	Debugging

precedence,	I’ve	got	a	big	hairy	expression	and	it	doesn’t	do	what	I	expect.

precondition,	Debugging,	Glossary,	Glossary,	Debugging,	Debugging

prefix,	Markov	Analysis

pretty	print,	Debugging

print	function,	The	First	Program

print	statement,	The	First	Program,	Glossary,	The	__str__	Method,	I	added	so	many
print	statements	I	get	inundated	with	output.



problem	solving,	The	Way	of	the	Program,	Glossary

profile	module,	Data	Structures

program,	What	Is	a	Program?,	Glossary

program	testing,	Debugging

programmer-defined	function,	Parameters	and	Arguments,	Optional	Parameters

programmer-defined	type,	Programmer-Defined	Types,	Glossary,	Time,	Object-
Oriented	Features,	Operator	Overloading,	Comparing	Cards

Project	Gutenberg,	Word	Frequency	Analysis

prompt,	Running	Python,	Glossary,	Keyboard	Input

prose,	Formal	and	Natural	Languages

prototype	and	patch,	Pure	Functions,	Prototyping	versus	Planning,	Glossary

pseudorandom,	Random	Numbers,	Glossary

pure	function,	Pure	Functions,	Glossary

Puzzler,	Exercises,	Exercises,	Exercises,	Exercises,	Exercises

Pythagorean	theorem,	Incremental	Development

Python	2,	Running	Python,	The	First	Program,	Generalization,	Floor	Division	and
Modulus,	Keyboard	Input

Python	in	a	browser,	Running	Python

Python,	running,	Running	Python

PythonAnywhere,	Running	Python

Q

quadratic,	Glossary

quadratic	growth,	Order	of	Growth



quotation	mark,	The	First	Program,	Values	and	Types,	docstring,	String	Slices,
Syntax	Errors

R

radd	method,	Type-Based	Dispatch

radian,	Math	Functions

radix	sort,	Analysis	of	Algorithms

rage,	I’m	really,	really	stuck	and	I	need	help.

raise	statement,	Reverse	Lookup,	Glossary,	Debugging

Ramanujan,	Srinivasa,	Exercises

randint	function,	Exercises,	Random	Numbers

random	function,	Random	Numbers

random	module,	Exercises,	Random	Numbers,	Add,	Remove,	Shuffle	and	Sort

random	number,	Random	Numbers

random	text,	Markov	Analysis

random	walk	programming,	Debugging,	I’m	really,	really	stuck	and	I	need	help.

rank,	Card	Objects

read	method,	Pipes

readline	method,	Reading	Word	Lists,	Pipes

reassignment,	Reassignment,	Glossary,	Lists	Are	Mutable,	Global	Variables

Rectangle	class,	Rectangles

recursion,	Recursion,	Recursion,	Glossary,	More	Recursion,	Leap	of	Faith

base	case,	Stack	Diagrams	for	Recursive	Functions

infinite,	Infinite	Recursion,	Checking	Types,	Infinite	recursion



recursive	definition,	More	Recursion,	Exercises

red-black	tree,	Hashtables

reduce	pattern,	Map,	Filter	and	Reduce,	Glossary

reducible	word,	Exercises,	Exercises

reduction	to	a	previously	solved	problem,	Search,	Looping	with	Indices,	Glossary

redundancy,	Formal	and	Natural	Languages

refactoring,	Refactoring,	Refactoring,	Glossary,	Data	Encapsulation

reference,	Aliasing,	List	Arguments,	Glossary

aliasing,	Aliasing

rehashing,	Hashtables

relational	operator,	Boolean	Expressions,	Comparing	Cards

relative	path,	Filenames	and	Paths,	Glossary

reload	function,	Writing	Modules,	I	keep	making	changes	and	it	makes	no	difference.

remove	method,	Deleting	Elements

repetition,	Simple	Repetition

list,	List	Operations

replace	method,	Word	Frequency	Analysis

repr	function,	Debugging

representation,	Programmer-Defined	Types,	Rectangles,	Card	Objects

return	statement,	Recursion,	Return	Values,	I’ve	got	a	function	that	doesn’t	return
what	I	expect.

return	value,	Function	Calls,	Glossary,	Return	Values,	Instances	as	Return	Values

tuple,	Tuples	as	Return	Values



reverse	lookup,	Glossary

reverse	lookup,	dictionary,	Reverse	Lookup

reverse	word	pair,	Exercises

reversed	function,	Sequences	of	Sequences

rotation,	letter,	Exercises,	Exercises

rubber	duck	debugging,	Glossary

running	pace,	Exercises,	Exercises,	Exercises

running	Python,	Running	Python

runtime	error,	Debugging,	Infinite	Recursion,	Debugging,	Debugging,	When	I	run
the	program	I	get	an	exception.

RuntimeError,	Infinite	Recursion,	Checking	Types

S

safe	language,	Debugging

sanity	check,	Debugging

scaffolding,	Incremental	Development,	Glossary,	Debugging

scatter,	Variable-Length	Argument	Tuples,	Glossary,	Gathering	Keyword	Args

Schmidt,	Eric,	Analysis	of	Algorithms

Scrabble,	Exercises

script,	Script	Mode,	Glossary

script	mode,	Script	Mode,	Script	Mode,	Glossary,	Fruitful	Functions	and	Void
Functions

search,	Reverse	Lookup,	Analysis	of	Search	Algorithms,	Glossary

search	pattern,	Searching,	Glossary,	Search,	any	and	all



search,	binary,	Exercises

search,	bisection,	Exercises

self	(parameter	name),	Printing	Objects

semantic	error,	Debugging,	Glossary,	Debugging,	Semantic	Errors

semantics,	Glossary,	Object-Oriented	Features

sequence,	Values	and	Types,	Strings,	A	String	Is	a	Sequence,	Glossary,	A	List	Is	a
Sequence,	Lists	and	Strings,	Tuples	Are	Immutable,	Sequences	of	Sequences

set,	Dictionary	Subtraction,	Sets

anagram,	Exercises,	Exercises

set	membership,	Exercises

set	subtraction,	Sets

setdefault,	defaultdict

setdefault	method,	Exercises

sexagesimal,	Prototyping	versus	Planning

shallow	copy,	Copying,	Glossary

shape,	Glossary

shape	error,	Debugging

shell,	Pipes,	Glossary

shelve	module,	Pickling

shuffle	function,	Add,	Remove,	Shuffle	and	Sort

sine	function,	Math	Functions

singleton,	Dictionaries	and	Lists,	Glossary,	Tuples	Are	Immutable

slice,	Glossary



copy,	String	Slices,	List	Slices

list,	List	Slices

string,	String	Slices

tuple,	Tuples	Are	Immutable

update,	List	Slices

slice	operator,	String	Slices,	Exercises,	List	Slices,	List	Arguments,	Tuples	Are
Immutable

sort	method,	List	Methods,	Debugging,	Add,	Remove,	Shuffle	and	Sort

sorted	function,	Looping	and	Dictionaries,	Sequences	of	Sequences

sorting,	Analysis	of	Basic	Python	Operations,	Analysis	of	Basic	Python	Operations

special	case,	Debugging,	Glossary,	Modifiers

special	value

False,	Boolean	Expressions

None,	Fruitful	Functions	and	Void	Functions,	Glossary,	Return	Values,	List
Methods,	Deleting	Elements

True,	Boolean	Expressions

spiral,	Exercises

split	method,	Lists	and	Strings,	Tuple	Assignment

sqrt,	Incremental	Development

sqrt	function,	Math	Functions

square	root,	Square	Roots

squiggly	bracket,	A	Dictionary	Is	a	Mapping

stable	sort,	Analysis	of	Basic	Python	Operations



stack	diagram,	Stack	Diagrams,	Stack	Diagrams,	Glossary,	Exercises,	Stack
Diagrams	for	Recursive	Functions,	More	Recursion,	Exercises,	List	Arguments

state	diagram,	Assignment	Statements,	Glossary,	Reassignment,	Debugging,	Lists
Are	Mutable,	Objects	and	Values,	Aliasing,	Dictionaries	and	Lists,	Dictionaries	and
Tuples,	Attributes,	Rectangles,	Copying,	Time,	Class	Attributes

statement,	Expressions	and	Statements,	Glossary

assert,	Debugging,	Glossary

assignment,	Assignment	Statements,	Reassignment

break,	break

compound,	Conditional	Execution

conditional,	Conditional	Execution,	Glossary,	Boolean	Functions,	Conditional
Expressions

for,	Simple	Repetition,	Traversal	with	a	for	Loop,	Traversing	a	List

global,	Global	Variables,	Glossary

if,	Conditional	Execution

import,	Glossary,	Writing	Modules

pass,	Conditional	Execution

print,	The	First	Program,	Glossary,	The	__str__	Method,	I	added	so	many	print
statements	I	get	inundated	with	output.

raise,	Reverse	Lookup,	Glossary,	Debugging

return,	Recursion,	Return	Values,	I’ve	got	a	function	that	doesn’t	return	what	I
expect.

try,	Catching	Exceptions,	Debugging

while,	The	while	Statement

step	size,	Exercises



StopIteration,	Generator	Expressions

str	function,	Function	Calls

__str__	method,	The	__str__	Method,	Printing	the	Deck

string,	Values	and	Types,	Glossary,	Lists	and	Strings,	Sequences	of	Sequences

accumulator,	Printing	the	Deck

comparison,	String	Comparison

empty,	Lists	and	Strings

immutable,	Strings	Are	Immutable

method,	String	Methods

multiline,	docstring,	Syntax	Errors

operation,	String	Operations

slice,	String	Slices

triple-quoted,	docstring

string	concatenation,	Analysis	of	Basic	Python	Operations

string	method,	Exercises

string	methods,	Analysis	of	Basic	Python	Operations

string	module,	Word	Frequency	Analysis

string	representation,	Debugging,	The	__str__	Method

string	type,	Values	and	Types

strip	method,	Reading	Word	Lists,	Word	Frequency	Analysis

structshape	module,	Debugging

structure,	Formal	and	Natural	Languages



subject,	Printing	Objects,	Glossary

subset,	Sets

subtraction

dictionary,	Dictionary	Subtraction

with	borrowing,	Algorithms,	Prototyping	versus	Planning

suffix,	Markov	Analysis

suit,	Card	Objects

sum,	Generator	Expressions

sum	function,	Variable-Length	Argument	Tuples

superstitious	debugging,	I’m	really,	really	stuck	and	I	need	help.

swap	pattern,	Tuple	Assignment

syntax,	Formal	and	Natural	Languages,	Glossary,	Debugging,	Object-Oriented
Features,	Syntax	Errors

syntax	error,	Debugging,	Glossary,	Debugging

SyntaxError,	Composition

T

temporary	variable,	Return	Values,	Glossary,	I’ve	got	a	big	hairy	expression	and	it
doesn’t	do	what	I	expect.

test	case,	minimal,	I	added	so	many	print	statements	I	get	inundated	with	output.

testing

and	absence	of	bugs,	Debugging

incremental	development,	Incremental	Development

is	hard,	Debugging

knowing	the	answer,	Incremental	Development



leap	of	faith,	Leap	of	Faith

minimal	test	case,	I	added	so	many	print	statements	I	get	inundated	with	output.

text

plain,	Reading	Word	Lists,	Word	Frequency	Analysis

random,	Markov	Analysis

text	file,	Glossary

Time	class,	Time

time	module,	Exercises

token,	Formal	and	Natural	Languages,	Glossary

traceback,	Stack	Diagrams,	Glossary,	Infinite	Recursion,	Debugging,	Reverse
Lookup,	When	I	run	the	program	I	get	an	exception.

translate	method,	Word	Frequency	Analysis

traversal,	Traversal	with	a	for	Loop,	Traversal	with	a	for	Loop,	Searching,
Debugging,	Glossary,	Search,	Search,	Map,	Filter	and	Reduce,	Glossary,	Dictionary
as	a	Collection	of	Counters,	Looping	and	Dictionaries,	Lists	and	Tuples,	Lists	and
Tuples,	Word	Histogram

dictionary,	Dictionaries	and	Tuples,	Debugging

list,	Traversing	a	List

triangle,	Exercises

trigonometric	function,	Math	Functions

triple-quoted	string,	docstring

True	special	value,	Boolean	Expressions

try	statement,	Catching	Exceptions,	Debugging

tuple,	Tuples	Are	Immutable,	Tuples	as	Return	Values,	Sequences	of	Sequences,
Glossary



as	key	in	dictionary,	Dictionaries	and	Tuples,	Data	Structures

assignment,	Tuple	Assignment

comparison,	Tuples	Are	Immutable,	Comparing	Cards

in	brackets,	Dictionaries	and	Tuples

singleton,	Tuples	Are	Immutable

slice,	Tuples	Are	Immutable

tuple	assignment,	Tuples	as	Return	Values,	Lists	and	Tuples,	Glossary

tuple	function,	Tuples	Are	Immutable

tuple	methods,	Analysis	of	Basic	Python	Operations

Turing	complete	language,	More	Recursion

Turing	Thesis,	More	Recursion

Turing,	Alan,	More	Recursion

turtle	typewriter,	Exercises

TurtleWorld,	Exercises

type,	Values	and	Types,	Values	and	Types,	Glossary

bool,	Boolean	Expressions

dict,	A	Dictionary	Is	a	Mapping

file,	Persistence

float,	Values	and	Types

function,	Adding	New	Functions

int,	Values	and	Types

list,	A	List	Is	a	Sequence



NoneType,	Fruitful	Functions	and	Void	Functions

programmer-defined,	Programmer-Defined	Types,	Glossary,	Time,	Object-
Oriented	Features,	Operator	Overloading,	Comparing	Cards

set,	Dictionary	Subtraction

str,	Values	and	Types

tuple,	Tuples	Are	Immutable

type	checking,	Checking	Types

type	conversion,	Function	Calls

type	function,	Debugging

type-based	dispatch,	Type-Based	Dispatch,	Polymorphism,	Glossary

TypeError,	A	String	Is	a	Sequence,	Strings	Are	Immutable,	Dictionaries	and	Lists,
Tuples	Are	Immutable,	Variable-Length	Argument	Tuples,	Format	Operator,
Another	Example,	When	I	run	the	program	I	get	an	exception.

typewriter,	turtle,	Exercises

typographical	error,	Debugging

U

UnboundLocalError,	Global	Variables

underscore	character,	Variable	Names

uniqueness,	Exercises

Unix	command,	ls,	Pipes

update,	Updating	Variables,	Square	Roots,	Glossary

database,	Databases

global	variable,	Global	Variables

histogram,	Word	Histogram



item,	Traversing	a	List

slice,	List	Slices

update	method,	Dictionaries	and	Tuples

update	operator,	Map,	Filter	and	Reduce

use	before	def,	Definitions	and	Uses

V

value,	Values	and	Types,	Glossary,	Objects	and	Values,	Objects	and	Values,	Glossary

default,	Optional	Parameters

tuple,	Tuples	as	Return	Values

ValueError,	Keyboard	Input,	Tuple	Assignment

values	method,	A	Dictionary	Is	a	Mapping

variable,	Variables,	Expressions	and	Statements,	Variable	Names,	Glossary

global,	Global	Variables

local,	Variables	and	Parameters	Are	Local

temporary,	Return	Values,	Glossary,	I’ve	got	a	big	hairy	expression	and	it	doesn’t
do	what	I	expect.

updating,	Updating	Variables

variable-length	argument	tuple,	Variable-Length	Argument	Tuples

veneer,	Add,	Remove,	Shuffle	and	Sort,	Glossary

void	function,	Fruitful	Functions	and	Void	Functions,	Glossary

void	method,	List	Methods

vorpal,	More	Recursion

W

walk,	directory,	Filenames	and	Paths



while	loop,	The	while	Statement

whitespace,	Debugging,	Exercises,	Debugging,	Syntax	Errors

word	count,	Writing	Modules

word	frequency,	Word	Frequency	Analysis,	Exercises

word,	reducible,	Exercises,	Exercises

working	directory,	Filenames	and	Paths

worst	bug,	Exercises

worst	case,	Analysis	of	Algorithms,	Glossary

Z

zero,	index	starting	at,	A	String	Is	a	Sequence,	Lists	Are	Mutable

zip	function,	Lists	and	Tuples

use	with	dict,	Dictionaries	and	Tuples

zip	object,	Glossary

Zipf’s	law,	Exercises





About	the	Author

Allen	Downey	is	a	Professor	of	Computer	Science	at	Olin	College	of	Engineering.	He	has
taught	at	Wellesley	College,	Colby	College	and	U.C.	Berkeley.	He	has	a	PhD	in	Computer
Science	from	U.C.	Berkeley	and	Master’s	and	Bachelor’s	degrees	from	MIT.





Colophon

The	animal	on	the	cover	of	Think	Python	is	the	Carolina	parrot,	also	known	as	the
Carolina	parakeet	(Conuropsis	carolinensis).	This	parrot	inhabited	the	southeastern	United
States	and	was	the	only	continental	parrot	with	a	habitat	north	of	Mexico.	At	one	time,	it
lived	as	far	north	as	New	York	and	the	Great	Lakes,	although	it	was	chiefly	found	from
Florida	to	the	Carolinas.

The	Carolina	parrot	was	mainly	green	with	a	yellow	head	and	some	orange	coloring	that
appeared	on	the	forehead	and	cheeks	at	maturity.	Its	average	size	ranged	from	31–33	cm.
It	had	a	loud,	riotous	call	and	would	chatter	constantly	while	feeding.	It	inhabited	tree
hollows	near	swamps	and	riverbanks.	The	Carolina	parrot	was	a	very	gregarious	animal,
living	in	small	groups	that	could	grow	to	several	hundred	parrots	when	feeding.

These	feeding	areas	were,	unfortunately,	often	the	crops	of	farmers,	who	would	shoot	the
birds	to	keep	them	away	from	the	harvest.	The	birds’	social	nature	caused	them	to	fly	to
the	rescue	of	any	wounded	parrot,	allowing	farmers	to	shoot	down	whole	flocks	at	a	time.
In	addition,	their	feathers	were	used	to	embellish	ladies’	hats,	and	some	parrots	were	kept
as	pets.	A	combination	of	these	factors	led	the	Carolina	parrot	to	become	rare	by	the	late
1800s,	and	poultry	disease	may	have	contributed	to	their	dwindling	numbers.	By	the
1920s,	the	species	was	extinct.

Today,	there	are	more	than	700	Carolina	parrot	specimens	preserved	in	museums
worldwide.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Johnson’s	Natural	History.	The	cover	fonts	are	URW	Typewriter
and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com


Preface
The	Strange	History	of	This	Book

Conventions	Used	in	This	Book

Using	Code	Examples

Safari®	Books	Online

How	to	Contact	Us

Acknowledgments

Contributor	List

1.	The	Way	of	the	Program
What	Is	a	Program?

Running	Python

The	First	Program

Arithmetic	Operators

Values	and	Types

Formal	and	Natural	Languages

Debugging

Glossary

Exercises

2.	Variables,	Expressions	and	Statements
Assignment	Statements

Variable	Names

Expressions	and	Statements

Script	Mode

Order	of	Operations

String	Operations

Comments



Debugging

Glossary

Exercises

3.	Functions
Function	Calls

Math	Functions

Composition

Adding	New	Functions

Definitions	and	Uses

Flow	of	Execution

Parameters	and	Arguments

Variables	and	Parameters	Are	Local

Stack	Diagrams

Fruitful	Functions	and	Void	Functions

Why	Functions?

Debugging

Glossary

Exercises

4.	Case	Study:	Interface	Design
The	turtle	Module

Simple	Repetition

Exercises

Encapsulation

Generalization

Interface	Design



Refactoring

A	Development	Plan

docstring

Debugging

Glossary

Exercises

5.	Conditionals	and	Recursion
Floor	Division	and	Modulus

Boolean	Expressions

Logical	Operators

Conditional	Execution

Alternative	Execution

Chained	Conditionals

Nested	Conditionals

Recursion

Stack	Diagrams	for	Recursive	Functions

Infinite	Recursion

Keyboard	Input

Debugging

Glossary

Exercises

6.	Fruitful	Functions
Return	Values

Incremental	Development

Composition



Boolean	Functions

More	Recursion

Leap	of	Faith

One	More	Example

Checking	Types

Debugging

Glossary

Exercises

7.	Iteration
Reassignment

Updating	Variables

The	while	Statement

break

Square	Roots

Algorithms

Debugging

Glossary

Exercises

8.	Strings
A	String	Is	a	Sequence

len

Traversal	with	a	for	Loop

String	Slices

Strings	Are	Immutable

Searching



Looping	and	Counting

String	Methods

The	in	Operator

String	Comparison

Debugging

Glossary

Exercises

9.	Case	Study:	Word	Play
Reading	Word	Lists

Exercises

Search

Looping	with	Indices

Debugging

Glossary

Exercises

10.	Lists
A	List	Is	a	Sequence

Lists	Are	Mutable

Traversing	a	List

List	Operations

List	Slices

List	Methods

Map,	Filter	and	Reduce

Deleting	Elements

Lists	and	Strings



Objects	and	Values

Aliasing

List	Arguments

Debugging

Glossary

Exercises

11.	Dictionaries
A	Dictionary	Is	a	Mapping

Dictionary	as	a	Collection	of	Counters

Looping	and	Dictionaries

Reverse	Lookup

Dictionaries	and	Lists

Memos

Global	Variables

Debugging

Glossary

Exercises

12.	Tuples
Tuples	Are	Immutable

Tuple	Assignment

Tuples	as	Return	Values

Variable-Length	Argument	Tuples

Lists	and	Tuples

Dictionaries	and	Tuples

Sequences	of	Sequences



Debugging

Glossary

Exercises

13.	Case	Study:	Data	Structure	Selection
Word	Frequency	Analysis

Random	Numbers

Word	Histogram

Most	Common	Words

Optional	Parameters

Dictionary	Subtraction

Random	Words

Markov	Analysis

Data	Structures

Debugging

Glossary

Exercises

14.	Files
Persistence

Reading	and	Writing

Format	Operator

Filenames	and	Paths

Catching	Exceptions

Databases

Pickling

Pipes



Writing	Modules

Debugging

Glossary

Exercises

15.	Classes	and	Objects
Programmer-Defined	Types

Attributes

Rectangles

Instances	as	Return	Values

Objects	Are	Mutable

Copying

Debugging

Glossary

Exercises

16.	Classes	and	Functions
Time

Pure	Functions

Modifiers

Prototyping	versus	Planning

Debugging

Glossary

Exercises

17.	Classes	and	Methods
Object-Oriented	Features

Printing	Objects

Another	Example



A	More	Complicated	Example

The	init	Method

The	__str__	Method

Operator	Overloading

Type-Based	Dispatch

Polymorphism

Interface	and	Implementation

Debugging

Glossary

Exercises

18.	Inheritance
Card	Objects

Class	Attributes

Comparing	Cards

Decks

Printing	the	Deck

Add,	Remove,	Shuffle	and	Sort

Inheritance

Class	Diagrams

Data	Encapsulation

Debugging

Glossary

Exercises

19.	The	Goodies
Conditional	Expressions



List	Comprehensions

Generator	Expressions

any	and	all

Sets

Counters

defaultdict

Named	Tuples

Gathering	Keyword	Args

Glossary

Exercises

20.	Debugging
Syntax	Errors

I	keep	making	changes	and	it	makes	no	difference.

Runtime	Errors
My	program	does	absolutely	nothing.

My	program	hangs.

When	I	run	the	program	I	get	an	exception.

I	added	so	many	print	statements	I	get	inundated	with	output.

Semantic	Errors
My	program	doesn’t	work.

I’ve	got	a	big	hairy	expression	and	it	doesn’t	do	what	I	expect.

I’ve	got	a	function	that	doesn’t	return	what	I	expect.

I’m	really,	really	stuck	and	I	need	help.

No,	I	really	need	help.

21.	Analysis	of	Algorithms
Order	of	Growth



Analysis	of	Basic	Python	Operations

Analysis	of	Search	Algorithms

Hashtables

Glossary

Index



UNIT-II  DATA TYPES IN PYTHON 

 
UNIT II DATA TYPES IN PYTHON : 

 

Lists, Tuples, Sets, Strings, Dictionary, Modules: Module Loading and Execution – Packages – Making 

Your Own Module – The Python Standard Libraries. 

 

Lists : 
 

o List is a sequence of values, which can be of different types. The values in list 

are called "elements" or ''items'' 

o Each elements in list is assigned a number called "position" or "index" 

o A list that contains no elements is called an empty list. They are created with 
empty brackets[] 

o A list within another list is nested list 

 

Creating a list : 

The simplest way to create a new list is to enclose the elements in square brackets ([]) 

[10,20,30,40] 

[100, "python" , 8.02] 

 

 

1. LIST OPERATIONS: 

1. Concatenation of list 

2. Repetition of list 

 

 

Concatenation: the '+' operator concatenate list 

>>> a = [1,2,3] 

>>> b = [4,5,6] 

>>> c = a+b 

>>> Print (a*2) => [1,2,3,1,2,3] 

 

Repetition: the '*' operator repeats a list a given number of times 

>>> a = [1,2,3] 

>>> b = [4,5,6] 

>>> print (a*2)= [1,2,3,1,2,3] 

 

2. List looping: (traversing a list) 

1. Looping in a list is used to access every element in 

list 2."for loop" is used to traverse the elements in list 

eg: mylist = 

["python","problem",100,6.28] for i 

in range (len (mylist)): 

print (mylist [i]) 



 
3. List Slices: 

A subset of elements of list is called a slice of 

list. Eq: n = [1,2,3,4,5,6,7,8,9,10] 

print (n[2:5]) 

print (n[-5]) 

print (n[5: ]) 

print (n[ : ]) 

 
4. Aliasing and cloning: 

 when more than one variables refers to the same objects or list, then it is called aliasing. 

 

a= [5,10,50,100] 

b=a 

b[0] = 80 

print ("original list", a) = [5,10,50,100] 

print ("Aliasing list", b) = 

[80,5,10,50,100] 

 Here both a & b refers to the same list. Thus, any change made with one object will affect 

other, since they are mutable objects. 

 in general, it is safer to avoid aliasing when we are working with mutable objects 

 

5. Cloning: 

 Cloning creates a new list with same values under another name. Taking any slice of list 

create new list. 

 Any change made with one object will not affect others. the easiest way to clone a new 

list is to use "slice operators" 

a = [5,10,50,100] 

b= a[ : ] 

b[0] = 80 

Print (" original list", a) = 

[5,10,50,100] Print (" cloning list", 

b) = [5,10,50,100] 

 

List parameter: 

 List can be passed as arguments to functions the list arguments are always passed by 

reference only. 

 Hence, if the functions modifies the list the caller also 

changes. Eq: def head (): 

del t[ 0 ] 

>>> letters = ['a','b','c'] 

>>> head (letters) 

>>> letters 

['b','c'] 



In above, 
The parameters 't' and the variable 'letters' or aliases for the same objects An alternative way to write a 

function that creates and return a new list Eq: def tail (t): 

return t [1:] 

>>> letters = ['a','b','c'] 

>>> result = tail (letters) 

>>> result 

['b','c'] 

In above, 

The function leaves the original list unmodified and return all element in list except first element 

 

TUPLES: 

A tuple is a sequence of value which can be of any type and they are indexed by integers. 

Values in tuple are enclosed in parentheses and separated by comma. The elements in the tuple 

cannot be modified as in list (i.e) tuple are immutable objects 

 

Creating tuple: 

Tuple can be created by enclosing the element in parentheses separated by 

comma t = ('a','b','c','d') 

To create a tuple with a single element we have to include a final comma 

>>> t = 'a', 

>>> type (t) 

< class 'tuple'> 

Alternative way to create a tuple is the built-in function tuple which mean, it creates an empty tuple 

>>> t = tuple () 

>>> t 

>>> ( ) 



Accessing element in tuple: 

If the argument in sequence, the result is a tuple with the elements of sequence. 

>>>t= tuple('python') 

>>> t 

('p','y','t','h','o','n') 

t = 

('a','b',100,8.02) 

print (t[0]) = 'a' 

print (t[1:3]) = ('b', 100 , 8.02) 

 

Deleting and updating tuple: 
Tuple are immutable, hence the elements in tuple cannot be updated / modified But we can delete the entire 

tuple by using keyword 'del' 

Eg 1: a = (' programming', 200, 16.54, 'c', 

'd') #Try changing an element. 

a[ 0 ] = 'python' < ------- Error,modifying not possible 

print (a [0]) 

Eg: # Deletion of 

tuple a = 

('a','b','c','d') 

del (a) -------- delete entire tuple 

del a [1] < ------- error,deleting one element in tuple not possible 

Eg: # replacing one tuple with 

another a = ('a','b','c','d') 

t = ('A',) + a[1: ] 

print (t) < -----('a','b','c','d') 

 

 

Tuple Assignment: 

 Tuple assignment is often useful to swap any number of values 

 the number of variables in left and right of assignment operators must be equal 

 A single assignment to paralleling assign value to all elements of tuple is the major 

benefit of tuple assignment 

Eg: Tuple swapping in python 

A= 100 
B= 345 
C= 450 
print (" A & B:", A,"&",B) 

# Tuple assignments for two 

variables A,B = B,A 

print (" A&B after tuple assignment : 

",A,"&",B) # Tuple assignment can be 
done for no of 

variables A,B,C = C,A,B 

print (" Tuple assignment for more variables:", 



A,"&",B,"&",C) Output 
A & B: 100 & 345 
A&B after tuple assignment : 345 & 100 
Tuple assignment for more variables: 450 & 345 & 100 

 

 

 

Tuple as return value: 

 Generally, function can only return one value but if the value is tuple the same as 

returning the multiple value 

 Function can return tuple as return value 

Eg: # the value of quotient & remainder are returned as 

tuple def mod_div 
(x,y): quotient 
= x/y remainder 
= x%y 
return quotient, remainder 

# Input the seconds & get the hours minutes & 

second sec = 4234 

minutes,seconds= mod_div 

(sec,60) 

hours,minutes=mod_div(minut

es, 60) 

print("%d seconds=%d hrs:: %d min:: %d 

sec"%(sec,hours,minutes,seconds)) Output: 

4234onds=1 hrs:: 10 min:: 34 sec 



Set: 

Sets are used to store multiple items in a single variable. 

Set is one of 4 built-in data types in Python used to store collections of data, the other 3 

are List, Tuple, and Dictionary, all with different qualities and usage. 

A set is a collection which is unordered, unchangeable*, and unindexed. 

 

 

Example 

Create a Set: 

thisset = {"apple", "banana", "cherry"} 

print(thisset) 

 

Set Items 

Set items are unordered, unchangeable, and do not allow duplicate values. 

Unordered 

 Unordered means that the items in a set do not have a defined order. 

 Set items can appear in a different order every time you use them, and cannot be referred to 

by index or key. 

Unchangeable 

 Set items are unchangeable, meaning that we cannot change the items after the set has been 

created. 

 Duplicates Not Allowed 

 Sets cannot have two items with the same value. 

Example: 

Duplicate values will be ignored: 

thisset = {"apple", "banana", "cherry", "apple"} 

 

print(thisset) 

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_dictionaries.asp


Get the Length of a Set 

To determine how many items a set has, use the len() function. 

Example 

Get the number of items in a set: 

thisset = {"apple", "banana", "cherry"} 

 

print(len(thisset)) 

Set Items - Data Types 

Set items can be of any data type: 

Example 

String, int and boolean data types: 

set1 = {"apple", "banana", "cherry"} 

set2 = {1, 5, 7, 9, 3} 

set3 = {True, False, False} 

A set can contain different data types: 

Example 

A set with strings, integers and boolean values: 

set1 = {"abc", 34, True, 40, "male"} 

Type() 

From Python's perspective, sets are defined as objects with the data type 'set': 

<class 'set'> 

Example 

What is the data type of a set? 

myset = {"apple", "banana", "cherry"} 

print(type(myset)) 

The set() Constructor 

It is also possible to use the set() constructor to make a set. 



Example 

Using the set() constructor to make a set: 

thisset = set(("apple", "banana", "cherry")) # note the double round-brackets 

print(thisset) 

Python Collections (Arrays) 

There are four collection data types in the Python programming language: 

 List is a collection which is ordered and changeable. Allows duplicate members. 

 Tuple is a collection which is ordered and unchangeable. Allows duplicate members. 

 Set is a collection which is unordered, unchangeable*, and unindexed. No duplicate 

members. 

 Dictionary is a collection which is ordered** and changeable. No duplicate members. 

*Set items are unchangeable, but you can remove items and add new items. 

**As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier, dictionaries 

are unordered. 

When choosing a collection type, it is useful to understand the properties of that type. 

Choosing the right type for a particular data set could mean retention of meaning, and, it could 

mean an increase in efficiency or security. 

 

Access Items 

You cannot access items in a set by referring to an index or a key. 

But you can loop through the set items using a for loop, or ask if a specified value is present 

in a set, by using the in keyword. 

Example 

Loop through the set, and print the values: 

thisset = {"apple", "banana", "cherry"} 

 

for x in thisset: 

  print(x) 

Set Methods 

Python has a set of built-in methods that you can use on sets. 

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_dictionaries.asp


Method Description 

add() Adds an element to the set 

clear()  Removes all the elements from the set 

copy()  Returns a copy of the set 

difference()  Returns a set containing the difference between two or more sets 

difference_update() Removes the items in this set that are also included in another, specified 

set 

discard()  Remove the specified item 

intersection()  Returns a set, that is the intersection of two other sets 

intersection_update()  Removes the items in this set that are not present in other, specified set(s) 

isdisjoint()  Returns whether two sets have a intersection or not 

issubset()  Returns whether another set contains this set or not 

https://www.w3schools.com/python/ref_set_add.asp
https://www.w3schools.com/python/ref_set_clear.asp
https://www.w3schools.com/python/ref_set_copy.asp
https://www.w3schools.com/python/ref_set_difference.asp
https://www.w3schools.com/python/ref_set_difference_update.asp
https://www.w3schools.com/python/ref_set_discard.asp
https://www.w3schools.com/python/ref_set_intersection.asp
https://www.w3schools.com/python/ref_set_intersection_update.asp
https://www.w3schools.com/python/ref_set_isdisjoint.asp
https://www.w3schools.com/python/ref_set_issubset.asp


issuperset() Returns whether this set contains another set or not 

pop() Removes an element from the set 

remove()  Removes the specified element 

symmetric_difference()  Returns a set with the symmetric differences of two sets 

symmetric_difference_update() inserts the symmetric differences from this set and another 

union()  Return a set containing the union of sets 

update() Update the set with the union of this set and others 

String 

Python string is the collection of the characters surrounded by single quotes, double quotes, 

or triple quotes. The computer does not understand the characters; internally, it stores manipulated 

character as the combination of the 0's and 1's. 

Each character is encoded in the ASCII or Unicode character. So we can say that Python 

strings are also called the collection of Unicode characters. 

In Python, strings can be created by enclosing the character or the sequence of characters in 

the quotes. Python allows us to use single quotes, double quotes, or triple quotes to create the 

string. 

Consider the following example in Python to create a string. 

Syntax: 

1. str = "Hi Python !"     

https://www.w3schools.com/python/ref_set_issuperset.asp
https://www.w3schools.com/python/ref_set_pop.asp
https://www.w3schools.com/python/ref_set_remove.asp
https://www.w3schools.com/python/ref_set_symmetric_difference.asp
https://www.w3schools.com/python/ref_set_symmetric_difference_update.asp
https://www.w3schools.com/python/ref_set_union.asp
https://www.w3schools.com/python/ref_set_update.asp


Here, if we check the type of the variable str using a Python script 

1. print(type(str)), then it will print a string (str).     

In Python, strings are treated as the sequence of characters, which means that Python doesn't 

support the character data-type; instead, a single character written as 'p' is treated as the string of 

length 1. 

Creating String in Python 

We can create a string by enclosing the characters in single-quotes or double- quotes. Python also 

provides triple-quotes to represent the string, but it is generally used for multiline string 

or docstrings. 

1. #Using single quotes   

2. str1 = 'Hello Python'   

3. print(str1)   

4. #Using double quotes   

5. str2 = "Hello Python"   

6. print(str2)   

7.    

8. #Using triple quotes   

9. str3 = '''''Triple quotes are generally used for   

10.     represent the multiline or  

11.     docstring'''    

12. print(str3)   

Output: 

Hello Python 

Hello Python 

Triple quotes are generally used for  

    represent the multiline or 

    docstring 

Strings indexing and splitting 

Like other languages, the indexing of the Python strings starts from 0. For example, The 

string "HELLO" is indexed as given in the below figure. 



 

Consider the following example: 

 

str = "HELLO"   

print(str[0])   

print(str[1])   

print(str[2])   

print(str[3])   

print(str[4])   

# It returns the IndexError because 6th index doesn't exist   

print(str[6])   

H 

 

 As shown in Python, the slice operator [] is used to access the individual characters of the 

string. However, we can use the : (colon) operator in Python to access the substring from the given 

string. Consider the following example. 



 
 

Here, we must notice that the upper range given in the slice operator is always exclusive i.e., if str = 

'HELLO' is given, then str[1:3] will always include str[1] = 'E', str[2] = 'L' and nothing else. 

Consider the following example: 

1. # Given String   

2. str = "JAVATPOINT"   

3. # Start Oth index to end   

4. print(str[0:])   

5. # Starts 1th index to 4th index   

6. print(str[1:5])   

7. # Starts 2nd index to 3rd index   

8. print(str[2:4])   

9. # Starts 0th to 2nd index   

10. print(str[:3])   

11. #Starts 4th to 6th index   

12. print(str[4:7])   



Output: 

JAVATPOINT 

AVAT 

VA 

JAV 

TPO 

 

Deleting the String 

As we know that strings are immutable. We cannot delete or remove the characters from 

the string.  But we can delete the entire string using the del keyword. 

1. str = "JAVATPOINT"   

2. del str[1]   

Output: 

TypeError: 'str' object doesn't support item deletion 

Now we are deleting entire string. 

1. str1 = "JAVATPOINT"   

2. del str1   

3. print(str1)   

Output: 

NameError: name 'str1' is not defined 

String Operators 

Operator Description 

+ It is known as concatenation operator used to join the strings given either side of the 

operator. 

* It is known as repetition operator. It concatenates the multiple copies of the same string. 

[] It is known as slice operator. It is used to access the sub-strings of a particular string. 

[:] It is known as range slice operator. It is used to access the characters from the specified 

range. 



in It is known as membership operator. It returns if a particular sub-string is present in the 

specified string. 

not in It is also a membership operator and does the exact reverse of in. It returns true if a 

particular substring is not present in the specified string. 

r/R It is used to specify the raw string. Raw strings are used in the cases where we need to 

print the actual meaning of escape characters such as "C://python". To define any string 

as a raw string, the character r or R is followed by the string. 

% It is used to perform string formatting. It makes use of the format specifiers used in C 

programming like %d or %f to map their values in python. We will discuss how 

formatting is done in python. 

 

MODULES IN PYTHON 

 A python module is a file that consists of python definition and statements. A 

module can define functions, classes and variables. 

 It allows us to logically arrange related code and makes the code easier to 

understand and use. 

1. Import statement: 

 An import statement is used to import python module in some python source file. 

Syntax: import module1 [, module2 […module]] 

Example: 
>>>import math 
>>>print (math.pi) 

3.14159265 

 

2. Import with renaming: 
The import a module by renaming it as follows, 
>>>import math as a 

>>>print(“The value of pi is “,a.pi) 

The value of pi is 3.14159265 

Writing modules: 

 Any python source code file can be imported as a module into another python 

source file. For example, consider the following code named as support.py, 

which is python source file defining two function add(), display(). 

Support.py: 

def add(a,b): 

print(“The result is “,a+b) 

return 

def display(p): 

print(“welcome “,p) 



return 

The support.py file can be imported as a module into another python source 

file and its functions can be called from the new files as shown in the following code: 

3. Import file name 

import support #import module support 

support.add(3,4) #calling add() of support module with two integers 

support.add (3.5,4.7) #calling add() of support module with two real values 

support.add (‘a’,’b’) #calling add() of support module with two character 

values support.add (“yona”,”alex”)#calling add() of support module with two 

string values support.display (‘fleming’) #calling display() of support 

module with a string value 

 

 

Output: 
The result is 7 

The result is 

8.2 The result 

is ab 

The result is yonaalex 

Welcome, fleming 



4. from……import statement: 

 It allows us to import specific attributes from a module into the 

current namespace. 

Syntax: from modulename import name1 [, name2[,……nameN]] 

from support import add #import module support 

support.add(3,4)  #calling add() of support module with two integers 

support.add(3.5,4.7)  #calling add() of support module with two real 

values support.add(‘a’,’b’) #calling add() of support module with two character 

values support.add (“yona”,”alex”)#calling add() of support module with two 

string values support.display (‘fleming’) #calling display() of support 

module with a string value 

Output: 

The result is 7 

The result is 

8.2 The result 

is ab 

The result is yonaalex 

Welcome, fleming 

 

5. OS Module 

 The OS module in python provide function for interacting with 

operating system 

 To access the OS module have to import the OS module in our program 

import os 

 
method example description 

name Osname ‘nt’ This function gives the 
name of the operating 
system 

getcwd() Os,getcwd() 
,C;\\Python34’ 

Return the current working 

directory(CWD)of the file 

used to execute the code 
mkdir(folder) Os.mkdir(“python”) Create a directory(folder) 

with the given name 
rename(oldname,newname) Os.rename(“python”,”pspp”) Rename the directory or 

folder 
remove(“folder”) Os.remove(“pspp”) Remove (delete)the 

directory or folder 



getuid() Os.getuid() Return the current process’s 
user id 

environ Os.nviron Get the users environment 

 

6. Sys Module 

 Sys module provides information about constant, function and methods 

 It provides access to some variables used or maintained by the interpreter 

import sys 

 
methods example description 

sys.argv sys.argv 
 

 

sys.argv(0) 

sys.argv(1) 

Provides the list of 

command line arguments 

passed to a python script 

Provides to access the 

file name 

Provides to access the first 

input 

sys.path sys.path It provide the search path 
for module 

sys.path.append() sys.path.append() Provide the access to 

specific path to our 
program 

sys.platform sys.platform 

‘win32’ 
Provide information 

about the operating 

system 
platform 

sys.exit sys.exit 
<built.in function exit> 

Exit from python 

 

Steps to Create the Own Module 

 Here we are going to create a calc module ; our module contains four functions 

i.e add(),sub(),mul(),div() 

 

 

 

 

 

 

 



 
Program for calculator module output 

Module name 

;calc.py def 

add(a,b); print(a+b) 

def sub(a,b); 
print(a-b) 

def 
mul(a,b); 
print(a*b) 

def 
div(a,b); 
print(a/b) 

import calculator 

calculator.add(2,3) 

 

 

Outcome 

>>>5 

 

 

 

 

 

Package: 

 

 

 A package is a collection of python module. Module is a single python file 

containing function definitions 

 A package is a directory(folder)of python module containing an additional 

init py file, to differentiate a package from a directory 

 Packages can be nested to any depth, provided that the corresponding 

directories contain their own init py file. 

  init py file is a directory indicates to the python interpreter that the 

directory should be treated like a python package init py is used to 

initialize the python package 



Steps to Create a Package: 

 

          Step1: create the package directory 

 Create the directory (folder)and give it your packages name 

 Here the package name is calculator 

 
Name Data modified Type 

1. pycache  05-12-2017 File folder 
2.calculater 08-12-2017 File folder 

3. DLLs 10-12-2017 File folder 

 

Step2: write module for calculator directory add save the module in calculator 

directory 

 Here four module have create for calculator directory 

 

Local Disk (C)>Python34>Calculator 

 
Name Data modified Type Size 

1. add 08-12-2017 File folder 1KB 
2. div 08-12-2017 File folder 1KB 

3. mul 08-12-2017 File folder 1KB 
4. sub 08-12-2017 File folder 1KB 

 

 
add.py div.py mul.py sub.py 

def add(a,b);  

       print(a+b) 

def div(a,b); 
print(a/b) 

def mul(a,b); 

print(a*b) 

def sub(a,b); 

print(a-b) 

 

Step3: add the init .py file in the calculator directory 

 A directory must contain the file named init .py in order for python to 

consider it as a package 



Add the following code in the init .py file 

 

Local Disk (C):/Python34>Calculator 

 
Name Data modified Type Size 

1. init  08-12-2017 File folder 1KB 
2. add 08-12-2017 File folder 1KB 
3. div 08-12-2017 File folder 1KB 
4. mul 08-12-2017 File folder 1KB 
5. sub 08-12-2017 File folder 1KB 

 

Step4: To test your package 

 Import calculator package in your program and add the path of your package 

in your program by using sys.path.append() 

Example 

 

Output : 

>>> 15 

5 

50 

 

from * add import add 

from * sub import sub 

from * mul import mul 

from * div import div 

import calculator 

importsys 

sys.path.append(“C:/Python34”) 

print ( calculator.add(10,5)) 

print ( calculator.sub(10,5)) 

print ( calculator.mul(10,5)) 

print ( calculator.div(10,5)) 



UNIT-IV-Modules, Packages and Frameworks 

UNIT IV MODULES, PACKAGES AND FRAMEWORKS 

Modules: Introduction – Module Loading and Execution – Packages – Making Your Own Module – 

The Python Libraries for data processing, data mining and visualization- NUMPY, Pandas, 

Matplotlib, Plotly-Frameworks- -Django, Flask, Web2Py. 

MODULES IN PYTHON 

 A python module is a file that consists of python definition and statements. A 

module can define functions, classes and variables. 

 It allows us to logically arrange related code and makes the code easier to 

understand and use. 

1. Import statement: 

 An import statement is used to import python module in some python source file. 

Syntax: import module1 [, module2 […module]] 

Example: 
>>>import math 
>>>print (math.pi) 

3.14159265 

 

2. Import with renaming: 
The import a module by renaming it as follows, 
>>>import math as a 
>>>print(“The value of pi is “,a.pi) 

The value of pi is 3.14159265 

Writing modules: 

 Any python source code file can be imported as a module into another python 

source file. For example, consider the following code named as support.py, 

which is python source file defining two function add(), display(). 

Support.py: 

def add(a,b): 

print(“The result is “,a+b) 

return 

def display(p): 

print(“welcome “,p) 

return 

The support.py file can be imported as a module into another python source 

file and its functions can be called from the new files as shown in the following code: 

3. Import file name 

import support #import module support 



support.add(3,4) #calling add() of support module with two integers 

support.add (3.5,4.7) #calling add() of support module with two real values 

support.add (‘a’,’b’) #calling add() of support module with two character 

values support.add (“yona”,”alex”)#calling add() of support module with two 

string values support.display (‘fleming’) #calling display() of support 

module with a string value 

Output: 
` The result is 7 

  The result is 8.2  

The result is ab 

The result is yonaalex  

Welcome, fleming 

4. from……import statement: 

 It allows us to import specific attributes from a module into the 

current namespace. 

Syntax: from modulename import name1 [, name2[,……nameN]] 

from support import add #import module support 

support.add(3,4)  #calling add() of support module with two integers 

support.add(3.5,4.7)  #calling add() of support module with two real 

values support.add(‘a’,’b’) #calling add() of support module with two character 

values support.add (“yona”,”alex”)#calling add() of support module with two 

string values support.display (‘fleming’) #calling display() of support 

module with a string value 

 



Output: 
The result is 7 

The result is 8.2  

The result is ab 

The result is yonaalex  

Welcome, fleming 

 

5. OS Module 

 The OS module in python provide function for interacting with 

operating system 

 To access the OS module have to import the OS module in our program 

import os 

 
method example description 

name Osname ‘nt’ This function gives the 
name of the operating 
system 

getcwd() Os,getcwd() 
,C;\\Python34’ 

Return the current 
working 

directory(CWD)of the 

file used to execute the 

code 
mkdir(folder) Os.mkdir(“python”) Create a 

directory(folder) with 
the given name 

rename(oldname,newname) Os.rename(“python”,”pspp”) Rename the directory or 
folder 

remove(“folder”) Os.remove(“pspp”) Remove (delete)the 
directory or folder 

getuid() Os.getuid() Return the current 
process’s 
user id 

environ Os.nviron Get the users environment 

 

6. Sys Module 

 Sys module provides information about constant, function and methods 

 It provides access to some variables used or maintained by the interpreter 

import sys 

 

 



methods example description 

sys.argv sys.argv 
 

 

sys.argv(0) 

sys.argv(1) 

Provides the list of 

command line arguments 

passed to a python script 

Provides to access the 

file name 

Provides to access the first 

input 

sys.path sys.path It provide the search path 
for module 

sys.path.append() sys.path.append() Provide the access to 
specific path to our 
program 

sys.platform sys.platform 

‘win32’ 
Provide information 

about the operating 

system 
platform 

sys.exit sys.exit 
<built.in function exit> 

Exit from python 

 

Steps to Create the Own Module 

 Here we are going to create a calc module ; our module contains four functions 

i.e add(),sub(),mul(),div() 

 

 
Program for calculator module output 

Module name 

;calc.py def 

add(a,b); print(a+b) 

def sub(a,b); 
print(a-b) 

def 
mul(a,b); 
print(a*b) 

def 
div(a,b); 
print(a/b) 

import calculator 

calculator.add(2,3) 

 

 

Outcome 

>>>5 

 

 

 

 

 



Package: 

 

 A package is a collection of python module. Module is a single python file 

containing function definitions 

 A package is a directory(folder)of python module containing an additional 

init py file, to differentiate a package from a directory 

 Packages can be nested to any depth, provided that the corresponding 

directories contain their own init py file. 

  init py file is a directory indicates to the python interpreter that the 

directory should be treated like a python package init py is used to 

initialize the python package 

 

 

Steps to Create a Package: 

      Step1: create the package directory 

 Create the directory (folder)and give it your packages name 

 Here the package name is calculator 

 
Name Data modified Type 

1. pycache  05-12-2017 File folder 
2.calculater 08-12-2017 File folder 
3. DLLs 10-12-2017 File folder 

 

 

 



Step2: write module for calculator directory add save the module in calculator 

directory 

 Here four module have create for calculator directory 

 

Local Disk (C)>Python34>Calculator 

 
Name Data modified Type Size 

1. add 08-12-2017 File folder 1KB 
2. div 08-12-2017 File folder 1KB 
3. mul 08-12-2017 File folder 1KB 
4. sub 08-12-2017 File folder 1KB 

 

 
add.py div.py mul.py sub.py 

def add(a,b);  

        print(a+b) 

def div(a,b); 
print(a/b) 

def mul(a,b); 

print(a*b) 

def sub(a,b); 

print(a-b) 

 

Step3: add the init .py file in the calculator directory 

 A directory must contain the file named init .py in order for python to 

consider it as a package 

 

Add the following code in the init .py 

file 

 

 

from * add import add 

from * sub import sub 

from * mul import mul 

from * div import div 



Local Disk (C):/Python34>Calculator 

 

 
Name Data modified Type Size 

1. init  08-12-2017 File folder 1KB 
2. add 08-12-2017 File folder 1KB 
3. div 08-12-2017 File folder 1KB 
4. mul 08-12-2017 File folder 1KB 
5. sub 08-12-2017 File folder 1KB 

 

Step4: To test your package 

 Import calculator package in your program and add the path of your package 

in your program by using sys.path.append() 

Example 

 

Output : 

>>> 15 

5 

50 

 

Python libraries for data processing: 

Data processing services are available in various encodings, including CSV, XML, 

HTML, SQL, and JSON. Each situation requires a unique processing format. There are 

numerous programming languages. Python is frequently recommended as a viable alternative for 

machine learning applications due to its implementation of major libraries and cutting-edge 

technologies. Machine learning is built on data processing, and model success is highly 

dependent on the ability to read and transform data into the format required for the task at hand. 

Let us examine the various Python libraries in terms of the data types they provide. 

Below, we have covered the Python libraries used for processing different types of data: 

import calculator 

importsys 

sys.path.append(“C:/Python34”) 

print ( calculator.add(10,5)) 

print ( calculator.sub(10,5)) 

print ( calculator.mul(10,5)) 

print ( calculator.div(10,5)) 

https://analyticsindiamag.com/4th-edition-machine-learning-developers-summit-announced/
https://analyticsindiamag.com/top-python-libraries-to-get-historical-stock-data-with-code/


Tabular Data 

Most of the large data is available in the tabular format, with rows referring to records 

and columns corresponding to features. Pandas in Python can handle such type data very 

perfectly. The advent of tabular data has evolved into a full-featured library that can handle both 

series and tabular data. 

Text data 

First, it’s worth noting Python’s extensive built-in text-processing capabilities. However, 

many natural language processing techniques, such as tokenization and lemmatization, may be 

done using NLTK. Along with that, Spacy is a good choice for advanced natural language 

processing and optimised pipelines. 

Audio and musical data 

Audio processing is enabled via libraries like librosa and essentia. Mido and 

pretty midi are good choices for symbolic music, like MIDI. Finally, music21 is a sophisticated 

library targeted at musicology analysis. 

Images 

Pillow is an image processing library in Python. Opencv is a computer vision library that 

can process videos or camera data. Because of its vast range of supported formats, imageio can 

give image data to the python script. 

Python, in particular, is a highly regarded data processing language for a variety of reasons, 

including the following: 

 Prototypes and experimentation with code are incredibly simple. Processing data, 

especially from less-than-clean sources, necessitates a great deal of tweaking, back and 

forth, and a struggle to capture all options. 

 Python3 significantly improved multi-language support by making every string in the 

system UTF-8, which enables the processing of data encoded in different character sets 

by different languages. 

 The standard library is quite strong and packed with essential modules that provide native 

support for common file types such as CSV files, zip files, and databases. 

 The Python third-party library is enormous, and it has a wealth of excellent modules that 

enable it to increase the capabilities of a programme. There are also modules 

for geospatial data analysis, creating command-line interfaces, graphical interfaces, 

parsing data, and everything in between.  

 Jupyter Notebooks allows you to execute code and receive immediate feedback. Python 

is quite agnostic about the development environment required, allowing it to function 

with anything from a simple text editor to more complex alternatives such as Visual 

Studio. 

https://www.nltk.org/
https://realpython.com/natural-language-processing-spacy-python/
https://dev.to/enutrof/what-is-the-difference-between-the-way-essentia-and-librosa-generate-mfccs-13n3
https://pypi.org/project/mido/
https://github.com/vishnubob/python-midi
https://github.com/cuthbertLab/music21
https://analyticsindiamag.com/hands-on-guide-to-pillow-python-library-for-image-processing/
https://analyticsindiamag.com/opencv-4-5-4-released-look-for-updated-features-and-fixes/
https://pypi.org/project/imageio/
https://analyticsindiamag.com/7-challenges-faced-by-data-scientists-in-data-processing-in-2020/
https://analyticsindiamag.com/python-3-9-vs-python-3-10-a-feature-comparison/
https://analyticsindiamag.com/a-guide-to-geopandas-for-geospatial-data-visualization/
https://analyticsindiamag.com/why-jupyter-notebooks-are-so-popular-among-data-scientists/


Numerical data 

All above libraries have the power to read specific data formats. When this is converted in 

python objects and data structures, numpy usually comes into play, to manipulate these numerical 

values. 

Before getting deep learning bazookas out, it is recommended to perform some analysis of 

the data, using sklearn, scipy and/or seaborn. 

 

Data mining and visualization : 

Data mining definition  

The desired outcome from data mining is to create a model from a given data set that can 

have its insights generalized to similar data sets. A real-world example of a successful data 

mining application can be seen in automatic fraud detection from banks and credit institutions. 

Your bank likely has a policy to alert you if they detect any suspicious activity on your 

account – such as repeated ATM withdrawals or large purchases in a state outside of your 

registered residence. How does this relate to data mining? Data scientists created this system by 

applying algorithms to classify and predict whether a transaction is fraudulent by comparing it 

against a historical pattern of fraudulent and non-fraudulent charges. The model “knows” that if 

you live in San Diego, California, it’s highly likely that the thousand dollar purchases charged to 

a scarcely populated Russian province were not legitimate. 

That is just one of a number of the powerful applications of data mining. Other 

applications of data mining include genomic sequencing, social network analysis, or crime 

imaging – but the most common use case is for analyzing aspects of the consumer life cycle. 

Companies use data mining to discover consumer preferences, classify different consumers 

based on their purchasing activity, and determine what makes for a well-paying customer – 

information that can have profound effects on improving revenue streams and cutting costs. 

If you’re struggling to find good data sets to begin your analysis, we’ve compiled 19 free 

data sets for your first data science project. 

What are some data mining techniques? 

There are multiple ways to build predictive models from data sets, and a data scientist should 

understand the concepts behind these techniques, as well as how to use code to produce similar 

models and visualizations. These techniques include: 

 Regression – Estimating the relationships between variables by optimizing the reduction 

of error. 

https://numpy.org/
https://scikit-learn.org/stable/index.html
https://www.scipy.org/
https://seaborn.pydata.org/
https://www.springboard.com/blog/free-public-data-sets-data-science-project/
https://www.springboard.com/blog/free-public-data-sets-data-science-project/
https://en.wikipedia.org/wiki/Regression_analysis


 

An example of a scatterplot with a fitted linear regression model. 

 Classification – Identifying what category an object belongs to. An example is 

classifying email as spam or legitimate, or looking at a person’s credit score and 

approving or denying a loan request. 

 Cluster Analysis – Finding natural groupings of data objects based upon the known 

characteristics of that data. An example could be seen in marketing, where analysis can 

reveal customer groupings with unique behavior – which could be applied in business 

strategy decisions. 

 

An example of a scatter plot with the data segmented and colored by cluster. 

https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Cluster_analysis
https://www.springboard.com/blog/wp-content/uploads/2016/09/reggraph.png
https://www.springboard.com/blog/wp-content/uploads/2016/09/cluterfuk.png


 Association and Correlation Analysis – Looking to see if there are unique relationships 

between variables that are not immediately obvious. An example would be the famous 

case of beer and diapers: men who bought diapers at the end of the week were much 

more likely to buy beer, so stores placed them close to each other to increase sales. 

 Outlier analysis – Examining outliers to examine potential causes and reasons for said 

outliers. An example of which is the use of outlier analysis in fraud detection, and trying 

to determine if a pattern of behavior outside the norm is fraud or not.  

Data mining for business is often performed with a transactional and live database that allows 

easy use of data mining tools for analysis. One example of which would be an On-Line 

Analytical Processing server, or OLAP, which allows users to produce multi-dimensional 

analysis within the data server. OLAPs allow for business to query and analyze data without 

having to download static data files, which is helpful in situations where your database is 

growing on a daily basis.  However, for someone looking to learn data mining and practicing on 

their own, an iPython notebook will be perfectly suited to handle most data mining tasks. 

Let’s walk through how to use Python to perform data mining using two of the data mining 

algorithms described above: regression and clustering. 

Visualization : 

Today’s world, a lot of data is being generated on a daily basis. And sometimes to 

analyze this data for certain trends, patterns may become difficult if the data is in its raw 

format. To overcome this data visualization comes into play. Data visualization provides a 

good, organized pictorial representation of the data which makes it easier to understand, 

observe, analyze. In this tutorial, we will discuss how to visualize data using Python.  

 

Python provides various libraries that come with different features for visualizing data. All 

these libraries come with different features and can support various types of graphs. In this 

tutorial, we will be discussing four such libraries. 

 Matplotlib 

 Seaborn 

 Bokeh 

 Plotly 

Database Used 

Tips Database 

Tips database is the record of the tip given by the customers in a restaurant for two and 

a half months in the early 1990s. It contains 6 columns such as total_bill, tip, sex, smoker, day, 

time, size. 

You can download the tips database from here 

 

Example: 

https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Anomaly_detection
http://olap.com/olap-definition/
http://olap.com/olap-definition/
https://ipython.org/notebook.html
https://media.geeksforgeeks.org/wp-content/uploads/tips.csv


import pandas as pd 

# reading the database 

data = pd.read_csv("tips.csv") 

# printing the top 10 rows 

display(data.head(10)) 

Output: 

 

Matplotlib 
 

Matplotlib is an easy-to-use, low-level data visualization library that is built on NumPy 

arrays. It consists of various plots like scatter plot, line plot, histogram, etc. Matplotlib 

provides a lot of flexibility.  

To install this type the below command in the terminal. 

pip install matplotlib 

 

 



Scatter Plot 

Scatter plots are used to observe relationships between variables and uses dots to 

represent the relationship between them. The scatter() method in the matplotlib library is used 

to draw a scatter plot. 

 

Example: 

import pandas as pd 

import matplotlib.pyplot as plt 

# reading the database 

data = pd.read_csv("tips.csv") 

# Scatter plot with day against tip 

plt.scatter(data['day'], data['tip'])  

# Adding Title to the Plot 

plt.title("Scatter Plot")  

# Setting the X and Y labels 

plt.xlabel('Day') 

plt.ylabel('Tip') 

plt.show() 

Output:  

https://www.geeksforgeeks.org/matplotlib-pyplot-scatter-in-python/


 
 

This graph can be more meaningful if we can add colors and also change the size of the 

points. We can do this by using the c and s parameter respectively of the scatter function. We 

can also show the color bar using the colorbar() method. 

 

 

 

Example: 

 Python3 

import pandas as pd 

import matplotlib.pyplot as plt 

# reading the database 

data = pd.read_csv("tips.csv") 

# Scatter plot with day against tip 

plt.scatter(data['day'], data['tip'], c=data['size'],  

            s=data['total_bill']) 

# Adding Title to the Plot 

https://www.geeksforgeeks.org/matplotlib-pyplot-colorbar-function-in-python/


plt.title("Scatter Plot") 

# Setting the X and Y labels 

plt.xlabel('Day') 

plt.ylabel('Tip') 

plt.colorbar() 

plt.show() 

 

 

Output: 

 

Line Chart 

Line Chart is used to represent a relationship between two data X and Y on a different 

axis. It is plotted using the plot() function. Let’s see the below example. 

 

Example: 

 

 

https://www.geeksforgeeks.org/line-chart-in-matplotlib-python/


import pandas as pd 

import matplotlib.pyplot as plt 

# reading the database 

data = pd.read_csv("tips.csv") 

# Scatter plot with day against tip 

plt.plot(data['tip']) 

plt.plot(data['size']) 

# Adding Title to the Plot 

plt.title("Scatter Plot") 

# Setting the X and Y labels 

plt.xlabel('Day') 

plt.ylabel('Tip') 

plt.show() 

 

Output: 



 

Bar Chart 

A bar plot or bar chart is a graph that represents the category of data with rectangular 

bars with lengths and heights that is proportional to the values which they represent. It can be 

created using the bar() method. 

 

 

Example: 

 Python3 

import pandas as pd 

import matplotlib.pyplot as plt 

# reading the database 

data = pd.read_csv("tips.csv") 

# Bar chart with day against tip 

plt.bar(data['day'], data['tip']) 

https://www.geeksforgeeks.org/bar-plot-in-matplotlib/


plt.title("Bar Chart") 

# Setting the X and Y labels 

plt.xlabel('Day') 

plt.ylabel('Tip') 

# Adding the legends 

plt.show() 

Output: 

 



Unit-V- Object oriented programming in python 

UNIT V OBJECT ORIENTED PROGRAMMING IN PYTHON 

Creating a Class, Class methods, Class Inheritance, Encapsulation, Polymorphism, class method vs. static 

methods, Python object persistence. 

Python OOPs Concepts: 
 

In Python, object-oriented Programming (OOPs) is a programming paradigm that uses 

objects and classes in programming. It aims to implement real-world entities like inheritance, 

polymorphisms, encapsulation, etc. in the programming. The main concept of OOPs is to bind 

the data and the functions that work on that together as a single unit so that no other part of the 

code can access this data. 

Main Concepts of Object-Oriented Programming (OOPs) 

 Class 

 Objects 

 Polymorphism 

 Encapsulation 

 Inheritance 

 

Class: 



 

Class is a user-defined blueprint or prototype from which objects are created. Classes 

provide a means of bundling data and functionality together. Creating a new class creates a 

new type of object, allowing new instances of that type to be made. Each class instance can 

have attributes attached to it for maintaining its state. Class instances can also have methods 

(defined by their class) for modifying their state. 

To understand the need for creating a class let’s consider an example, let’s say you 

wanted to track the number of dogs that may have different attributes like breed, age. If a list 

is used, the first element could be the dog’s breed while the second element could represent its 

age. Let’s suppose there are 100 different dogs, then how would you know which element is 

supposed to be which? What if you wanted to add other properties to these dogs? This lacks 

organization and it’s the exact need for classes. 

Class creates a user-defined data structure, which holds its own data members and 

member functions, which can be accessed and used by creating an instance of that class. A 

class is like a blueprint for an object. 

Some points on Python class: 

 Classes are created by keyword class. 

 Attributes are the variables that belong to a class. 

 Attributes are always public and can be accessed using the dot (.) operator. Eg.: 

Myclass.Myattribute 

 

Class Definition Syntax: 

class ClassName: 

# Statement-1 

. 

. 

. 

# Statement-N 

Defining a class – 

# Python  program to 

# demonstrate defining 

# a class 

class Dog: 



pass 

In the above example, the class keyword indicates that you are creating a class 

followed by the name of the class (Dog in this case). 

 

Class Objects: 

 

An Object is an instance of a Class. A class is like a blueprint while an instance is a copy of 

the class with actual values. It’s not an idea anymore, it’s an actual dog, like a dog of breed 

pug who’s seven years old. You can have many dogs to create many different instances, but 

without the class as a guide, you would be lost, not knowing what information is required. 

An object consists of : 

 State: It is represented by the attributes of an object. It also reflects the properties of an 

object. 

 Behavior: It is represented by the methods of an object. It also reflects the response of an 

object to other objects. 

 Identity: It gives a unique name to an object and enables one object to interact with 

other objects. 

 

Declaring Objects (Also called instantiating a class) 

When an object of a class is created, the class is said to be instantiated. All the 

instances share the attributes and the behavior of the class. But the values of those attributes, 

i.e. the state are unique for each object. A single class may have any number of instances. 

Example: 

 



 

Declaring an object – 

# Python  program to 

# demonstrate instantiating 

# a class 

class Dog 

# A simple class 

# attribute 

attr1 = "mammal" 

attr2 = "dog" 

# A sample method 



def fun(self): 

print("I'm a", self.attr1) 

print("I'm a", self.attr2) 

# Driver code 

# Object instantiation 

Rodger = Dog() 

# Accessing class attributes 

# and method through objects 

print(Rodger.attr1) 

Rodger.fun() 

Output: 

mammal 

I'm a mammal 

I'm a dog 

In the above example, an object is created which is basically a dog named Rodger. This class 

only has two class attributes that tell us that Rodger is a dog and a mammal. 

 

The self 

 Class methods must have an extra first parameter in the method definition. We do not 

give a value for this parameter when we call the method, Python provides it. 

 If we have a method that takes no arguments, then we still have to have one argument. 

 This is similar to this pointer in C++ and this reference in Java. 



When we call a method of this object as myobject.method(arg1, arg2), this is automatically 

converted by Python into MyClass.method(myobject, arg1, arg2) – this is all the special self is 

about. 

 

__init__ method 

The __init__ method is similar to constructors in C++ and Java. Constructors are used 

to initializing the object’s state. Like methods, a constructor also contains a collection of 

statements(i.e. instructions) that are executed at the time of Object creation. It runs as soon as 

an object of a class is instantiated. The method is useful to do any initialization you want to 

do with your object. 

# A Sample class with init method 

class Person: 

# init method or constructor 

def __init__(self, name): 

self.name = name 

# Sample Method 

def say_hi(self): 

print('Hello, my name is', self.name) 

p = Person('Nikhil') 

p.say_hi() 

Output: 
Hello, my name is Nikhil 



 

Class and Instance Variables: 

 

Instance variables are for data, unique to each instance and class variables are for 

attributes and methods shared by all instances of the class. Instance variables are variables 

whose value is assigned inside a constructor or method with self whereas class variables are 

variables whose value is assigned in the class. 

Defining instance variable using a constructor. 

# Python  program to show that the variables with a value 

# assigned in the class declaration, are class variables and 

# variables inside methods and constructors are instance 

# variables. 

# Class for Dog 

class Dog: 

# Class Variable 

animal = 'dog' 

# The init method or constructor 

def __init__(self, breed, color): 

# Instance Variable 



self.breed = breed 

self.color = color 

# Objects of Dog class 

Rodger = Dog("Pug", "brown") 

Buzo = Dog("Bulldog", "black") 

print('Rodger details:') 

print('Rodger is a', Rodger.animal) 

print('Breed: ', Rodger.breed) 

print('Color: ', Rodger.color) 

print('\nBuzo details:') 

print('Buzo is a', Buzo.animal) 

print('Breed: ', Buzo.breed) 

print('Color: ', Buzo.color) 

# Class variables can be accessed using class 

# name also 



print("\nAccessing class variable using class name") 

print(Dog.animal) 

Output: 
Rodger details: 

Rodger is a dog 

Breed:  Pug 

Color:  brown 

 

Buzo details: 

Buzo is a dog 

Breed:  Bulldog 

Color:  black 

 

Accessing class variable using class name 

dog 

Defining instance variable using the normal method. 

# Python  program to show that we can create 

# instance variables inside methods 

# Class for Dog 

class Dog: 



# Class Variable 

animal = 'dog' 

# The init method or constructor 

def __init__(self, breed): 

# Instance Variable 

self.breed = breed 

# Adds an instance variable 

def setColor(self, color): 

self.color = color 

# Retrieves instance variable 

def getColor(self): 

return self.color 

# Driver Code 

Rodger = Dog("pug") 

Rodger.setColor("brown") 



print(Rodger.getColor()) 

Output: 

brown 

 

 

Inheritance: 
 

Inheritance is the capability of one class to derive or inherit the properties from another 

class. The benefits of inheritance are:  

 

1. It represents real-world relationships well. 

2. It provides reusability of a code. We don’t have to write the same code again and again. 

Also, it allows us to add more features to a class without modifying it. 

3. It is transitive in nature, which means that if class B inherits from another class A, then 

all the subclasses of B would automatically inherit from class A. 

Below is a simple example of inheritance in Python  

# A Python program to demonstrate inheritance 

# Base or Super class. Note object in bracket. 

# (Generally, object is made ancestor of all classes) 

# In Python 3.x "class Person" is 

# equivalent to "class Person(object)" 

class Person(object): 

 



# Constructor 

def __init__(self, name): 

self.name = name 

 

# To get name 

def getName(self): 

return self.name 

 

# To check if this person is an employee 

def isEmployee(self): 

return False 

 

 

# Inherited or Subclass (Note Person in bracket) 

class Employee(Person): 

 

# Here we return true 



def isEmployee(self): 

return True 

# Driver code 

emp = Person("Geek1")  # An Object of Person 

print(emp.getName(), emp.isEmployee()) 

emp = Employee("Geek2") # An Object of Employee 

print(emp.getName(), emp.isEmployee()) 

Output: 

False 

True 

 

What is object class?  

1. Like Java Object class, in Python (from version 3.x), object is root of all classes.  

2. In Python 3.x, “class Test(object)” and “class Test” are same.   

3. In Python 2.x, “class Test(object)” creates a class with object as parent (called new style 

class) and “class Test” creates old style class (without object parent). Refer this for more 

details. 

 

Subclassing (Calling constructor of parent class)  

 

A child class needs to identify which class is its parent class. This can be done by 

mentioning the parent class name in the definition of the child class.  

Eg: class subclass_name (superclass_name):  

_ _ _  

_ _ _  

# Python code to demonstrate how parent constructors 

https://www.geeksforgeeks.org/object-class-in-java/
https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html


# are called. 

# parent class 

class Person( object ): 

# __init__ is known as the constructor 

def __init__(self, name, idnumber): 

self.name = name 

self.idnumber = idnumber 

def display(self): 

print(self.name) 

print(self.idnumber) 

# child class 

class Employee( Person ): 

def __init__(self, name, idnumber, salary, post): 

self.salary = salary 

self.post = post 

# invoking the __init__ of the parent class 

Person.__init__(self, name, idnumber) 



# creation of an object variable or an instance 

a = Employee('Rahul', 886012, 200000, "Intern") 

# calling a function of the class Person using its instance 

a.display() 

Output: 

Rahul 

886012 

 

‘a’ is the instance created for the class Person. It invokes the __init__() of the referred 

class. You can see ‘object’ written in the declaration of the class Person. In Python, every 

class inherits from a built-in basic class called ‘object’. The constructor i.e. the ‘__init__’ 

function of a class is invoked when we create an object variable or an instance of the class.  

The variables defined within __init__() are called as the instance variables or objects. Hence, 

‘name’ and ‘idnumber’ are the objects of the class Person. Similarly, ‘salary’ and ‘post’ are 

the objects of the class Employee. Since the class Employee inherits from class Person, 

‘name’ and ‘idnumber’ are also the objects of class Employee. 

 

If you forget to invoke the __init__() of the parent class then its instance variables 

would not be available to the child class. 

  

The following code produces an error for the same reason.  

# Python program to demonstrate error if we 

# forget to invoke __init__() of the parent. 

 

class A: 



def __init__(self, n = 'Rahul'): 

self.name = n 

class B(A): 

def __init__(self, roll): 

self.roll = roll 

object = B(23) 

print (object.name) 

Output : 

Traceback (most recent call last): 

File "/home/de4570cca20263ac2c4149f435dba22c.py", line 12, in 

print (object.name) 

AttributeError: 'B' object has no attribute 'name' 

 

Different forms of Inheritance: 

 
1. Single inheritance: When a child class inherits from only one parent class, it is called 

single inheritance. We saw an example above. 

 

2. Multiple inheritance: When a child class inherits from multiple parent classes, it is called 

multiple inheritance. 

 

Unlike java, python shows multiple inheritance. 

# Python example to show the working of multiple 



# inheritance 

class Base1(object): 

def __init__(self): 

self.str1 = "Geek1" 

print("Base1") 

 

class Base2(object): 

def __init__(self): 

self.str2 = "Geek2" 

print("Base2") 

class Derived(Base1, Base2): 

def __init__(self): 

# Calling constructors of Base1 

# and Base2 classes 

Base1.__init__(self) 

Base2.__init__(self) 

print("Derived") 



 

def printStrs(self): 

print(self.str1, self.str2) 

ob = Derived() 

ob.printStrs() 

Output: 

Base1 

Base2 

Derived 

Geek1 Geek2 

 

3.Multilevel inheritance: 

 

When we have a child and grandchild relationship. 

# A Python program to demonstrate inheritance 

# Base or Super class. Note object in bracket. 

# (Generally, object is made ancestor of all classes) 

# In Python 3.x "class Person" is 

# equivalent to "class Person(object)" 

class Base(object): 



# Constructor 

def __init__(self, name): 

self.name = name 

# To get name 

def getName(self): 

return self.name 

# Inherited or Sub class (Note Person in bracket) 

class Child(Base): 

# Constructor 

def __init__(self, name, age): 

Base.__init__(self, name) 

self.age = age 

# To get name 

def getAge(self): 

return self.age 

# Inherited or Sub class (Note Person in bracket) 

class GrandChild(Child): 



# Constructor 

def __init__(self, name, age, address): 

Child.__init__(self, name, age) 

self.address = address 

# To get address 

def getAddress(self): 

return self.address 

# Driver code 

g = GrandChild("Geek1", 23, "Noida") 

print(g.getName(), g.getAge(), g.getAddress()) 

Output: 

23 oida 

 

4.Hierarchical inheritance: More than one derived classes are created from a single base. 

 

5.Hybrid inheritance: This form combines more than one form of inheritance. Basically, it is 

a blend of more than one type of inheritance. 

 

Private members of parent class : 
 

We don’t always want the instance variables of the parent class to be inherited by the child 

class i.e. we can make some of the instance variables of the parent class private, which won’t 

be available to the child class.  

 

We can make an instance variable by adding double underscores before its name. For 

example, 

 



 Python program to demonstrate private members 

# of the parent class 

class C(object): 

def __init__(self): 

self.c = 21 

# d is private instance variable 

self.__d = 42 

class D(C): 

def __init__(self): 

self.e = 84 

C.__init__(self) 

object1 = D() 

# produces an error as d is private instance variable 

print(object1.d) 

Output : 

File "/home/993bb61c3e76cda5bb67bd9ea05956a1.py", line 16, in 

print (object1.d) 

AttributeError: type object 'D' has no attribute 'd' 



Polymorphism: 
 

What is Polymorphism: The word polymorphism means having many forms. In 

programming, polymorphism means the same function name (but different signatures) being 

used for different types. 

 

Example of inbuilt polymorphic functions :  

# Python program to demonstrate in-built poly- 

# morphic functions 

# len() being used for a string 

print(len("geeks"))  

# len() being used for a list 

print(len([10, 20, 30])) 

Output: 

5 

3 

 

Examples of user-defined polymorphic functions :  

# A simple Python function to demonstrate 

# Polymorphism 



def add(x, y, z = 0): 

return x + y+z 

# Driver code 

print(add(2, 3)) 

print(add(2, 3, 4)) 

Output: 

5 

9 

 

Polymorphism with class methods:  
 

The below code shows how Python can use two different class types, in the same way. We 

create a for loop that iterates through a tuple of objects. Then call the methods without being 

concerned about which class type each object is. We assume that these methods actually exist 

in each class.  

 

class India(): 

def capital(self): 

print("New Delhi is the capital of India.") 

def language(self): 



print("Hindi is the most widely spoken language of India.") 

def type(self): 

print("India is a developing country.") 

class USA(): 

def capital(self): 

print("Washington, D.C. is the capital of USA.") 

def language(self): 

print("English is the primary language of USA.") 

def type(self): 

print("USA is a developed country.") 

obj_ind = India() 

obj_usa = USA() 

for country in (obj_ind, obj_usa): 

country.capital() 

country.language() 



country.type() 

Output: 

New Delhi is the capital of India. 

Hindi is the most widely spoken language of India. 

India is a developing country. 

Washington, D.C. is the capital of USA. 

English is the primary language of USA. 

USA is a developed country. 

 

Polymorphism with Inheritance:  

 

In Python, Polymorphism lets us define methods in the child class that have the same name as 

the methods in the parent class. In inheritance, the child class inherits the methods from the 

parent class. However, it is possible to modify a method in a child class that it has inherited 

from the parent class. This is particularly useful in cases where the method inherited from the 

parent class doesn’t quite fit the child class. In such cases, we re-implement the method in the 

child class. This process of re-implementing a method in the child class is known as Method 

Overriding. 

 

class Bird: 

def intro( 

many types of birds.") 

self): 



print("There are 

def flight(self): 

print("Most of the birds can fly but some cannot.") 

class sparrow(Bird): 

def flight(self): 

print("Sparrows can fly.") 

class ostrich(Bird): 

def flight(self): 

print("Ostriches cannot fly.") 

obj_bird = Bird() 

obj_spr = sparrow() 

obj_ost = ostrich() 

obj_bird.intro() 

obj_bird.flight() 

obj_spr.intro() 



obj_spr.flight() 

obj_ost.intro() 

obj_ost.flight() 

 

Output: 

There are many types of birds. 

Most of the birds can fly but some cannot. 

There are many types of birds. 

Sparrows can fly. 

There are many types of birds. 

Ostriches cannot fly. 

 

Polymorphism with a Function and objects:  

 
It is also possible to create a function that can take any object, allowing for polymorphism. In 

this example, let’s create a function called “func()” which will take an object which we will 

name “obj”. Though we are using the name ‘obj’, any instantiated object will be able to be 

called into this function. Next, let’s give the function something to do that uses the ‘obj’ 

object we passed to it. In this case, let’s call the three methods, viz., capital(), language() and 

type(), each of which is defined in the two classes ‘India’ and ‘USA’. Next, let’s create 

instantiations of both the ‘India’ and ‘USA’ classes if we don’t have them already. With 

those, we can call their action using the same func() function:  

 

 

def func(obj): 

obj.capital() 



obj.language() 

obj.type() 

obj_ind = India() 

obj_usa = USA() 

func(obj_ind) 

func(obj_usa) 

 

Code: Implementing Polymorphism with a Function  

 

class India(): 

def capital(self): 

print("New Delhi is the capital of India.") 

def language(self): 

print("Hindi is the most widely spoken language of India.") 

def type(self): 



print("India is a developing country.") 

class USA(): 

def capital(self): 

print("Washington, D.C. is the capital of USA.") 

def language(self): 

print("English is the primary language of USA.") 

def type(self): 

print("USA is a developed country.") 

def func(obj): 

obj.capital() 

obj.language() 

obj.type() 

obj_ind = India() 

obj_usa = USA() 

func(obj_ind) 



func(obj_usa) 

Output: 

New Delhi is the capital of India. 

Hindi is the most widely spoken language of India. 

India is a developing country. 

Washington, D.C. is the capital of USA. 

English is the primary language of USA. 

USA is a developed country. 

 

 

Encapsulation: 
 

Encapsulation is one of the fundamental concepts in object-oriented programming 

(OOP). It describes the idea of wrapping data and the methods that work on data within one unit. 

This puts restrictions on accessing variables and methods directly and can prevent the accidental 

modification of data. To prevent accidental change, an object’s variable can only be changed by 

an object’s method. Those types of variables are known as private variable. 

 

A class is an example of encapsulation as it encapsulates all the data that is member 

functions, variables, etc. 

 

Consider a real-life example of encapsulation, in a company, there are different sections 

like the accounts section, finance section, sales section etc. The finance section handles all the 

financial transactions and keeps records of all the data related to finance. Similarly, the sales 

section handles all the sales-related activities and keeps records of all the sales. Now there may 

arise a situation when for some reason an official from the finance section needs all the data 

about sales in a particular month. In this case, he is not allowed to directly access the data of the 

sales section. He will first have to contact some other officer in the sales section and then request 

him to give the particular data. This is what encapsulation is. Here the data of the sales section 



and the employees that can manipulate them are wrapped under a single name “sales section”. 

Using encapsulation also hides the data. In this example, the data of the sections like sales, 

finance, or accounts are hidden from any other section. 

Protected members: 

 

Protected members (in C++ and JAVA) are those members of the class that cannot be 

accessed outside the class but can be accessed from within the class and its subclasses. To 

accomplish this in Python, just follow the convention by prefixing the name of the member by 

a single underscore “_”. 

 

Although the protected variable can be accessed out of the class as well as in the derived 

class(modified too in derived class), it is customary(convention not a rule) to not access the 

protected out the class body. 

Note: The __init__ method is a constructor and runs as soon as an object of a class is 

instantiated. 

# Python program to 

# demonstrate protected members 

# Creating a base class 

class Base: 

def __init__(self): 

# Protected member 

self._a = 2 

# Creating a derived class 



class Derived(Base): 

def __init__(self): 

# Calling constructor of 

# Base class 

Base.__init__(self) 

print("Calling protected member of base class: ", 

self._a) 

# Modify the protected variable: 

self._a = 3 

print("Calling modified protected member outside class: ", 

self._a) 

obj1 = Derived() 

obj2 = Base() 

# Calling protected member 

# Can be accessed but should not be done due to convention 



print("Accessing protected member of obj1: ", obj1._a) 

# Accessing the protected variable outside 

print("Accessing protected member of obj2: ", obj2._a) 

Output: 

Calling protected member of base class:  2 

Calling modified protected member outside class:  3 

Accessing protected member of obj1:  3 

Accessing protected member of obj2:   

 

Python Classes and Methods: 

Python is an “object-oriented programming language.” This means that almost all the 

code is implemented using a special construct called classes. Programmers use classes to keep 

related things together. This is done using the keyword “class,” which is a grouping of object-

oriented constructs. 

By the end of this tutorial you will be able to: 

1. Define what is a class 

2. Describe how to create a class 

3. Define what is a method 

4. Describe how to do object instantiation 

5. Describe how to create instance attributes in Python 

What is a class? 

A class is a code template for creating objects. Objects have member variables and have 

behaviour associated with them. In python a class is created by the keyword class. 



An object is created using the constructor of the class. This object will then be called 

the instance of the class. In Python we create instances in the following manner 

Instance = class(arguments) 

How to create a class: 

The simplest class can be created using the class keyword. For example, let's create a 

simple, empty class with no functionalities. 

>>> class Snake: 

...     pass 

... 

>>> snake = Snake() 

>>> print(snake) 

<__main__.Snake object at 0x7f315c573550> 

Attributes and Methods in class:  

A class by itself is of no use unless there is some functionality associated with it. 

Functionalities are defined by setting attributes, which act as containers for data and functions 

related to those attributes. Those functions are called methods. 

Attributes: 

You can define the following class with the name Snake. This class will have an 

attribute name. 

>>> class Snake: 

...     name = "python" # set an attribute `name` of the class 



... 

You can assign the class to a variable. This is called object instantiation. You will then be 

able to access the attributes that are present inside the class using the dot . operator. For example, 

in the Snake example, you can access the attribute name of the class Snake. 

>>> # instantiate the class Snake and assign it to variable snake 

>>> snake = Snake() 

 

>>> # access the class attribute name inside the class Snake. 

>>> print(snake.name) 

python 

Methods: 

Once there are attributes that “belong” to the class, you can define functions that will 

access the class attribute. These functions are called methods. When you define methods, you 

will need to always provide the first argument to the method with a self keyword. 

For example, you can define a class Snake, which has one attribute name and one 

method change_name. The method change name will take in an argument new_name along with 

the keyword self. 

>>> class Snake: 

...     name = "python" 

... 

...     def change_name(self, new_name): # note that the first argument is self 

...         self.name = new_name # access the class attribute with the self keyword 

... 

Now, you can instantiate this class Snake with a variable snake and then change the name 

with the method change_name. 

>>> # instantiate the class 

>>> snake = Snake() 

 



>>> # print the current object name 

>>> print(snake.name) 

python 

 

>>> # change the name using the change_name method 

>>> snake.change_name("anaconda") 

>>> print(snake.name) 

anaconda 

 

Instance attributes in python and the init method 

You can also provide the values for the attributes at runtime. This is done by defining the 

attributes inside the init method. The following example illustrates this. 

class Snake: 

 

def __init__(self, name): 

self.name = name 

 

def change_name(self, new_name): 

self.name = new_name 

Now you can directly define separate attribute values for separate objects. For example, 

>>> # two variables are instantiated 

>>> python = Snake("python") 

>>> anaconda = Snake("anaconda") 

 

>>> # print the names of the two variables 

>>> print(python.name) 

python 

>>> print(anaconda.name) 

anaconda 



 

 

Class method vs Static method in Python: 

The class method in Python is a method, which is bound to the class but not the object of 

that class. The static methods are also same but there are some basic differences. For class 

methods, we need to specify @classmethod decorator, and for static method @staticmethod 

decorator is used. 

Syntax for Class Method. 

class my_class: 

   @classmethod 

  deffunction_name(cls, arguments): 

      #Function Body 

      return value 

Syntax for Static Method. 

class my_class: 

   @staticmethod 

   deffunction_name(arguments): 

      #Function Body 

      return value 

 

differences between Classmethod and StaticMehtod? 

Class Method Static Method 

The class method takes cls (class) as first 

argument. 

The static method does not take any specific parameter. 

Class method can access and modify the 

class state. 

Static Method cannot access or modify the class state. 

The class method takes the class as 

parameter to know about the state of that 

Static methods do not know about class state. These 

methods are used to do some utility tasks by taking some 



class. parameters. 

@classmethod decorator is used here. @staticmethod decorator is used here. 

The Static methods are used to do some utility tasks, and class methods are used for 

factory methods. The factory methods can return class objects for different use cases. 

Example code 

from datetime import date as dt 

class Employee: 

   def __init__(self, name, age): 

      self.name = name 

      self.age = age 

   @staticmethod 

   defisAdult(age): 

      if age > 18: 

         return True 

      else: 

         return False 

   @classmethod 

   defemp_from_year(emp_class, name, year): 

      return emp_class(name, dt.today().year - year) 

   def __str__(self): 

      return 'Employee Name: {} and Age: {}'.format(self.name, self.age) 

e1 = Employee('Dhiman', 25) 

print(e1) 

e2 = Employee.emp_from_year('Subhas', 1987) 

print(e2) 

print(Employee.isAdult(25)) 

print(Employee.isAdult(16)) 

Output 

Employee Name: Dhiman and Age: 25 

Employee Name: Subhas and Age: 31 



True 

False 

 Python object persistence: 

The shelve module in Python’s standard library is a simple yet effective tool for 

persistent data storage when using a relational database solution is not required. The shelf object 

defined in this module is dictionary-like object which is persistently stored in a disk file. This 

creates afile similar to dbm database on UNIX like systems. Only string data type can be used as 

key in this special dictionary object, whereas any picklable object can serve as value. 

The shelve module defines three classes as follows − 

Sr.No. Module & Description 

1 Shelf 
This is the base class for shelf implementations. It is initialized with dict-like object. 

2 BsdDbShelf  

This is a subclass of Shelf class. The dict object passed to its constructor must support 

first(), next(), previous(), last() and set_location() methods. 

3 DbfilenameShelf  

This is also a subclass of Shelf but accepts a filename as parameter to its constructor rather 

than dict object. 

Easiest way to form a Shelf object is to use open() function defined in shelve module 

which return a DbfilenameShelf object. 

open(filename, flag = 'c', protocol=None, writeback = False) 

The filename parameter is assigned to the database created. 

Default value for flag parameter is ‘c’ for read/write access. Other flags are ‘w’ (write 

only) ‘r’ (read only) and ‘n’ (new with read/write) 

Protocol parameter denotes pickle protocol writeback parameter by default is false. If set 

to true, the accessed entries are cached. Every access calls sync() and close() operations hence 

process may be slow. 

Following code creates a database and stores dictionary entries in it. 

import shelve 

s = shelve.open("test") 



s['name'] = "Ajay" 

s['age'] = 23 

s['marks'] = 75 

s.close() 

This will create test.dir file in current directory and store key-value data in hashed form. 

The Shelf object has following methods available − 

Sr.No. Method & Description 

1 close() 

synchronise and close persistent dict object. 

2 sync() 

Write back all entries in the cache if shelf was opened with writeback set to True. 

3 get() 
returns value associated with key 

4 items() 

list of tuples – each tuple is key value pair 

5 keys() 
list of shelf keys 

6 pop() 
remove specified key and return the corresponding value. 

7 update() 

Update shelf from another dict/iterable 

8 values() 
list of shelf values 

To access value of a particular key in shelf. 

>>> s=shelve.open('test') 



>>> s['age'] 

23 

>>> s['age']=25 

>>> s.get('age') 

25 

The items(), keys() and values() methods return view objects. 

>>> list(s.items()) 

[('name', 'Ajay'), ('age', 25), ('marks', 75)] 

>>> list(s.keys()) 

['name', 'age', 'marks'] 

>>> list(s.values()) 

['Ajay', 25, 75] 

To remove a key-value pair from shelf 

>>> s.pop('marks') 

75 

>>> list(s.items()) 

[('name', 'Ajay'), ('age', 25)] 

Notice that key-value pair of marks-75 has been removed. 

To merge items of another dictionary with shelf use update() method 

>>> d={'salary':10000, 'designation':'manager'} 

>>> s.update(d) 

>>> list(s.items()) 

[('name', 'Ajay'), ('age', 25), ('salary', 10000), ('designation', 'manager')] 

In this article we learned about shelve module which provides convenient mechanism for 

storing persistent dictionary object. 

 



 

10 

 

MA4151                        APPLIED PROBABILITY AND STATISTICS FOR                    L  T  P  C 

                                      COMPUTER SCIENCE ENGINEERS                                        3   1  0   4 

                                                                                                                                                                  

COURSE OBJECTIVES: 

 To encourage students to develop a working knowledge of the central ideas of Linear 

Algebra. 

 To enable students to understand the concepts of Probability and Random Variables. 

 To understand the basic probability concepts with respect to two dimensional random 

variables along with the relationship between the random variables and the significance of 

the central limit theorem.  

 To apply the small / large sample tests through Tests of hypothesis. 

 To enable the students to use the concepts of multivariate normal distribution and principal 

components analysis.  

 

UNIT I  LINEAR ALGEBRA                                                                                            12 

Vector spaces – norms – Inner Products – Eigenvalues using QR transformations – QR 

factorization – generalized eigenvectors – Canonical forms – singular value decomposition and 

applications – pseudo inverse – least square approximations. 

 

UNIT II  PROBABILITY AND RANDOM VARIABLES                                             12 

Probability – Axioms of probability – Conditional probability – Bayes  theorem – Random variables 

– Probability function – Moments – Moment generating functions and their properties – Binomial, 

Poisson , Geometric, Uniform, Exponential, Gamma and Normal distributions – Function of a 

random variable. 

 

UNIT III TWO DIMENSIONAL RANDOM VARIABLES                                            12 

Joint distributions – Marginal and conditional distributions – Functions of two dimensional random 

variables – Regression curve – Correlation. 

 

UNIT IV TESTING OF HYPOTHESIS                                                                      12 

Sampling distributions – Type I and Type II errors – Small and Large samples – Tests based on 

Normal, t, Chi square and F distributions for testing of mean , variance and proportions – Tests for 

independence of attributes and goodness of fit. 

 

UNIT V  MULTIVARIATE ANALYSIS                                                                     12 

Random vectors and matrices – Mean vectors and covariance matrices – Multivariate normal 

density and its properties – Principal components – Population principal components – Principal 

components from standardized variables. 

TOTAL : 60 PERIODS 

COURSE OUTCOMES: 

At the end of the course, students will be able to 

 apply the concepts of Linear Algebra to solve practical problems. 

 use the ideas of probability and random variables in solving engineering problems. 

 be familiar with some of the commonly encountered two dimension random variables and be 

equipped for a possible extension to multivariate analysis. 

 use statistical tests in testing hypothesis on data. 

 develop critical thinking based on empirical evidence and the scientific approach to 

knowledge development. 

 

















































 

42 

 

8. Open cloud architectures like Bluemix, Development platforms like Firebase 

 

COURSE  OUTCOMES: 

On completion of the course, the students will be able to: 

CO1: To understand the various IoT protocols 

CO2: Test and experiment different sensors for application development  

CO3: To develop applications using Arduino/Raspberry Pi/ Equivalent boards. 

CO4: To develop applications that would read the sensor data and post it in Cloud 

CO5: Develop IOT applications with different platforms and frameworks. 

CO-PO Mapping 

CO POs 

PO1 PO2 PO3 PO4 PO5 PO6 

1 2 1 2 2 2 2 

2 2 1 2 2 2 2 

3 2 1 2 2 2 2 

4 2 1 2 2 2 2 

5 2 1 2 2 2 2 

Avg 2 1 2 2 2 2 

 

 

MC4001 SOFTWARE PROJECT MANAGEMENT L  T  P  C 

3   0  0  3 

COURSE  OBJECTIVES: 

 To know how to do project planning for the software process. 

 To learn the cost estimation techniques during the analysis of the project. 

 To understand the quality concepts for ensuring the functionality of the software 

 

UNIT  SOFTWARE PROJECT MANAGEMENT CONCEPTS 9 

Introduction to Software Project Management: An Overview of Project Planning: Select 

Project, Identifying Project scope and objectives, infrastructure, project products and 

Characteristics. Estimate efforts, Identify activity risks, and allocate resources- Six Sigma, 

Software Quality: defining software quality, ISO9126, External Standards. 

 

UNIT II SOFTWARE EVALUATION AND COSTING 9 

Project Evaluation: Strategic Assessment, Technical Assessment, cost-benefit analysis, Cash 

flow forecasting, cost-benefit evaluation techniques, Risk Evaluation. Selection of Appropriate 

Project approach: Choosing technologies, choice of process models, structured methods. 

UNIT III SOFTWARE ESTIMATION TECHNIQUES 9 

Software Effort Estimation: Problems with over and under estimations, Basis of software 

Estimation, Software estimation techniques, expert Judgment, Estimating by analogy. Activity 

Planning: Project schedules, projects and activities, sequencing and scheduling Activities, 

networks planning models, formulating a network model. 

 



 

43 

 

UNIT IV RISK MANAGEMENT 9 

Risk Management: Nature of Risk, Managing Risk, Risk Identification and Analysis, Reducing 

the Risk. Resource Allocation: Scheduling resources, Critical Paths, Cost scheduling, 

Monitoring and Control: Creating Framework, cost monitoring, prioritizing monitoring. 

UNIT V GLOBALIZATION ISSUES IN PROJECT MANAGEMENT 9 

Globalization issues in project management: Evolution of globalization- challenges in building 

global teams-models for the execution of some effective management techniques for 

managing global teams. Impact of the internet on project management: Introduction – the 

effect of the internet on project management – managing projects for the internet – effect on 

project management activities.  Comparison of project management software: dot Project, 

Launch pad, openProj. Case study: PRINCE2 

SUGGESTED ACTIVITIES: 

1. Reducing process variability using six-sigma model DMAIC  on software company 

applications with respect to factors like quality aspects , production bugs classified and 

measured, the causes of the large number of production bugs leading to different 

improvement suggestions 

2. Do cost benefit analysis using Ms-Excel for Selecting the project (from available data in 

the web like https://img.chandoo.org/a/24-cost-benefit-analysis.xlsx) 

3. Frequencying  and Scheduling the Project activities using open source Ms-Project  

4. Risk analysis of any project with special reference to performance time cost trilogy 

5. Set up a project and its tasks ; Communicate with everyone on the project team from 

within dotProject software.  

TOTAL:45 PERIODS 

 

COURSE  OUTCOMES: 

CO1:  Understand the activities during the project scheduling of any software application. 

CO2:  Learn the risk management activities and the resource allocation for the projects. 

CO3: Apply the software estimation and recent quality standards for evaluation of the  

          software projects 

CO4: Acquire knowledge and skills needed for the construction of highly reliable software  

          project 

CO5: Create reliable, replicable cost estimation that links to the requirements of project  

           planning and managing 

 

REFERENCES 

1. Bob Hughes, Mike Cotterell & Rajib Mall “Software Project Management”, McGraw- Hill 

Publications, 6th  Edition 2017. 

2. Ian Somerville, “Software Engineering”, 10th Edition, Pearson Education, 2017. 

3. Robert T. Futrell , “Quality Software Project Management”, Pearson Education India, 

2008. 

4. Gopalaswamy Ramesh, “Managing Global Software Projects: How to Lead 

Geographically Distributed Teams, Manage Processes and Use Quality Models”, 

McGraw Hill Education, 2017. 

 

5. Richard H.Thayer “Software Engineering Project Management”, 2nd Edition, Wiley, 

2006.  

6. S. A. Kelkar,” Software Project Management” PHI, New Delhi, Third Edition ,2013 

 



 PROFESSIONAL ELECTIVES 

MC4001                              SOFTWARE PROJECT MANAGEMENT                        L T P C  

                                                                                                                                       3 0 0 3 

UNIT  I                              SOFTWARE PROJECT MANAGEMENT CONCEPTS  

Introduction to Software Project Management: An Overview of Project Planning: Select Project, 

Identifying Project scope and objectives, infrastructure, project products and Characteristics. 

Estimate efforts, Identify activity risks, and allocate resources- Six Sigma, Software Quality: 

defining software quality, ISO9126, External Standards. 

 

Introduction to Software Project Management: 

                          Project management has been practiced since early civilization. Until the 

beginning of twentieth century civil engineering projects were actually treated as projects and 

were generally managed by creative architects and engineers. Project management as a discipline 

was not accepted. It was in the 1950s that organizations started to systematically apply project 

management tools and techniques to complex projects. As a discipline, Project Management developed 

from several fields of application including construction, engineering, and defense activity. Two 

forefathers of project management are commonly known: Henry Gantt, called the father of planning 

and control techniques who is famous for his use of the Gantt chart as a project management tool; and 

Henri Fayol for his creation of the five management functions which form the foundation of the body of 

knowledge associated with project and program management. The 1950s marked the beginning of the 

modern Project Management era. Project management became recognized as a distinct discipline 

arising from the management discipline. 

WHAT IS A PROJECT_____________________________________________ 

                                 All of us have been involved in projects, whether they be our personal projects or in 

business and industry. Examples of typical projects are for example: 

 Personal projects:   

 obtaining an MCA degree  

 writing a report  

 planning a party  

 planting a garden  

 



 Industrial projects:  

  Construction of a building  

  provide electricity to an industrial estate  

 building a bridge  

  designing a new airplane 

Projects can be of any size and duration. They can be simple, like planning a party, or complex like 

launching a space shuttle. 

1.1.1 Project Definition: 
A project can be defined in many ways : 

 

 A project is ―a temporary endeavor undertaken to create a unique product, service, or result.‖ 

Operations, on the other hand, is work done in organizations to sustain the business. Projects 

are different from operations in that they end when their objectives have been reached or the 

project has been terminated.  

 

A project is temporary. A project‘s duration might be just one week or it might go on for years, 

but every project has an end date. You might not know that end date when the project begins, 

but it‘s there somewhere in the future. Projects are not the same as ongoing operations, 

although the two have a great deal in common. 

 

 A project is an endeavor. Resources, such as people and equipment, need to do work. The 

endeavor is undertaken by a team or an organization, and therefore projects have a sense of 

being intentional, planned events. Successful projects do not happen spontaneously; some 

amount of preparation and planning happens first. 

 

 Finally, every project creates a unique product or service. This is the deliverable for the project 

and the reason, why that project was undertaken. 

 

Planning & Design: 
                                     After the initiation stage, the system is designed. Occasionally, a small 

prototype of the final product is built and tested. Testing is generally performed by a 

combination of testers and end users, and can occur after the prototype is built or concurrently. 

Controls should be in place that ensures that the final product will meet the specifications of the 

project charter. The results of the design stage should include a product design that: 

 

- Satisfies the project sponsor (the person who is providing the project budget), end user, and 

business requirements. 

 

-Functions as it was intended. 

 



- Can be produced within acceptable quality standards. 
 

- Can be produced within time and budget constraints. 

 

Select Project: 
Projects come in all shapes and sizes. The following attributes help us to define a project further: 

 

A project has a unique purpose. Every project should have a well-defined objective. For 

example, many people hire firms to design and build a new house, but each house, like each 

person, is unique.  

 

 A project is temporary. A project has a definite beginning and a definite end. For a home 

construction project, owners usually have a date in mind when they‘d like to move into their 

new homes.  

 A project is developed using progressive elaboration or in an iterative fashion. Projects are 

often defined broadly when they begin, and as time passes, the specific details of the project 

become clearer. For example, there are many decisions that must be made in planning and 

building a new house. It works best to draft preliminary plans for owners to approve before 

more detailed plans are developed.  

 

A project requires resources, often from various areas. Resources include people, hardware, 

software, or other assets. Many different types of people, skill sets, and resources are needed to 

build a home.  

 

A project should have a primary customer or sponsor. Most projects have many interested 

parties or stakeholders, but someone must take the primary role of sponsorship. The project 

sponsor usually provides the direction and funding for the project.  

 

A project involves uncertainty. Because every project is unique, it is sometimes difficult to 

define the project‘s objectives clearly, estimate exactly how long it will take to complete, or 

determine how much it will cost. External factors also cause uncertainty, such as a supplier 

going out of business or a project team member needing unplanned time off. This uncertainty is 

one of the main reasons project management is so challenging. 

 

Identifying Project scope and objectives: 
                              Like any human undertaking, projects need to be performed and delivered 

under certain constraints. Traditionally, these constraints have been listed as scope, time, and 

cost. These are also referred to as the Project Management Triangle, where each side 

represents a constraint. One side of the triangle cannot be changed without impacting the 

others. A further refinement of the constraints separates product 'quality' or 'performance' from 

scope, and turns quality into a fourth constraint. 



 

The time constraint refers to the amount of time available to complete a project. The cost 

constraint refers to the budgeted amount available for the project. The scope constraint refers 

to what must be done to produce the project's end result. These three constraints are often 

competing constraints: increased scope typically means increased time and increased cost, a 

tight time constraint could mean increased costs and reduced scope, and a tight budget could 

mean increased time and reduced scope. 

 

The discipline of project management is about providing the tools and techniques that enable 

the project team (not just the project manager) to organize their work to meet these 

constraints. 

 

Another approach to project management is to consider the three constraints as finance, time 

and human resources. If you need to finish a job in a shorter time, you can allocate more people 

at the problem, which in turn will raise the cost of the project, unless by doing this task quicker 

we will reduce costs elsewhere in the project by an equal amount. 

 

Time: 
For analytical purposes, the time required to produce a product or service is estimated using 

several techniques. One method is to identify tasks needed to produce the deliverables 

documented in a work breakdown structure or WBS. The work effort for each task is estimated 

and those estimates are rolled up into the final deliverable estimate 

 

The tasks are also prioritized, dependencies between tasks are identified, and this information is 

documented in a project schedule. The dependencies between the tasks can affect the length of 

the overall project (dependency constraint), as can the availability of resources (resource 

constraint). Time is not considered a cost nor a resource since the project manager cannot 

control the rate at which it is expended. This makes it different from all other resources and cost 

categories. 

  

Cost: 
Cost to develop a project depends on several variables including : labor rates, material rates, risk 

management, plant (buildings, machines, etc.), equipment, and profit. When hiring an 

independent consultant for a project, cost will typically be determined by the consultant's or 

firm's per diem rate multiplied by an estimated quantity for completion. 

 



 
                             Figure 1.1 : The Project management Triangle  

Scope: 
Scope is requirement specified for the end result. The overall definition of what the project is 

supposed to accomplish, and a specific description of what the end result should be or 

accomplish can be said to be the scope of the project. A major component of scope is the quality 

of the final product. The amount of time put into individual tasks determines the overall quality 

of the project. Some tasks may require a given amount of time to complete adequately, but 

given more time could be completed exceptionally. Over the course of a large project, quality 

can have a significant impact on time and cost or vice versa. 

 
Together, these three constraints viz. Scope, Schedule & Resources have given rise to the phrase 

"On Time, On Spec, On Budget". In this case, the term "scope" is substituted with 

"spec(ification)" 

 

Infrastructure: 
Project management is “the application of knowledge, skills, tools and techniques to project 

activities to meet the project requirements”. The effectiveness of project management is critical 

in assuring the success of any substantial activity. Areas of responsibility for the person handling 

the project include planning, control and implementation. A project should be initiated with a 

feasibility study, where a clear definition of the goals and ultimate benefits need to be 

determined. Senior managers' support for projects is important so as to ensure authority and 

direction throughout the project's progress and, also to ensure that the goals of the organization 

are effectively achieved in this process. 

 

Knowledge, skills, goals and personalities are the factors that need to be considered within 

project management. The project manager and his/her team should collectively possess the 



necessary and requisite interpersonal and technical skills to facilitate control over the various 

activities within the project. 

 

The stages of implementation must be articulated at the project planning phase. Disaggregating 

the stages at its early point assists in the successful development of the project by providing a 

number of milestones that need to be accomplished for completion. In addition to planning, the 

control of the evolving project is also a prerequisite for its success. Control requires adequate 

monitoring and feedback mechanisms by which senior management and project managers can 

compare progress against initial projections at each stage of the project. Monitoring and 

feedback also enables the project manager to anticipate problems and therefore take 

pre�emptive and corrective measures for the benefit of the project. 

 

Projects normally involve the introduction of a new system of some kind and, in almost all cases, 

new methods and ways of doing things. This impacts the work of others: the "users". User 

interaction is an important factor in the success of projects and, indeed, the degree of user 

involvement can influence the extent of support for the project or its implementation plan. A 

project manager is the one who is responsible for establishing a communication in between the 

project team and the user. Thus one of the most essential quality of the project manager is that 

of being a good communicator, not just within the project team itself, but with the rest of the 

organization and outside world as well. 

 

Project products and Characteristics: 
Features of projects: 

 

 Projects are often carried out by a team of people who have been assembled for that specific 

purpose. The activities of this team may be co-ordinated by a project manager. 

 

 Project teams may consist of people from different backgrounds and different parts of the 

organisation. In some cases project teams may consist of people from different organisations. 

 

 Project teams may be inter-disciplinary groups and are likely to lie outside the normal 

organisation hierarchies. 

 

 The project team will be responsible for delivery of the project end product to some sponsor 

within or outside the organisation. The full benefit of any project will not become available until 

the project as been completed. 

 

project products and Characteristics.: 
In recent years more and more activities have been tackled on a project basis. Project teams and 

a project management approach have become common in most organisations. The basic 



approaches to project management remain the same regardless of the type of project being 

considered. You may find it useful to consider projects in relation to a number of major 

classifications: 

   
a) Engineering and construction 

 The projects are concerned with producing a clear physical output, such as roads, bridges or 

buildings. The requirements of a project team are well defined in terms of skills and 

background, as are the main procedures that have to be undergone. Most of the problems 

which may confront the project team are likely to have occurred before and therefore their 

solution may be based upon past experiences. 

 

b) Introduction of new systems 

 These projects would include computerisation projects and the introduction of new systems 

and procedures including financial systems. The nature and constitution of a project team 

may vary with the subject of the project, as different skills may be required and different 

end-users may be involved. Major projects involving a systems analysis approach may 

incorporate clearly defined procedures within an organisation. 

 

 

c) Responding to deadlines and change  

An example of responding to a deadline is the preparation of an annual report by a specified 

date. An increasing number of projects are concerned with designing organisational or 

environmental changes, involving developing new products and services. 

What is Effort Estimation? 

Effort estimation is the process of forecasting how much effort is required to develop or 

maintain a software application. This effort is traditionally measured in the hours 

worked by a person, or the money needed to pay for this work.  
 

Effort estimation is used to help draft project plans and budgets in the early stages of the 

software development life cycle. This practice enables a project manager or product 

owner to accurately predict costs and allocate resources accordingly. 

 Identify activity risks: 

Step 1; Identify and quantify activity-based risks 

https://www.wrike.com/project-management-guide/faq/what-are-the-roles-and-responsibilities-of-a-project-manager-to-be-successful-in-the-job/


For brevity, we’ll focus on the initial three steps as they cover risk identification 

specifically (while the remaining steps are about validating and formalizing 

findings against the overall project’s scope). 

Template specification 

This is a risk statement based on feedback about causes, effects, impacts, areas 

of risk, and events. A structured template helps you capture this in a consistent 

way. 

 

Basic identification 

Answering two questions about potential risks: why or why not us and whether 

they have been experienced before. The former can be captured via SWOT 

analysis exercise while the latter is a statement, ideally referenced from a project 

post mortem or lessons learned library. 

Detailed identification 

This step is more time-consuming than the previous ones but also delivers the 

detail you need to properly assess risk. PMI identifies five tools to use: 

 Interviewing 

 Assumptions analysis 

 Document reviews 

 Delphi technique 

 Brainstorming 

Once you’ve completed these steps you’ll need to categorize risk in the next one 

— the External cross-check step. We’ve covered this in our Understanding Risk 

Breakdown Structure article. 

https://www.wrike.com/blog/tips-swot-analysis-in-project-management/
https://www.wrike.com/blog/tips-swot-analysis-in-project-management/
https://www.wrike.com/blog/understanding-risk-breakdown-structure/
https://www.wrike.com/blog/understanding-risk-breakdown-structure/


Step five is the Internal Cross-check which maps risks to corresponding 

elements in the scope of work. At this point you will start forming a view of what 

project elements are riskier than others, and what mitigation strategies to adopt. 

The final step, Statement Finalization, packages findings in a series of 

diagrams covering risky areas, causes, and impacts. 

Tip: Use a tool like Wrike to maintain a risk register spanning all of your projects 

which you can refer to whenever you start a new one. 

 

Resource Allocation in Project: 

Resource allocation is the process of assigning and scheduling available resources in 

the most effective and economical way possible. Projects will always need resources 

but they can often be scarce. The task, therefore, lies with the project manager to 

determine the proper timing and allocation of those resources within the project 

schedule. 

So, what is resource allocation in project management? It is the management and 

delegation of resources throughout a project to ensure that it runs as smoothly and 

successfully as possible. 

Six Sigma: 

 

https://www.wrike.com/blog/what-is-a-risk-register-project-management/


Six Sigma is a method of project management and is sometimes considered an 

alternative to project management. 

 

It is a set of organisational tools that help improve the business processes. Six sigma 

aims to reduce the variations in process and therefore increase overall performance. 

It is given credit for reducing defective products and services, improving profits and 

employee morale and therefore positively impacting the customer experience. 

If a process is said to have six sigma qualities, then this means that the process is well 

controlled, and the errors are well within tolerance. 

 

There are many definitions of six sigma, but there is a common thread of organisation 

within statistical tolerance. It requires projects to have clear outcomes that are 

closely aligned to a business strategy, all of which are measurable. 

 

The difference in opinion comes from whether Six Sigma is a philosophy, a set of tools 

and methodology or a set of metrics. The question is whether it matters and whether it 

is something of all these things. 

 

Six Sigma is a philosophy because it determines that processes can be 

measured and that if you work on input, then you can control outputs. It is a set of 

qualitative and quantitative techniques which include statistical process control, control 

charts, failure mode and effect analysis and process mapping. 

 

It can be considered a methodology because there are steps to follow: define, measure, 

analyse, improve and control. Finally, it is a set of performance metrics that allow you to 

account for shifts in process quality. 

 

As well as Six Sigma there is Lean Six Sigma. 

This is a method that requires the team to collaborate in efforts to improve performance 

by removing waste and reducing variation in quality. It is still a statistical process that 

gives quantitative analysis to improvements, rather than applying guesswork. 

 

https://en.wikipedia.org/wiki/Lean_Six_Sigma


Software Quality: 

Software quality product is defined in term of its fitness of purpose. That is, a quality 

product does precisely what the users want it to do. For software products, the fitness of 

use is generally explained in terms of satisfaction of the requirements laid down in the 

SRS document. Although "fitness of purpose" is a satisfactory interpretation of quality 

for many devices such as a car, a table fan, a grinding machine, etc.for software 

products, "fitness of purpose" is not a wholly satisfactory definition of quality. 

Example: Consider a functionally correct software product. That is, it performs all tasks 

as specified in the SRS document. But, has an almost unusable user interface. Even 

though it may be functionally right, we cannot consider it to be a quality product. 

The modern view of a quality associated with a software product several quality 

methods such as the following: 

Portability: A software device is said to be portable, if it can be freely made to work in 

various operating system environments, in multiple machines, with other software 

products, etc 

Usability: A software product has better usability if various categories of users can 

easily invoke the functions of the product. 

Reusability: A software product has excellent reusability if different modules of the 

product can quickly be reused to develop new products. 

Correctness: A software product is correct if various requirements as specified in the 

SRS document have been correctly implemented. 

Maintainability: A software product is maintainable if bugs can be easily corrected as 

and when they show up, new tasks can be easily added to the product, and the 

functionalities of the product can be easily modified, etc. 

Software Quality Management System: 

A quality management system is the principal methods used by organizations to provide 

that the products they develop have the desired quality. 

A quality system subsists of the following: 



Managerial Structure and Individual Responsibilities: A quality system is the 

responsibility of the organization as a whole. However, every organization has a sever 

quality department to perform various quality system activities. The quality system of an 

arrangement should have the support of the top management. Without help for the 

quality system at a high level in a company, some members of staff will take the quality 

system seriously. 

Quality System Activities: The quality system activities encompass the following: 

 

Usability: A software product has better usability if various categories of users can 

easily invoke the functions of the product. 

Reusability: A software product has excellent reusability if different modules of the 

product can quickly be reused to develop new products. 

Correctness: A software product is correct if various requirements as specified in the 

SRS document have been correctly implemented. 

Maintainability: A software product is maintainable if bugs can be easily corrected as 

and when they show up, new tasks can be easily added to the product, and the 

functionalities of the product can be easily modified, etc. 

Software Quality Management System 

A quality management system is the principal methods used by organizations to provide 

that the products they develop have the desired quality. 

A quality system subsists of the following: 

Managerial Structure and Individual Responsibilities: A quality system is the 

responsibility of the organization as a whole. However, every organization has a sever 

quality department to perform various quality system activities. The quality system of an 

arrangement should have the support of the top management. Without help for the 

quality system at a high level in a company, some members of staff will take the quality 

system seriously. 

Quality System Activities: The quality system activities encompass the following: 

 



ISO/IEC 9126 in Software Engineering: 
 
ISO/IEC 9126 is an international standard proposed to make sure „quality of all 
software-intensive products‟ which includes a system like safety-critical where in 
case of failure of software lives will be in jeopardy. ISO i.e. International  Organization 
for standardization and IEC i.e. International Electrotechnical Commission have 
developed ISO/IEC 9126 standards for software engineering –> Product Quality to 
provide an all-inclusive specification and evaluation model for the quality of the 
software product.  

The standard is divided into 4 parts as depicted in the following figure :  

  

 

 

Part-1 Software Engineering – Product Quality “Quality model” :  
 
It describes quality model framework which explains relationships between 
different approaches to quality as well as identifying quality characteristics and 
sub-characteristics of software products.  
 
Part-2 Software Engineering – Product Quality “External Metrices” :  
 
It’s use is to describes external metrices that are used to measure 
characteristics and sub-characteristics which are identifies in part 1.  
 
Part-3 Software Engineering – Product Quality “Internal Metrices” : 
  
It’s use is to describes internal metrices that are used to measure 
characteristics and sub-characteristics which are identifies in part 1.  
 
Part-3 Software Engineering – Product Quality “Quality in use metrices” :  
 
It’s use is to identify metrices which are used to measure effects of combined 
quality characteristics for user.  



As from above discussion, it is concluded that first three parts are concerned 
with describing and measuring quality of software product and fourth part 
concerned about quality of software product from user point of view.  

Furthermore, first part i.e. Quality model is concerned classified into two 
categories as depicted in the following figure :  

 
 Internal External Quality Part : It determines the quality of a software product 
through six characteristics which are Functionality, Reliability, Usability, 
Efficiency, Maintainability and Portability. Each characteristics is subdivided into 
related sub-characteristics which are also depicted in the above example.  
  

1. Functionality: The functions are those that will satisfy implied needs.  
 Suitability 
 Accuracy 
 Interoperability 
 Security 
 Functionality Compliance 
  

2. Reliability: A set of attributes that will bear on the capability of software to 
maintain the level of performance.  
 Maturity 
 Fault Tolerance 
 Recoverability 
 Reliability Compliance 

 



3. Usability: A set of attributes that bear on the effort needed for use by a 
implied set of users.  
 Understandability 
 Learn ability 
 Operability 
 Attractiveness 
 Usability Compliance 

 
4. Efficiency: A set of attributes that bear on the relationship between the level 

of performance of the software under stated conditions.  
 Time Behavior 
 Resource Utilization 
 Efficiency Compliance 

 
5. Maintainability: A set of attributes that bear on the effort needed to make 

specified modifications.  
 Analyzability 
 Changeability 
 Stability 
 Testability 
 Maintainability Compliance 

 
6. Portability: A set of attributes that bear on the ability of software to be 

transferred from one environment to another.  
 Adaptability 
 Installability 
 Co-existence 
 Replace ability 
 Portability Compliance 

 
Quality in use Model : It identifies the four quality characteristics i.e. 
Effectiveness, Productivity, Safety, Satisfaction.  

 

 

 

 



 

 

 































































































































GLOBALIZATION IMPACT ON PROJECT MANAGEMENT 

1. Introduction 

We live in a projectified society. The term coined in the mid-1990s has been gaining 

relevance ever since, as projects permeate not just economies, but nearly all spheres of 

human society. From the ‘traditional’ project-based industries, such as construction 

(serving the earliest examples of projects – Kozak-Holland 2010; Morris 2013; Chiu 

2010), and later defense (with the US Department of Defense and  

‘McNamara's Revolution 

widely recognized as the cradle of classic project management – Lenfle and Loch 

2010; Morris 2013), projects as organizational form spilled over to other economic 

spheres, including the rather novel ones (notably IT and information systems), as well 

as the public sector (Crawford and Helm 2009; Godenhjelm, Lundin, and Sjoblom 

2015), education (Austin et al. 2013) and scientific research (Fowler, Lindahl, and 

Sköld 2015), healthcare (Shirley 2020; Suhonen and Paasivaara 2011), media (Bouncken, 

Lekse, and Koch 2008). It is not uncommon to see people describing their nonwork- 

related activities (hobbies, sports, studies and many other things) in ‘project’ 

terms (be it making paintings, working on some elaborate embroidery, going in forlearning to 

cook recipes from a specific cuisine, reaching a particular fitness or sports 

goal, etc.). 

 

As regards the extent of projects in the developed economies, already in the 1992– 

1996 a massive panel survey of 3,500 European firms highlighted a marked increase in 

the use of projects in firm activity – up from 13 to 42 per cent over the course of just 

four years (Whittington et al. 1999). In 2004, a survey by PricewaterhouseCoopers provided 

new evidence supporting the trend – each of the 200 firms in the sample was engaged 

in some form of project activity, while a quarter of them had large (100+) project 

portfolios (Nieto-Rodriguez et al. 2004). Scranton (2014) used World Bank data for the 

estimate of about 22 per cent of world GDP in 2009 came from project-based activities, 

with some countries like India and China having much higher estimates (34 % and 45 % 

respectively). A more recent study of Germany, Norway and Iceland revealed that the 

shares of project work in total working hours reached as high as 34.7 %, 32.6 % and 

27.7 % respectively in 2014–2017, with the majority of projects being internal and thus 

largely invisible to the customer (Schoper et al. 2018). With these figures taken into 

account, expressions like ‘projectification of everything’ (Jensen et al. 2016: 22), or statements 

on the omnipresence of projects and their becoming a human condition (Lundin 

et al. 2015; see also Lundin and Söderholm 1998; Hobday 1998, 2000; Cicmil and 

Hodgson 2006) do not sound as an exaggeration. 

 

Increasing importance of projects and their spread into various spheres of economy, 

as well as into social and political activities, thus appears to be an established trend of the 

latest decades. Is has been running simultaneous to a number of major changes in the life 

of humanity, of which globalization is likely among the first to come to mind. This raises 

a question of globalization impact on the essential features of projects and the sphere 

of project management. 

 

 



 

2. Globalization, Technological Paradigms, and Project Management: Concept 

Evolution 

(2002), Richard R. Nelson (2008), Nick von Tunzelmann (von Tunzelmann et al. 2008), 

Leonid Grinin and Andrey Korotayev (Akaev et al. 2012; Grinin L., Grinin A., Korotayev 

2017; Grinin, Korotayev 2016). The K-waves are considered to have emerged in 

the economy with the Industrial Revolution, which fundamentally changed the means of 

production. Each new cycle would be started by a number of breakthrough technologies 

forming a new technological paradigm (the spread of these technologies allows the 

emergence of new spheres of production, thus causing an economic upswing). Their 

impact on globalization differs from one technology to the other; it was shown, for example, 

that the ‘golden age’ of the nineteenth-century globalization was largely related 

to the technological breakthroughs forming the essence of the second technological paradigm, 

such as the telegraph, railways and steamships, which allowed for a rocketing 

increase in the speed and volume of communications over distance, most notably between 

Europe and Americas (Zinkina et al. 2019). 

The fifth technological paradigm, which, according to researchers, is currently 

completing its final stage, is based on technological breakthroughs in microelectronics 

(invention and worldwide spread of personal computers), information technologies (the 

Internet, email, social networks, instant messengers, etc.) and various software that have 

created new industries and changed the already existing ones. These technologies allowed 

for a dramatic increase in the world connectivity, which formed the essence of 

the most recent decades of globalization. In addition, the fifth technological paradigm 

witnessed the development and massive use of cyber-physical systems, that is, systems 

encompassing complex interconnections of computing devices, physical objects, people 

and physical environments. One would naturally expect such profound changes to have 

had reflection in the nature of projects and project management. To understand them 

better, let us take a brief look at the history of project management and classic style of 

project management developed in the twentieth century. 

Historians of project management believe that the first projects emerged in construction. 

The largest and best-known examples would include Egyptian pyramids, 

Mesopotamian temples, the Great Chinese Wall (to name a few), but these ‘megaprojects’ 

co-existed with smaller ones needed in everyday life such as construction of 

temples, roads, bridges, and irrigation systems (Kozak-Holland 2010; Chiu 2010; Morris 

2013). The Hammurabi code of laws includes a clause setting legal responsibility for 

the architect and construction workers if their building collapsed (Chiu 2010: 170). The 

construction of Egyptian pyramids involved such basic project management practices as 

keeping accounts of materials, labor resources, and money spent. For a long time in 

history, project organization was mostly applied for the tasks of constructing buildings 

and infrastructure (Hall 2012; Garel 2013). 

The first turning point in the history of project management was likely associated 

with the Industrial Revolution. As the range of projects increased, so did the complexity 

of management technologies; the hierarchy of ‘general contractor – contractor – subcontractors’ 

is widely established, the sphere of responsibility is defined for each level 

in this hierarchy, control for the project timing and the quality of the result is getting 

formalized (Chiu 2010: 201). Railways, mining, petrochemicals, medicine, cargo transportation, 



banking were all actively developing using the form of projects, although 

formal positions and roles of project manager, chief project engineer, project coordinator 

were only just beginning to appear (Morris 2013: 19). At the same time, the first 

Globalization receives unabating attention not only from the research community, but 

from numerous decision-makers, state leaders, entrepreneurs, media and general public all 

over the world. Multi-dimensional as it is, this phenomenon invariably impacts nearly 

all spheres of human life, even though the extent and character of its influence can differ. 

Globalization has had a significant effect on global economy, global financial system, 

politics, statehood, society, etc. (Grinin 2011). There are different views regarding the 

history of globalization. Sometimes it is associated with the spread of PCs, the Internet, 

and the huge increase in global communications and other types of connection; another 

line of research puts globalization in the context of Macrohistory/Big History, tracing its 

start back to ancient times and viewing the recent surge of globalization as yet another 

stage in its long history which has seen both periods of high integration and periods of 

weakening ties between various parts of the world (Zinkina et al. 2019; Grinin 2011). 

Some researchers claim the most recent decades of globalization to be a fundamentally 

new phenomenon, others see it as an intensification of the previously existing trends and 

connections. However, regardless of the approach we take, it can hardly be disputed 

globalization 

 

has been closely interrelated with technological change. 

The concept of technological paradigms, closely related to the concept of long economic 

cycles / Kondratieff waves (1922), was developed in the works of Carlota Perez 

 

transnational corporations appeared which had to develop the first tools for trans-border 

project management, heavily relying on the most advanced transport and communication 

technologies of the time (Wilkins 1988). 

Researchers differ in their opinions on the emergence of modern project management. 

Sometimes it attributed to the ‘taylorism’ at the very beginning of the twentieth century. 

More frequently, the Gantt Chart of 1910 is recalled, which formally set one of the ‘golden 

triad’ of modern project management indicators – timing (concentrating on the timing 

of project tasks and sub-tasks and how long they took to be completed). Both approaches 

were frequently used before the World War II, which saw a surge in the number of projects 

and their variety. The most controversial case of the time was the Manhattan project. 

Some see it as the cradle of classic project management where its principles of organization, 

planning, and control were developed (Shenhar and Dvir 2007). Others emphasize 

that the principles underlying the greatest part of Manhattan project (trial-and-error, parallel 

trials) got excluded from classical project management, and its very essence contradicted 

these principles (Lenfle and Loch 2010). The very term of ‘project management’ 

appeared after the War, in 1952–53, in the USA Air Force, followed by a formal position 

of project manager, the concept of project office and other important concepts (Morris 

2013). Classical project management was to a large extent developed in the course of 

two military projects, Atlas and Polaris (the latter is more known for the development 

of PERT tool for network calendar planning), and then got widely accepted through the 

so-called ‘McNamara Revolution’. While at his post of the Secretary of Defense, Robert 



McNamara transformed the processes of analysis, planning, decision-making and 

project management. First, the phased approach has become the main project management 

model for the Department of Defense and the newly created NASA. In the evaluation 

procedures, special attention was paid to the stages of developing the concept and 

determining the project contract. This was supported by the proliferation of management 

tools such as PERT. Secondly, starting from 1963, the Department of Defense 

moved from cost-recovery contracts (plus a flat-rate fee) to fixed-price contracts, which 

increased the responsibility of contractors to achieve the goals of the project while 

strictly sticking to the pre-planned budget. This helped consolidate project planning and 

control as key elements of project management. The two key assumptions that underlie 

the phased approach can be identified as follows: (1) project management is focused 

exclusively on implementing the decisions, not making or discussing them; (2) uncertainty 

management and control are feasible. Thus, classical project management was 

limited to the effective implementation of routine initiatives and tasks, being cut off 

from the two main areas of management inherent in the Manhattan project – strategy 

development and strategic search (Lenfle and Loch 2010). 

3. Data and Methods 

The last decades witnessed a growing failure rate in projects, varying from one sphere 

to another but particularly high in the new spheres, such as IT/IS, where in the mid- 

1990s more than a half of projects failed to meet at least one success criteria of the 

‘golden triad’ of classic project management (time, budget, and scope), and about onethird 

were considered complete failures (Ewusi-Mensah and Przasnyski 1997). Projects 

would frequently overrun their schedules, require additional financial resources, get 

cancelled before completion or survive to be completed but fail to produce a good/service 

popular with customers. These issues caught the attention of a number of researchers 

trying to understand and conceptualize the reasons behind the project failures 

and to transfer this knowledge into methodological improvements aimed at fixing the 

most commonly experienced problems. We review this literature to reveal the most frequently 

mentioned mismatches between the classical project management and modern 

projects. We then proceed to analyze the role of globalization in the emergence of these 

mismatches. We use areas of project management knowledge developed in the Guide to 

the Project Management Body of Knowledge developed by Project Management Institution 

in order to classify the channels of globalization impact on project management. 

4. Impact of Globalization on Project Management 

Globalization has been influencing project management through a large number of 

channels. In order to classify and organize this variety, let us follow the structure proposed 

in the Guide to the Project Management Body of Knowledge (PMBOK Guide) 

developed by Project Management Institution. This classification includes the following 

categories: project environment; project leadership; managing project integration; managing 

project scope; managing project time; managing project cost; managing project 

quality; managing human resources of the project; managing project communications; 

managing project risk; managing project procurement; and managing project stakeholders. 

Below we will list the channels of globalization impact on project management 

structured according to these categories. The list does not claim to be comprehensive 

and only contains the most notable effects of globalization on the corresponding areas 

of project management. 



 project environment – globalization exerts a huge impact upon the environment 

where the projects are carried out, first and foremost, by increasing its volatility and penetrability 

to external shocks. A vivid example from rather recent past can be presented 

here, namely, the global financial and economic crisis of 2008–2009. What started as 

mortgage market crisis in the USA quickly evolved into a full-scale global economic recession, 

causing a slowdown, or a temporary halt, or even a cancellation in numerous projects 

worldwide. The impact of the global crisis was of such scale that these slowdowns 

and cancellations frequently could not be averted or mitigated by regular project management. 

Globalization-driven environmental shocks to project management can come in 

a variety of forms, such as global financial and economic crises (as in the example viewed 

above), commodity price spikes, sudden sociopolitical shocks and destabilizations (including 

ones caused by external influence), changes in the international political arena, 

technological breakthroughs made in other countries etc. 

 project leadership – much depends on the educational and professional background 

of the leader, including their involvement in the global sphere of knowledge 

related to the project managed, as well as the presence or absence of international connections 

which could ease communications with foreign colleagues, knowledge of foreign 

competitors and their experience, access to international funding etc.; ‘globalized’ 

leaders may have a number of important advantages here; 

 managing project integration involves project planning, project knowledge management, 

monitoring, and integrated change control; at this stage it is important for project 

managers to take into account the possible impact of globalization upon the project 

scope, time, and cost – see below. Integrated change control is related to monitoring 

potential risks and reacting properly if one or several of the risks become practically 

relevant – see below ‘managing project risk’; international laws and regulations applied 

to global projects must be well understood in order to effectively manage the relationship 

of the professional practices to governments and political conditions as well as 

build key relationship to global government decision-makers; 

 managing project scope – project scope should be defined taking into account the 

global sphere of knowledge related to the project managed; on the one hand, globalization 

of knowledge makes it easier to plan the scope of the project as a lot of details can 

be clarified through previous experience and some potential pitfalls can be avoided, 

both for deterministic and non-deterministic projects; on the other hand, it makes it 

more difficult, as a large amount of knowledge needs to be taken into account for project 

success; thus, high-qualified human resources are necessary. For non-deterministic 

projects, globalization of knowledge is of particular importance, as it serves for defining 

the project goal itself and the project can be carried out ‘standing on the shoulders 

of the giants’; 

 managing project time – this aspect used to be much more transparent at the project 

planning phase in the epoch of classical project management and can be affected by 

a multiplicity of various factors in the epoch of globalization (see ‘project environment’); 

project overruns are currently typical and have been so for a while, reaching 

50 per cent – 200 per cent of the planned project time (Morris and Hough 1987: 7; 



Reichelt and Lyneis 1999); we presume that this is due to uncertainty and complexity 

rising with globalization – see below Section 5; 

 managing project cost – on the one hand, globalization presents some opportunities 

to carry out projects at smaller costs, for example, economizing on human resources 

through outsourcing tasks to different countries with cheaper labor force, or saving on 

the cost of materials by gaining access to information on cheaper producers and reaching 

out to these very producers through modern information technologies; on the other 

hand, globalization makes projects vulnerable to commodity price shocks and, generally 

speaking, to all the global economic and financial volatility, including crisis phenomena; 

moreover, increased price awareness of customers' needs to be taken into account 

when defining the costs of project and the price of project output; 

 managing project quality – global quality standards regarding the output of the 

project need to be taken into account for project success; globalization increases international 

competition for project output quality; 

 managing human resources of the project – one of the prominent challenges 

posed by globalization for project managers is managing virtual project teams consisting 

of outsourced members; advantages stemming from globalization here include ‘access 

to a wider pool of talent, potential cost reductions by cheaper labor in developing 

countries, the enforcement of internal competition and possible quality improvements. 

External advantages for customers are follow-the-sun development and extended service 

times’ (Eberlein 2008: 29; Gurung and Prater 2006). More challenging aspects also 

stemming from globalization include the need to address significant cultural heterogeneity 

within the virtual teams, which tends to rise with the increase in the number of 

sites involved. Mismanagement of cultural differences and intercultural miscommunications 

can possibly lead to project failure. 

 managing project communications – this aspect could be understood in two aspects, 

namely communication as literal technically enabled interaction and communication 

as transmission of messages. For the first aspect, project communications are largely 

sustained with ICT technologies of the fifth Kondratieff cycle underlying the most 

recent wave of globalization; globalization increases the importance of communication 

among the members of the project team situated at different places, quite often remote 

from each other. For the second aspect, it is not the physical distance between the team 

members that matters, but rather cultural distance. Indeed, project members may belong 

to different organizational cultures and different cultures in general, and same notions 

may have different implications for them, and same questions may retrieve very different 

answers (Shulgin et al. 2017). Failure to take into account intercultural differences 

may lead to miscommunications and eventual project failure. 

 managing project risk – project risk management in a globalizing society turns 

out to be a much more versatile task than classical project management ever implied. 

This largely has to deal with the two key notions of uncertainty and complexity – uncertainty 

relates to the external conditions wherein the project is carried out, while complexity 

relates both to the external environment and to the structure of a project itself, 

as well as the integration of project into the environment (see Section 5 below). Risks 



are generally reflected in project time (project failure due to untimely delivery of intermediate 

or final results), project costs (failure due to overrunning the budget), and project 

scope (partial or full incompletion of the project). Causes of the risks are multiple 

and a huge number of them are related to globalization, be it financial (sudden limitation 

or abrupt ending of financial resources due to global price hikes or global financial 

dynamics or economic shocks), technological (global appearance of new technologies 

that make technologies used in the project of the very goal of the project obsolete), cultural 

(managing successful intercultural communication within a multi-cultural project 

team, or securing successful communication with multi-cultural society of consumers), 

political (accommodating for global geopolitical changes affecting the project course 

and landscape), legal (accommodating for international legal provisions affecting the 

project course and landscape) etc. 

 managing project procurement – global procurement knowledge and skills are 

needed; global procurement is influenced by price fluctuations at global commodity 

markets, as well as dealing with international laws; 

 managing project stakeholders – one of the challenges posed here by globalization 

is the necessity to manage the interests of stakeholders probably belonging to different cultures 

(same as with project human resources). Advantages here again include 

the possibility to build on a richer variety of cultures and knowledge; however, mismanagement 

of cultural differences and intercultural miscommunications can possibly 

lead to project failure. 

Below we will try to summarize the challenges posed by globalization for various 

areas of project management and changes brought to project management by globalizing 

environment. 

5. Research and Discussion 

One of the fundamental differences between classical project management and modern 

projects lies in the sphere of planning and the extent of pre-determination. As mentioned 

above, classical project management would imply that uncertainty management 

and control are feasible; thus, it was well suited for projects with clearly pre-defined 

goals and methods and a detailed pre-defined plan, realized in rather stable environment 

that was unlikely to require any changes to initial project features in the course of its 

implementation. However, with modern projects one would rather expect this not to be 

the case. In this line of thought, Hall (2012) distinguishes between deterministic and 

non-deterministic projects (the ones with and without a detailed and exact outline of the 

project goal preceding the start of the project). 

Another important point touches on dealing with innovations in methods. Planning 

is one of the pillars of classical project management and, indeed, a cornerstone of 

phased approach, as the manager basically controlled that project implementation strictly 

followed the initially developed plan. This approach is suitable for projects where 

technologies and environment are unlikely to experience significant changes in the 

course of project implementation. However, it will hardly be efficient in rapidly changing 

spheres, especially ones close to the technological frontier, such as IT/IS, biotechnology, 

some branches of medicine and pharmaceutical industry, etc. Here, sticking to 

the initial plan and refusing any changes in it may lead to overlooking important technological 

innovations emerging during the project implementation; this, in turn, may 



make the project results obsolete and unable to stand competition in the market – sometimes 

before they are even fully obtained. 

Let us view another closely related point, namely, the technological uncertainty. 

Classical project management and modern project are nearly opposite in their stance in 

relation to uncertainty. The first implies that there is little to no uncertainty, which 

makes project activities and schedule easy to plan; the latter frequently exist in very 

high degrees of uncertainty, to the point that methods of the projects are very vaguely 

understood by the time it starts, or turn out to be non-existent yet (look at the development 

of a new pharmaceutical formula for a drug that would cure a previously incurable 

disease or condition). This is where classical project management is reasonably set 

aside in favor of parallel trial and trial-and-error approaches, which were so important 

in Manhattan project (see above). In terms of project goals, classical management is set 

to work with a clearly outlined goal, where scope and specifications are clearly known 

before the beginning; a parallel trial and trial-and-error work are better for a goal which 

has yet to be specified in the course of the project, as initial knowledge is insufficient 

for its detailed outline because it is innovative in its kind and cannot build upon similar 

results of earlier projects. As Lenfle and Loch (2010) put it, in such projects the detailsof goal 

description can be seen as hypotheses that need to be tested and supported/ 

rejected by trials in the course of the project. 

Related to uncertainty, but in no way equal to it is the concept of complexity. Albert 

Hirschman (1967) was among the first researchers to view projects as systems. In 

this view, the complexity of the project is coming not from its size and the numbers of 

parts, but rather from the necessity to develop methods for coordinating these parts into 

a single whole. In modern research, a number of approaches have been developed to the 

problem of classifying projects depending on their levels of complexity (and, of course, 

conceptually defining these levels). Hobday (1998, 2000) specifies four levels of complexity, 

from extremely complex to simple projects (depending on such variables as the 

number of parts and components, complexity of systemic architecture, range and depth 

of required knowledge and skills, as well as variability of required materials and information). 

He notes that technical progress and new industrial requirements significantly 

widened the functional capacity, spread, and productivity of complex industrial products 

and systems, and projects aimed at their creation are increasing in complexity. Similar 

logic leads Shenhar and Dvir (2007) to single out three types of projects: simple 

(assembly of systemic parts), systemic (creation of systems), and massive (creation of 

metasystems). 

However, these approaches limit project complexity to the internal features of the 

projects. To take into account complexity generated by external factors, we can turn to 

TOE approach comprising technical, organizational, and environmental complexity. 

Technical complexity was largely described above; organizational complexity deals 

with resource availability and human factors, while environmental complexity looks at 

project location, market conditions etc. (Bosch-Rekveldt et al. 2011). Another noteworthy 

approach is to distinguish between structural and dynamic complexity. The importance 

of accounting for structural complexity in project management was first noted 

by Baccarini (1996), who sub-divided it into organizational and technological complexity. 

Somewhat later, Williams (1999) pointed at complexity caused by uncertainty 

in project methods and project goals. Brady and Davies (2014) used the structuraldynamic 



dichotomy to generalize the existing knowledge on complexity types and their 

implications for project management. Structural complexity includes hierarchy of systems 

and interdependencies of project components, system integration, and interactions 

between team members. Foreseen and unforeseen uncertainty, innovations, market 

changes are subsumed under dynamic complexity. In other words, structural complexity, 

according to Brady and Davies, is related to the interactions within the project, while 

dynamic complexity is engendered in the interactions between the project and its environment. 

A somewhat different approach is taken by Geraldi, Maylor, and Williams 

(2011), who differentiate between not two but five types of complexity: structural 

(technological and organizational), uncertainty-related (goals, methods), time-related, 

dynamic, and sociopolitical (legal issues, security issues, ethical issues etc.). 

As for the impact of globalization on projects and project management, which is 

frequently viewed through the prism of particular changes posing new challenges for 

the managers (such as the development of outsourcing supported by the ICT innovations 

of the fifth technological paradigm and their spread into developing countries withcheaper labor 

force), it can be proved to be much more fundamental when the issues of 

uncertainty and complexity are taken into account. 

6. Conclusion 

Thus, in terms of uncertainty, globalization has clearly been making the environment 

where the projects are realized more uncertain in various aspects. As regards internal 

uncertainty (arising in the interactions within the project), one can single out an increase 

in technological uncertainty, which makes it harder to define project methods and goals 

before its start. However, it is far from being the only effect of globalization on project 

management. An increase in organizational uncertainty can also largely be attributed to 

globalization (with newly arising challenges of managing multinational teams, outsourced 

tasks, etc.). An even greater increase can be observed in the uncertainty of the 

environment and various external conditions under which a project is being realized. 

Thus, globalization has boosted the extent of market interconnection for the majority of 

goods and services. Interconnection brings with it increasing vulnerability to global crises; 

this was clearly visible during the 2008–2009 global financial and economic crisis, 

when the repercussions of what started as a downfall of the USA mortgage banking 

were eventually felt in almost all countries of the world. Moreover, interconnection 

makes national markets very sensitive to price fluctuations in global markets, and this 

sensitivity, in turn, may influence national sociopolitical stability – not to touch on the 

more obvious matter of global perspective increasing competition in the markets, which 

also makes it harder to set a truly competitive project goal, manage the project efficiently, 

and obtain a successful and competitive result. If a project is implemented on a multi- 

national scale, its complexity is likely to reach a whole next level, as project managers 

are to simultaneously take into account the changes in legal sphere, political leanings, 

sociopolitical stability, investment climate, markets, and numerous other aspects 

in a number of countries. 

Even a rather simple assembly-type project will have its complexity increase due to 

growing uncertainty in the growing number of aspects – goals (how do we make our 

goal competitive?), time (will the product/service still be relevant by the time the project 

is complete?), methods (what are the best technologies, knowledge, skills to be 

used in the development of the product/service, and are they existent yet? are they likely 



to change while the project is implemented?), relevance (is the result likely to become 

obsolete due to fast technological progress, even if the best knowledge in this particular 

sphere is used?), and numerous external conditions in markets, potential customers, 

technological development, law, sociopolitical stability, etc. These factors increase both 

the uncertainty and complexity of contemporary projects and appear to be two main 

factors channeling globalization's impact on projects and project management. 

Project management was still in the cradle during the ‘golden epoch’ of early globalization 

in the late nineteenth century and up to World War I. Classical project management 

took several decades for its tenets to be properly developed, but its spread was 

to a large extent provided by new technologies of the fourth technological paradigm – 

namely, the first generation of large-scale computer-system architectures (mainframe 

computers). The newest surge of globalization, to which many researchers, practitioners, 

and members of general public attribute the term and concept of globalization itself, 

has been heavily relying on the ICT technologies of the fifth technological paradigmwhich 

greatly increased the degree of global interconnectedness and brought about fundamental 

changes in many spheres of economy – project management being no exception. 

The ‘golden triad’ of success measurement in classical project management (timebudget- 

scope) has largely lost its relevance to project success. On the one hand, more 

projects tend to break at least one condition of the triad – still, their results may be 

deemed successful. On the other hand, strict sticking to the initial schedule, budgeting, 

and scope is no guarantee of success for the result of the project. We show that this is to 

a great extent related to the changes brought about by globalization, which can be mostly 

subsumed under increasing uncertainty and complexity. While rapid technological 

changes and moving technological frontiers definitely contribute to both, they are not 

exclusively responsible for the whole increase in uncertainty and complexity, as numerous 

other aspects both within the projects and outside (in the environment where the 

projects are implemented) have become more uncertain and more complex, and things 

are not going back to the simpler way of life. 

 

 



1 
 

M.A. M. COLLEGE OF ENGINEERING, TRICHY 

DEPARTMENT OF MCA 

SOFTWARE PROJECT MANAGEMENT 

UNIT - I 

INTRODUCTION TO SOFTWARE PROJECT MANAGEMENT 

✓ The job pattern of an IT company engaged in software development can be seen split in two parts: 

⚫ Software Creation 

⚫ Software Project Management 

✓ A project is well-defined task, which is a collection of several operations done in order to achieve a 

goal (for example, software development and delivery).  

✓ A Project can be characterized as: 

⚫ Every project may have a unique and distinct goal. 

⚫ Project is not routine activity or day-to-day operations. 

⚫ Project comes with a start time and end time. 

⚫ Project ends when its goal is achieved hence it is a temporary phase in the lifetime of an 

organization. 

⚫ Project needs adequate resources in terms of time, manpower, finance, material and 

knowledge-bank. 

Software Project 

✓ A Software Project is the complete procedure of software development from requirement 

gathering to testing and maintenance, carried out according to the execution methodologies, in a 

specified period of time and cost to achieve intended software product. 

Need of software project management 

✓ Software is said to be an intangible product. Software development is a kind of all new stream in 

world business and there’s very little experience in building software products.  

✓ Most software products are tailor made to fit client’s requirements. The most important is that 

the underlying technology changes and advances so frequently and rapidly that experience of one 

product may not be applied to the other one. All such business and environmental constraints 

bring risk in software development hence it is essential to manage software 

projects efficiently. 

✓ The image above shows triple constraints for software projects. It is an 

essential part of software organization to deliver quality product, keeping 

the cost within client’s budget constrain and deliver the project as per 

scheduled. 



2 
 

✓ There are several factors, both internal and external, which may impact this triple constrain 

triangle. Any of three factors can severely impact the other two. 

✓ Therefore, software project management is essential to incorporate user requirements along with 

budget and time constraints. 

What Is Software Development Project Management? 

✓ Project management in software development is the process of planning, scheduling, executing, 

monitoring, and delivering software projects.  

✓ Ssoftware development projects can be better seen as complex undertakings, where leaders must 

analyze the cost-benefits and optimization problems between business value and the software 

development pipeline and processes. 

✓ In an ever-evolving landscape where business management and tech are, essentially, both close 

family relatives, software development projects are complex tasks led by two or more persons. 

Bounded by time, budget, and staffing resources to produce novel or enhanced computer code with 

resource allocation and execution in mind.  

✓ More generally, software projects are defined by a comprehensive development pipeline, all the 

way from initial gathering to testing and maintenance, carried within a given timeline to achieve 

the intended final product.  

Why Is Project Management Important in Software Development Projects? 

✓ Software project management is important because it ensures that there is strategic method 

towards accomplishing software-related objectives. This adds significant business value to 

new/existing business processes and models. In practice, your business should see benefits 

such as: 

⚫ A greater competitive advantage 

⚫ Improved resource allocation 

⚫ Tighter budgeting 

⚫ Better communication 

⚫ Clearer and more effective documentation 

✓ In contrast to traditional project management models, software development is relatively unique, 

as software projects require a distinct lifecycle and phased development process that demands 

several rounds of user and internal testing, updating, and analysis of customer feedback.  

✓ As a result, project management in software development is a crucial part of delivering a quality 

product, and no development model would be much without it.  

What Does a Project Manager Do in Software Development? 

✓ Project managers are responsible for efficiently executing all the details of the software project 

from start to finish.  

https://trio.dev/blog/top-4-challenges-working-as-a-web-developer


3 
 

✓ Most importantly, they are aware of all phases in the Software Development Life Cycle (SDLC) that 

the software project should undergo, streamlining the initial planning and long-term maintenance 

of the project at hand.  

✓ By closely monitoring the project management in the software development process, 

experimenting with various plans, allocating resources/budget, and solidifying communication 

amongst the team, software project managers ensure that final product goals are met under all 

constraints while still maximizing customer satisfaction. All in all, project managers perform the 

following activities: 

1. Project Estimation 

✓ Perhaps the most vital aspect of the initial project planning phase, project size estimation is crucial 

in determining the cost, duration, and trajected efforts necessary for the project. These estimations 

include: 

⚫ Time:  Total projected time to complete the project and, if necessary, its subparts. 

⚫ Cost:  Summary of total expenses to develop the software product.  

⚫ Effort: Estimated effort demanded to complete the project under any given conditions and 

constraints. 

✓ As a project manager, it is crucial that you accurately specify these time, cost, and effort 

estimations, as all future planning and executions are dependent on these projections. 

2. Scheduling and Resource Allocation 

✓ In the context of project management in software development, project managers should 

schedule and allocate all required ‘manpower’ and resources for software project 

development after finalizing the estimations above.   

3. Staffing  

✓ Establish and decide on a team structure and staffing plan. Gain feedback from the team on 

work burdens and their task progress to reallocate/reorganize the staff accordingly. 

4. Risk Management 

✓ As a software project manager, you must identify and analyze any unanticipated risks that 

might arise during the project development lifecycle. Devise your own risk reduction method to 

minimize/eliminate potential risks and unintended consequences during software development. 

5. Miscellaneous Planning  

✓ During this stage, a project manager may establish several other plans including quality assurance, 

configuration management, etc. Additional planning is conditioned on project monitoring and 

control, a cycle where the PM actively diagnoses potential risks and obstacles during development 

and uses planning to resolve those risks. 

 

https://trio.dev/blog/understanding-sdlc-what-are-the-phases-of-software-development-life-cycle-46367


4 
 

 

Most Important Skills a Project Manager Needs to Succeed 

1. Leadership 

✓ Naturally, anyone managing a team should have leadership skills. But what does be a strong 

leader mean? Strong leaders motivate their teams, coach them through task completion, and give 

them guidance on any issues that may arise.  

✓ Much of leadership is psychological. Technically, everyone on the team knows what they’re 

supposed to do. But setting actionable goals, measuring team performance, and giving constructive 

feedback makes a great impact on how the job gets done. And a project manager is responsible for 

these duties.  

2. Communication  

✓ Communication is an important skill in just about every industry. But it becomes increasingly 

important if you’re leading a team of software developers.  

✓ Project managers must have the technical expertise to communicate the details of the software 

project as well as the interpersonal skills to build and manage meaningful relationships with team 

members.  

3. Time Management 

✓ It should go without saying that time management is an essential part of the project manager 

role. Having a deadline isn’t always enough and having someone behind the scenes to ensure that 

everyone’s on task is often the missing gear in an otherwise slow-churning machine.  

4. Organization 

✓ Organization is perhaps the most important skill for project managers. But it’s a broad term 

and various factors play into one’s ability to organize, from communication skills to time 

management.  

✓ Simply put, a project manager should be able to see the big picture and break that down into the 

tiny details that make up a software development project. They should also be able to map those 

details out into workable tasks.  

5. Critical Thinking / Problem-Solving  

✓ Often project managers are the first-responders when it comes to addressing bottlenecks and 

crises that pop up during development. In order to successfully resolve these issues, they must be 

quick on their feet and think outside of the box to come up with solutions. 

Software Development Project Management Methodologies 

✓ Software development methodologies provide a structure for how you will go about building 

your software product. These methodologies are also called project management methodologies 

as they serve as guidance for organizing your projects and delivering optimal performance.  



5 
 

1. Agile 

✓ Agile is by far the most popular software development methodology there is. Hub Staff found 

that 36% of software development teams are using Agile, with almost 40% of teams using a hybrid 

solution of methodologies. The central points of the Agile method are iterative development and 

consumer feedback. Based on an Agile manifesto written in 2001, developers collaborate with 

customers as they build software, iteratively implementing and testing software adjustments as 

they go.  

2. Scrum 

✓ Scrum is an extension of Agile. It features a distinct system that helps developers approach the 

development process. Much of what happens on a srum team is managed via the concept of sprints, 

a short, time-boxed period allotted for completing a set amount of work. The Scrum methodology 

similarly includes sprint retrospectives, sprint reviews, sprint planning, and daily scrums.  

3. Waterfall 

✓ The waterfall methodology emphasizes a linear progression of development. It’s merely a step-by-

step process of creating software from planning requirements to deployment. However, the 

integrity of this model is also its downfall. Professional developers rarely use this model because it 

does not adapt well to customer input, changing requirement, or unforeseen circumstances. 

4. Lean 

✓ The Lean methodology stresses the optimization of resources within a business. It stems from an 

operational thinking strategy that gave Toyota Motor Company its success.  

✓ In short, the fundamentals of the Lean methodology are to eliminate waste and create value for 

the customer. Within software development, Lean thinking means foregoing extra features and 

preventing delays whenever possible.  

✓ Note that Lean and Agile are often confused. While some consider Lean to be a framework of Agile, 

comparing Lean vs. Agile reveals they are not as similar as some may think.  

5. Feature-Driven Development 

✓ Feature-Driven Development (FDD) is an Agile methodology for developing software. Like Agile, 

FDD is iterative, incremental, and customer-centric. As the name suggests, FDD involves 

developing software based on its features and creating feature-specific teams. Frequent status 

reports are also a mainstay in feature-driven development.  

5 Stages of Project Management in Software Development 

✓ Whether you’re a junior or senior project manager, a common principle in the software 

development and management pipeline will always hold true: following and maintaining the 

Software Development Life Cycle (SDLC).  

https://hubstaff.com/tasks/state-of-remote-project-management
https://agilemanifesto.org/
https://trio.dev/blog/lean-vs-agile


6 
 

✓ By adapting the SDLC process to your project timeline, your project initiation, planning, monitoring, 

and closure will be streamlined, enabling the team to finish in time without sacrificing the integrity 

of the given project. 

✓ Project management in software development essentially uses the general project management 

template with software-specific goals that streamline the process.  

The 5 stages of project management in software development are outlined as follows: 

1. Project Initiation 

✓ It may seem intimidating, but do not worry—by establishing a simple foundation of ideas and 

preliminary goals for your project, you’re bound to create a surefire template for the next four 

phases of your project management timeline.  

✓ Project initiation involves morphing an abstract idea into a meaningful goal with actionable future 

steps. During project initiation, a PM should develop a business case and define the project on a 

broad level. Project managers can easily initiate this with a project charter. 

✓ A project charter is a document consisting of critical details, including project constraints, goals, 

appointment of the project manager, expected timeline, budget(s), staffing, etc.  

✓ Once a manager has illustrated a clear path forward with their charter, they should identify key 

project stakeholders (i.e. future members involved in the project). This can be easily accomplished 

by creating a stakeholder register. 

✓ In a project charter, two evaluation tools are used to decide whether a project is worth pursuing.  

✓ These tools can be tailored to optimize the process of project management in software 

development. 

⚫ Business Case Document: This document justifies the necessities of the project and includes 

an estimate of potential financial benefits. 

⚫ Feasibility Study: PMs use this to evaluate a project’s objectives, timeline, and costs to 

determine whether a project is worth executing. Feasibility studies simply allow you to assess 

a project based on: 

◼ Requirements of the project,  

◼ Available resources. 

✓ It’s important to note that although clear objectives of the project are established during the 

initiation phase, a project charter should not include complex technical details that are discussed in 

phase two (project planning). 

2. Project Planning 

✓ It is crucial that a project manager diligently lays out the project planning stage, as it is a decisive 

factor for the project’s roadmap. Typically, this can be fulfilled with agile project management, 

effectively breaking down weeks of planning into mere days.  

https://www.pmi.org/learning/library/charter-selling-project-7473#:~:text=The PMBOK%C2%AE Guide, 3,The key word in this
https://project-management-knowledge.com/definitions/s/stakeholder-register/
https://www.villanovau.com/resources/project-management/business-case-project-management/
https://trio.dev/blog/how-to-build-an-awesome-agile-software-development-team-73784


7 
 

✓ The PM should identify technical requirements and develop a detailed project schedule by creating 

a clear communication plan and establishing goals/deliverables. 

✓ Additionally, requirement analysis can be used during planning with inputs from the customer, 

sales department, market surveys and domain experts in the industry.  

✓ For project management in software development, cross-collaboration is crucial, as it links the 

development team with the business management teams. 

3. Project Execution 

✓ During project execution, team members begin completing the actual work and subtasks of the 

project. A project manager should look forward to establishing efficient workflows while diligently 

monitoring the collective progress of the team. 

✓ Additionally, a project manager must maintain effective collaboration between stakeholders and 

all team members involved. Ultimately, this will ensure that everyone is one the same page and the 

project runs without any glaring issues. 

4. Project Monitoring and Controlling  

✓ Although project monitoring is a process that associates with each and every stage of the project 

management timeline, project managers should use this time to specifically ensure those project 

objectives and deliverables are fulfilled. 

✓ A project manager will ensure that no one deviates from the original course of the project by 

setting both Critical Success Factors (CSF) and Key Performance Indicators (KPI).  

✓ Finally, the manager will also quantitatively record and track the effort/cost during the process, 

ensuring that constraints such as budget and time are met with long-term sustainability in mind. 

5. Project Closure  

✓ This final phase of the project management process typically follows after the final delivery of 

the product. Occasionally, external talent is hired specifically for the project on contract. 

✓ Additionally, a PM will be responsible for terminating these contracts and completing any 

necessary paperwork and documentation. 

✓ Oftentimes, teams will hold a reflection meeting upon project completion in order to contemplate 

their comprehensive successes and failures before, during, and after development. 

✓ This method of reflection provides a sense of continuous improvement for the team, enhancing the 

overall productivity and output of the team for the company.  

✓ Finally, a project manager should review the entirety of the project (from start to finish), complete 

a detailed report that covers after facet (e.g. five stages of project management in software 

development) of the project, and securely store it for future reference. 

 

 

https://trio.dev/blog/things-to-look-out-for-when-hiring-software-developers-78758


8 
 

Software Project vs Other Types of Project 

✓ Many techniques of general project management also apply to Software Project Management. Fred 

Brooks identified some characteristics of software projects which make them particularly difficult: 

1. Invisibility 

✓ With Software, progress is not immediately visible since work is logical; however, for physical 

artifacts like bridges, work progress can be seen from time to time. In Software Development, there 

is a level of uncertainty. It isn't easy to accurately define detailed requirements for software 

projects before starting the development. However, with the introduction of approaches like Agile 

and Scrum, we can overcome this limitation. 

2. Complexity 

✓ Software projects contain more complexity than other engineered artifacts. For example, in a 

bridge, there is a clear structural relationship between parts, whereas software component 

relationships are much more complicated. We can't measure the complexity of a software 

project until we work on it. 

3. Conformity 

✓ Physical systems are governed by consistent physical law, while Software developers have to 

conform to the requirements of human clients. 

4. Flexibility 

✓ Software systems are particularly subject to change. A bridge has to be built in a specific order, 

whereas We can make Software much more flexibly and restructure parts quite freely. 

Activities covered by software project management 

l. The feasibility study  

✓ This is an investigation to decide whether a prospective project is worth starting. Information 

will be gathered about the general requirements of the proposed system.  

✓ The probable developmental and operational costs, along with the value of the benefits of the new 

system are estimated. With a large system, the feasibility study could be treated as a project in its 

own right. This evaluation may be done as part of a strategic planning exercise where a whole 

range of potential software developments are evaluated and put into an order of priority.  

✓ Sometimes an organization has a policy where a series of projects is planned as a programmed of 

development. 

2. Planning  

✓ If the feasibility study produces results that indicate that the prospective project appears viable, 

then planning of the project can take place.  



9 
 

✓ In fact, for a large project, we would not do all our detailed planning right at the beginning. We 

would formulate an outline plan for the whole project and a detailed one for the first stage. More 

detailed planning of the later stages would be done as they approached.  

✓ This is because we would have more detailed and accurate information upon which to base our 

plans nearer to the start of the later stages. 

3.  Project execution  

✓ The project can now be executed. Individual projects are likely to differ considerably but a classic 

project life-cycle is shown in Figure 1.1. The stages in the life-cycle illustrated in Figure 1.1 above 

are described in a little more detail below: 

⚫ Requirements analysis This is finding out in detail what the users require of the system that 

the project is to implement. Several different approaches to the users' requirements may be 

explored. For example, a small system that satisfies some, but not all, of the users' needs at a 

low price may be compared to a system with more functions but at a higher price. 

⚫ Specification Detailed documentation of what the proposed system is to do. 

⚫ Design A design that meets the specification has to be drawn up. This design activity will be in 

two stages. One will be the external or user design. This lays down what the system is to look 

like to the users in terms of menus, screen and report layouts and so on. The next stage 

produces the physical design, which tackles the way in which the data and software 

procedures are be structured internally. 

⚫ Coding This might refer to writing code in a procedural language such as C or Ada, or might 

refer to the use of a high-level application builder. Even where software is not being built from 

scratch, some modification to the base application might be required to meet the needs of the 

new application. 

⚫ Verification and validation Whether software is 

developed specially for the current application or not, careful 

testing will be needed to check that the proposed system 

meets its requirements. 

⚫ Implementation/installation Some system 

development practitioners refer to the whole of the project 

after design as 'implementation' (that is, the implementation 

of the design) while others insist that the term refers to the 

installation of the system after the software has been 

developed. In this case it encompasses such things as setting 

up data files and system parameters, writing user manuals and training users of the new 

system. 

https://www.gristprojectmanagement.us/project-execution.html


10 
 

⚫ Maintenance and support Once the system has been implemented there will be a continuing 

need for the correction of any errors that may have crept into the system and for extensions 

and improvements to the system. Maintenance and support activities may be seen as a series 

of minor software projects. In many environments, most software development is in fact 

maintenance. 

SOME WAYS OF CATEGORIZING SOFTWARE PROJECTS 

✓ It is important to distinguish between the main types of software project because what is 

appropriate in one context might not be so in another. For example, SSADM, the Structured 

Systems Analysis and Design Method, is suitable for developing information systems but not 

necessarily other types of system. 

Information systems versus embedded systems 

✓ A distinction may be made between information systems and embedded systems (Embedded 

systems are also called real-time or industrial systems). Very crudely, the difference is that in the 

former case the system interfaces with the organization, whereas in the latter case the system 

interfaces with a machine.  A stock control system would be an information system that controls 

when the organization reorders stock. An embedded, or process control, system might control the 

air conditioning equipment in a building. Some systems may have elements of both so that the 

stock control system might also control an automated warehouse. 

Objectives versus products 

✓ Projects may be distinguished by whether their aim is to produce a product or to meet certain 

objectives. A project might be to create a product the details of which have been specified by the 

client. The client has the responsibility for justifying the product. 

✓ On the other hand, the project might be required to meet certain objectives. There might be several 

ways of achieving these objectives in contrast to the constraints of the product-driven project. One 

example of this is where a new information system is implemented to improve some service to 

users inside or outside an organization. The subject of an agreement would be the level of service 

rather than the characteristics of a particular information system. 

✓ Many software projects have two stages. The first stage is an objectives-driven project, which 

results in a recommended course of action and may even specify a new software application to 

meet identified requirements. The next stage is a project actually to create the software product. 

The project as a system 

✓ A project is concerned with creating a new system and/or transforming an old one and is itself a 

system. 

 

 

https://www.gristprojectmanagement.us/software-2/software-projects-versus-other-types-of-project.html
https://www.gristprojectmanagement.us/processes-2/structured-systems-analysis-and-design-method-ssadm.html
https://www.gristprojectmanagement.us/processes-2/structured-systems-analysis-and-design-method-ssadm.html
https://www.gristprojectmanagement.us/improve-performance/recommended-course-of-action-pli.html


11 
 

Systems, subsystems and environments 

✓ A simple definition of the term system is 'a set of interrelated parts'. A system will normally be 

part of a larger system and will itself comprise subsystems. Outside the system there will be the 

system's environment. This will be made up of things that can affect the system but over which the 

system has no direct control. 

Open versus closed systems 

✓ Open systems are those that interact with the environment. Nearly all systems are open. One 

reason that engineered systems and the projects to construct them often fail is that the technical 

staff involved do not appreciate the extent to which systems are open and are liable to be affected 

by outside changes. 

Sub-optimization 

✓ This is where a subsystem is working at its optimum but is having a detrimental effect on the 

overall system. An example of this might be where software developers deliver to the users a 

system that is very efficient in its use of machine resources, but is also very difficult to modify. 

Sociotechnical systems 

✓ Software projects belong to this category of systems. Any software project requires both 

technological organization and also the organization of people. Software project 

managers therefore need to have both technical competence and the ability to interact 

persuasively with other people. 

What is management 

The Open University suggest that management involves the following activities: 

• planning - deciding what is to be done; 

• organizing - making arrangements; 

• staffing - selecting the right people for the job, for example; 

• directing - giving instructions; 

• monitoring - checking on progress; 

• controlling - taking action to remedy hold-ups; 

• innovating - coming up with new solutions; 

representing - liaising with users etc. 

✓ Another way of looking at the management task is to ask managers what their most frequent 

challenges are. A survey of software project managers produced the following list: 

• coping with resource constraints (83%); 

• communicating effectively among task groups (80%); 

• gaining commitment from team members (74%); 

• establishing measurable milestones (70%); 

https://www.gristprojectmanagement.us/project-manager.html
https://www.gristprojectmanagement.us/project-manager.html


12 
 

• working out project plan agreement with their team (57%); 

• gaining commitment from management (45%); 

• managing vendors and sub-contractors (38%). 

✓ The percentages relate to the numbers of managers identifying each challenge. A manager could 

identify more than one.  

Problems with software projects 

✓ One way of deciding what ought to be covered in 'software project management' is to consider 

what problems need to be addressed. 

✓ Traditionally, management has been seen as the preserve of a distinct class within the organization. 

As technology has made the tasks undertaken by an organization more sophisticated, many 

management tasks seem to have become dispersed throughout the organization: there are 

management systems rather than managers.  

✓ Nevertheless, the successful project will normally have one person who is responsible for its 

success. Such people are likely to be concerned with the key areas that arc most likely to prevent 

success - they arc primarily trouble-shooters and their job is likely to be molded by the problems 

that confront the project. A survey of managers published by Thayer, Pyster and Wood identified 

the following commonly experienced problems: 

• poor estimates and plans; 

• lack of quality standards and measures; 

• lack of guidance about making organizational decisions; 

• lack of techniques to make progress visible; 

• poor role definition - who does what? 

• incorrect success criteria. 

✓ The above list looks at the project from the manager's point of view. What about the staff who 

make up the members of the project team? Below is a list of the problems identified by a number of 

students on a degree course in Computing and Information Systems who had just completed a 

year's industrial placement: 

• inadequate specification of work; 

• management ignorance of IT; 

• lack of knowledge of application area; 

• lack of standards; 

• lack of up-to-date documentation; 

• preceding activities not completed on time - including late delivery of equipment; 

• lack of communication between users and technicians; 

• lack of communication leading to duplication of work; 

https://www.gristprojectmanagement.us/project-management.html


13 
 

• lack of commitment - especially when a project is tied to one person who then moves; 

• narrow scope of technical expertise; 

• changing statutory requirements; 

• changing software environment; 

• deadline pressure; 

• lack of quality control; 

• remote management; 

✓ Note how many of the problems identified by the students stemmed from poor communications. 

Another common problem identified by this and other groups of students is the wide range of IT 

specialisms - an organization may be made up of lots of individuals or groups who will be expert in 

one set of software techniques and tools but ignorant of those used by their colleagues. 

Communication problems are therefore bound to arise. 

✓ What about the problems faced by the customers of the products of computer projects? Here are 

some recent stories in the press: 

• the United States Internal Revenue System was to abandon its tax system modernization 

programmed after having spent S4 billion: 

• the state of California spent SI billion on its non-functional welfare database system: 

• the £339 million United Kingdom air traffic control system was reported as being two years 

behind schedule; 

• a discount stock brokerage company had 50 people working 14 hours or more a day to correct 

three months of records clerically—the report commented that the new system had been 

rushed into operation without adequate testing; 

• in the United Kingdom, a Home Office immigration service computerization project was 

reported as having missed two deadlines and was nine months late; 

• the Public Accounts Committee of the House of Commons in the United Kingdom blamed 

software bugs and management errors for £12 million of project costs in relation to an 

implementation of a Ministry of Agriculture computer system to administer farm subsidies. 

✓ Most of the stories above relate to public sector organizations. This may be misleading—private 

sector organizations tend to conceal their disasters and in any case many of the public projects 

above were actually being carried out by private sector contractors. Any lingering faith by users in 

the innate ability of IT people to plan ahead properly will have been removed by consideration of 

the 'millennium bug", a purely self-inflicted IT problem. On balance it might be a good idea not to 

survey users about their problems with IT projects! 

 

 

https://www.gristprojectmanagement.us/quality-control.html
https://www.gristprojectmanagement.us/home-office.html
https://www.gristprojectmanagement.us/project-costs.html


14 
 

Stakeholders 

✓ Stakeholders are persons and organizations such as customers, sponsors, performing organization 

and the public, who are actively involved in the project or those whose interests may be positively 

or negatively affected by the execution, completion, or cancellation of the project.  

✓ Stakeholders may also exert influence over the project and its deliverables. The project 

management team must identify both internal and external stakeholders in order to determine the 

requirements and expectations of all parties involved.  

✓ Furthermore, the project manager must manage the influence of the various stakeholders in 

relation to the project requirements to ensure a successful outcome. Figure 2-6 illustrates the 

relationship between the project, the project team, and other common stakeholders. 

 

Figure 2-6. The Relationship Between Stakeholders and the Project 

✓ Stakeholders have varying levels of responsibility and authority when participating on a project, 

and these can change over the course of the project's life cycle. Their responsibility and authority 

may range from occasional contributions in surveys and focus groups to full project sponsorship, 

which includes providing financial and political support.  

✓ Stakeholders can have an adverse impact on the project objectives. Likewise, project managers 

who ignore stakeholders can expect a negative impact on project outcomes. 

✓ Stakeholder identification can be difficult at times. For instance, it could be argued that an 

assembly-line worker whose future employment depends on the outcome of a new product-design 

project is a stakeholder. Identifying stakeholders and understanding their relative degree of 

influence on a project is critical. Failure to do so can extend the timeline and raise costs 

substantially. 

✓  An example is late recognition that the legal department is a significant stakeholder; this could 

cause delays and increase expenses because of the additional documentation requirements 

necessary to carry out project tasks. 

https://www.gristprojectmanagement.us/project-management.html
https://www.gristprojectmanagement.us/project-management.html
https://www.gristprojectmanagement.us/project-manager.html
https://www.gristprojectmanagement.us/focus-groups.html
https://www.gristprojectmanagement.us/scheduling-controlling/the-project-sponsor.html
https://www.gristprojectmanagement.us/resource-allocation-2/stakeholder-identification-and-analysis.html
https://www.gristprojectmanagement.us/guide/identify-stakeholders.html


15 
 

✓ A project can have both positive and negative stakeholders. Positive stakeholders arc those who 

would normally benefit from a successful outcome from the projcct, while negative stakeholders 

are those who perceive negative outcomes from the project's success. For example, business 

leaders from a community that will benefit from an industrial expansion project may be positive 

stakeholders because they sec economic benefit to the community.  

✓ Conversely, environmental groups could be negative stakeholders if they view the projcct as 

harmful to the environment. In the case of positive stakeholders, their interests are best served by 

helping the project succeed. The interests of negative stakeholder’s arc served by impeding the 

project's progress. 

✓ Overlooking negative stakeholders can result in an increased likelihood of failure. An important 

part of a project manager's responsibility is to manage stakeholder expectations. This can be 

difficult because stakeholders often have very different or conflicting objectives.  

✓ Part of the project manager's responsibility is to balance these interests and ensure that the 

project team interacts with stakeholders in a professional and cooperative manner. 

Customers/Users 

✓ The customers/users are the persons or organizations that will use the project's product or service 

or result. Customers/users may be internal or external. There may also be multiple layers of 

customers. For example, the customers for a new pharmaceutical product can include the doctors 

who prescribe it, the patients who use it, and the insurers who pay for it.  

✓ In some application areas, customers and users are synonymous, while in others, customers refer 

to the entity acquiring the project's product and users refer to those who will directly utilize the 

project's product. 

✓ These customer/users are key sources of information for the project team because it is typically 

for customers or end users that the project has been created. The customers/users therefore play a 

significant role in determining the scope of the project, influencing how the project is carried out, 

and testing the product or service ultimately delivered by the project team.  

✓ As a result of this close partnership, the customers/users carry significant responsibility for 

providing accurate and timely data to the project team as well as identifying risks and responding 

to other issues that arise. Customers and users deal primarily with the project team, but they may 

also have direct involvement with vendors, business partners, or other operational stakeholders 

involved with the work necessary to complete the project deliverable. 

Sponsor 

✓ The sponsor is the person or group that provides the financial resources, in cash or in kind, for 

the project. When a project is first conceived, the person or group acting as the sponsor champions 

https://www.gristprojectmanagement.us/guide/manage-stakeholder-expectations.html
https://www.gristprojectmanagement.us/it-development/identifying-it-project-risks.html


16 
 

the cause of the project. This includes serving as spokesperson to higher levels of management to 

garner support throughout the organization and promote the benefits that the project will bring.  

✓ The sponsor leads the project through the engagement or selection process until formally 

authorized, and therefore plays a significant role in the development of the initial scope and 

charter. Another key attribute of the sponsor is to provide financial resources, in cash or in kind, 

for the project. 

✓ Sponsors have a major stake in the project's success, and therefore, at times, may take an active 

role on the project team. For issues that are beyond the control of the project manager, the sponsor 

serves as an escalation path. The sponsor may also be involved in other important issues such as 

authorizing changes in scope, phase-end reviews, and go/no-go decisions when risks are 

particularly high. 

✓ The sponsor deals directly, and most often, with the project manager. For some projects, the 

sponsor may also interact with the project team and other key stakeholders, particularly when 

resolving issues that have been escalated. Some projects have multiple sponsors who fulfill this 

role. 

Portfolio Managers/Portfolio Review Board 

✓ Portfolio managers are responsible for the high-level governance of a collection of projects or 

programs, which may or may not be interdependent. Portfolio managers could receive direction 

from the organization's business strategy or from the guidance of a director within 

the organization. 

✓ Portfolio review boards are a committee usually made up of the organization's executives who act 

as a project selection panel. They review each project for its return on investment, the value of the 

project, risks associated with taking on the project, and other attributes of the project.  

✓ Portfolio review boards are not essential in every organization but, when used, provide additional 

support for project selection and prioritization. Portfolio review boards can also assist with 

responding to Request for Proposals (RFPs), tenders, or other opportunities that are developed 

externally. 

Program Managers 

✓ Program managers are responsible for managing multiple projects when projects gain some 

measure of benefit by being managed collectively. The program manager ensures that all related 

projects are integrated, on schedule, on budget, and ultimately serve the common goal for which 

the program was created. The program manager interacts with each project manager to provide 

support and guidance on the individual projects. 

Project Management Office 

https://www.gristprojectmanagement.us/business-strategy.html
https://www.gristprojectmanagement.us/organizational-strategy/what-is-a-portfolio.html
https://www.gristprojectmanagement.us/organizational-strategy/what-is-a-portfolio.html


17 
 

✓ A project management office (PMO) organizes and manages control over projects within an 

organization, providing a uniform approach regardless of the discipline, technology, or purpose. 

The PMO can be a stakeholder if it has direct or indirect responsibility for the outcome of the 

project. The PMO can provide but is not limited to: 

• Administrative support services such as policies, methodology and templates, 

• Mentoring to project managers, 

• Project support, guidance and training on how to manage projects and the use of tools, 

• Resource alignment of project staff, or 

• Centralized communication among project managers, project sponsors, managers, and other 

stakeholders. 

Project Managers 

✓ The project manager is the person assigned by the performing organization to achieve the project 

objectives. This is a challenging, high-profile role with significant responsibility and constantly 

shifting priorities. It requires flexibility, good judgment, and strong negotiating skills. The project 

manager must be able to understand project detail, but manage from the big-picture perspective.  

✓ As the person responsible for the success of the project, the project manager is in charge of all 

aspects of the project including, but not limited to: 

• Developing the project plan and all related component plans, 

• Keeping the project on track in terms of budget and schedule, 

• Identifying, monitoring, and responding to risk, or 

• Providing accurate and timely reporting of project metrics. 

✓ The project manager is the lead person responsible for interfacing with all stakeholders, 

particularly the project sponsor, project team, and other key stakeholders.  

 Project Team 

✓ A project team is comprised of the project manager, project management team, and other team 

members who carry out the work but who are not necessarily involved with management of the 

project. On some projects, the sponsor may also be part of the project team. 

✓ A properly functioning project team can mean the difference between a highly successful project 

and one that fails. While a team should be staffed with people who have the skills and talents 

necessary to carry out their respective roles, an effective team is one that demonstrates the ability 

to work well together and accept team members' strengths and weaknesses.  

✓ This requires a willingness to communicate clearly, accurately, and fully and to commit to quality 

work and meeting deadlines. Individual team members must also be aware of how their work 

affects the work of other team members. 

 



18 
 

 Functional Managers 

✓ Functional managers are individuals who play a management role within an administrative or 

functional area of the business, such as human resources, finance, accounting, or procurement. 

They are assigned their own permanent staff to carry out the ongoing work, and they have a clear 

directive to manage all tasks within their functional area of responsibility. 

✓ A project manager may need to work with a functional manager to make use of the services the 

functional group typically provides. For instance, a project manager may deal with a human 

resources manager to hire a new employee or a contractor with the right skill set for carrying out 

necessary project tasks. Likewise, a functional manager in finance may be a resource regarding 

funding of the project and other budgetary details. 

✓ Functional managers deal most often with the project manager or other members of the project 

management team. Functional managers typically have little interaction with other stakeholders 

with regard to project work. 

Vendors/Business Partners 

✓ Vendors, also called suppliers or contractors, are external companies that enter into a contractual 

agreement to provide components or services necessary for the project. Business partners are also 

external companies, but they have a special relationship with the enterprise, sometimes attained 

through a certification process.  

✓ Business partners provide specialized expertise or fill a specified role such as installation, 

customization, training, or support. When the project work is contracted almost entirely to a series 

of vendors and business partners the resulting group is referred to as a network organization. 

✓ As independent contractors, vendors/business partners often deal with the project management 

team and customers/users. They may also interface with project team members from operations 

who are involved with tasks related to the contracted product or service.  

✓ It is the responsibility of vendors/business partners to carry out all contracted duties with the 

same standards of quality and professionalism as the enterprise itself. 

Requirement specification 

Very often, especially in the case of product-driven projects, the objectives of the project are carefully 

defined in terms of functional requirements, quality requirements, and resource requirements. 

• Functional requirements These define what the system that will be the end product of the project is 

to do. Systems analysis and design methods, such as SADT and Information Engineering, are designed 

primarily to provide functional requirements. 

• Quality requirements There will be other attributes of the system to be implemented that do not 

relate so much to what the system is to do but how it is to do it. These are still things that the user will 



19 
 

be able to experience. They include, for example, response time, the ease of using the system and its 

reliability. 

• Resource requirements A record of how much the organization is willing to spend on the system. 

There will usually be a trade-off between this and the time it takes to implement the system. In general, 

it costs disproportionately more to implement a system by an earlier date than a later one. There might 

also be a trade-off between the functional and quality requirements and cost. We would all like 

exceptionally reliable and user-friendly systems that do exactly what we want but we might not be able 

to afford them. 

Information and control in organizations 

Hierarchical information and control systems 

✓ With small projects, the project leaders are likely to be working very closely with the other team 

members and might even be carrying out many non-managerial tasks themselves. Therefore, they 

should have a pretty good idea of what is going on. When projects are larger, many separate teams 

will be working on different aspects of the project and the overall managers of the project are not 

going to have day-to-day direct contact with all aspects of the work. 

✓ Larger projects are likely to have a hierarchical management structure (Figure 1.3). Project team 

members will each have a group leader who allocates them work and to whom they report 

progress. In turn the group leader, along with several other group leaders, will report to a manager 

at the next higher level. That manager might have to report to another manager at a higher level, 

and so on. 

✓ There might be problems that cannot be resolved at a particular level. For example, additional 

resources might be needed for some task, or there might be a disagreement with another group. 

These will be referred to the next higher level of management. 

✓ At each higher level more information will be received by fewer people. There is thus a very real 

danger that managers at the higher levels might be overloaded with too much information. To 

avoid this, at each level the information will have to be summarized. 

✓ The larger the project, the bigger the communication 

problems. The referral of disagreements to a higher level is 

sometimes known as escalation. 

✓ As a result of examining the progress information and 

comparing it against what was planned, some remedial action 

might need to be taken. Instructions may be formulated and 

passed down to a lower level of management. The lower level 



20 
 

managers will have to interpret what needs to be done and formulate more detailed plans to fulfil 

the directive. As the directives filter down the hierarchy, they will be expanded into more detail at 

each level. 

✓ Not all information flows concerning a project will be going up and down the hierarchy. There will 

also be lateral flows between groups and individuals on the same level. 

Levels of decision making and information 

✓ Each decision made in a project environment should be based on adequate information of the 

correct sort. The type of information needed depends on the level of decision making. Decisions 

can be grouped at three levels: strategic, tactical, and operational. 

✓ Strategic decision making is essentially about deciding objectives. In the case of the Bright mouth 

College payroll, the decision to become administratively independent could be regarded as a 

strategic decision.  

✓ In our example we were interested only in the payroll, but this might have been part of a wider 

programmed which may have affected many other administrative functions. 

✓ Tactical decision making is needed to ensure that the objectives will be fulfilled. The project leader 

who has the responsibility for achieving objectives will have to formulate a plan of action to meet 

those objectives.  

✓ The project leader will need to monitor progress to see whether these objectives are likely to be 

met and to take action where needed to ensure that the things remain on course. 

✓ Operational decisions relate to the day-to-day work of implementing the project. Deciding the 

content of the acceptance tests might come under this heading. 

Differences in types of information 

✓ Table 1.1 gives some idea of the differences in the kind of information needed. There is a kind of 

continuum for most of the qualities suggested and what is needed for tactical decision making 

comes somewhere in the middle. Effectiveness is concerned with doing the right thing. Efficiency is 

carrying out a task making the best possible use of the resources. 

Table 1.1 The types of information required for decision making 

CHARACTERISTIC OPERATIONAL STRATEGIC 

Motivation Efficiency effectiveness 

Orientation Internal internal and external 

Focus specific to a function specific to organization 

Detail Detailed summarized 

Response Fast not so fast 

access paths Standard flexible 

up-to-datedness Essential desirable 

https://www.gristprojectmanagement.us/software-2/step-identify-project-scope-and-objectives.html
https://www.gristprojectmanagement.us/software-2/step-identify-project-scope-and-objectives.html


21 
 

Accuracy Essential approximate 

Certainty Essential often predictive 

Objectivity High more subjective 

information type mainly quantitative often qualitative 

Measurement 

✓ The quantification of the leader of a small project will have direct contact with many aspects of the 

measures of effectiveness project. With larger projects, project leaders would have to depend on 

information reduces ambiguity being supplied to them. This information should not be vague and 

ideally should be quantitative. This ties in with our need for unambiguous measures of 

effectiveness. Software development deals largely with intangibles and does not easily lend itself to 

quantitative measures, but attempts are increasingly being made to introduce measurement into 

the software process.  

✓ Software measurements can be divided into performance measures and predictive measures. 

• Performance measures These measure the characteristics of a system that has been 

delivered. They are important when we are trying to specify unambiguously the quality 

requirements of a proposed system. 

• Predictive measures the trouble with performance measures is that you need to have a 

system actually up and running before you can take measurements. As a project leader, what 

you want to be able to do is to get some idea of the likely characteristics of the final system 

during its development. Predictive measures are taken during development and indicate what 

the performance of the final system is likely to be. 

AN OVERVIEW OF PROJECT PLANNING 

Planning is the most difficult process in project management.  A major step in project planning is to 

plan in outline first and then in more detail. Each step of project planning has different activities to 

perform. Following are the major steps in project planning Steps in Project Planning, 

 Step 0: Select project 

 Step 1: Identify project scope and objectives  

Step 2: Identify project infrastructure  

Step 3: Analyze project characteristics 

Step 4: Identify project products and activities  

Step 5: Estimate effort for each activity 

Step 6: Identify activity risks 

Step 7: Allocate resources  

Step 8: Review / Publicize plan  

Step 9 & 10: Execute plan / lower level of planning  



22 
 

STEP WISE PROJECT PLANNING 

Step 0: Select project  

✓ This is called step 0 because in a way of project 

planning, it is outside the main project planning 

process. Feasibility study suggests us that the project is 

worthwhile or not. This project evaluation may be done 

on an individual basis or as part of strategic planning. 

Step 1: Identify project scope and objectives 

✓ The activities in this step ensure that all the parties 

to the project agree on the objectives and are committed 

to the success of the project. A danger to be avoided is 

overlooking people who are affected by the project. 

Step 1.1: Identify objectives and practical measures of 

the effectiveness in meeting those objectives  

✓ The need for agreed objectives for a project and ways 

of measuring the success in achieving those objectives. 

Step 1.2: Establish a project authority  

✓ A single overall project authority needs to be 

established so that there is unity of purpose among all 

those concerned. 

Step 1.3: Identify all stakeholders in the project and their interests  

✓ Essentially all the parties who have an interest in the project need to be identified.  

Step 1.4: Modify objectives in the light of stakeholder analysis  

✓ In order to gain the full cooperation of all concerned, it might be necessary to modify the project 

objectives. This can mean adding new features to the system giving a benefit to some stakeholder 

group as a means of assuring their commitment to the project.  

✓ This is potentially dangerous, since the system size might be increased and the original objectives 

obscured. Because of these dangers, this process must be done consciously and in a controlled 

manner. 

Step 1.5: Establish methods of communication with all parties  

✓ For internal staff, this should be fairly straightforward, but a project leader implementing a payroll 

system would need to find a contact point with BACS (Bankers Automated Clearing Scheme) for 

instance. 

 

 

https://www.gristprojectmanagement.us/scheduling-controlling/project-authority.html


23 
 

Step 2:  Identify project infrastructure 

✓ Projects are rarely initiated in a vacuum. There is usually some kind of existing infrastructure into 

which the project can fit. The project leader who does not already know about this structure needs 

to find out its precise nature. 

Step 2.1: Identify relationship between the project and strategic planning  

✓ As well as identifying projects to be carried out, an organization needs to decide the order in which 

these projects are to be carried out.  

✓ It also needs to establish the framework within which the proposed new systems are to fit. 

Hardware and software standards, for example, are needed so that various systems can 

communicate with each other. These strategic decisions must be documented in a 

strategic business plan or in an information technology plan that is developed from the business 

plan. 

Step 2.2: Identify installation standards and procedures  

✓ Any organization that develops software should define its development procedures. As a minimum, 

the normal stages in the software life cycle to be carried out should be documented along with the 

products created at each stage. Change control and configuration management standards should be 

in place to on ensure that changes to requirements are implemented in a safe and orderly way.  

✓ The procedural standards may lay down the quality checks that need to be done at each point of 

the project life cycle or these may be documented in a separate quality standards and procedures 

manual. 

✓ The organization, as part of its monitoring and control policy must have in place a measurement 

programmed that dictates that certain statistics have to be collected at various stages of a project. 

✓ Finally the project manager should be aware of any project planning and control standards. These 

will relate to the way that the project is controlled: for example, the way that the hours spent by 

team members on individual tasks are recorded on time-sheets. 

Step 2.3: Identify project team organization 

✓ Project leaders, especially in the case of large projects, will often have some control over the 

organizational structure of the project team. More often, though, the organizational structure will 

be dictated to them. For example, there might have been a high-level managerial decision that code 

developers and systems analysts will be in different groups, or that the development of PC 

applications will not be done within the same group as that responsible for 'legacy' main-frame 

applications. 

✓ If the project leader does have some control over the project team organization then this would 

best be considered at a later stage. 

 

https://www.gristprojectmanagement.us/business-plan.html
https://www.gristprojectmanagement.us/guide/perform-integrated-change-control.html
https://www.gristprojectmanagement.us/project-manager.html
https://www.gristprojectmanagement.us/software-4/step-identify-project-infrastructure.html


24 
 

Step3:  Analyze project characteristics 

✓ The general purpose of this part of the planning operation is to ensure that the Chapter 4 

elaborates on appropriate methods are used for the project. the process of analyzing project 

characteristics. 

Step 3.1: Distinguish the project as either objective- or product-driven  

✓ This has already been discussed in the first chapter. A general point to note is that as system 

development advances, it tends to become more product-driven, although the underlying 

objectives always remain and must be respected. 

Step 3.2: Analyze other project characteristics (including quality-based ones)  

✓ For example, is this an information system that is being developed or a process control system, or 

does it have elements of both? Is it a safety-critical system, that is, where human life could be 

threatened by a malfunction? 

Step 3.3: Identify high level project risks 

✓ Consideration must be given to the risks that threaten the successful outcome of the project. 

Generally speaking, most risks can be attributed to the operational or development environment, 

the technical nature of the project or the type of product being created. 

Step 3.4: Take into account user requirements concerning implementation 

✓ The clients will usually have their own procedural requirements. For example, work for 

government departments usually requires the use of SSADM. 

Step 3.5: Select general lifecycle approach in the light of the above 

✓ The project life cycle to be used for the project will be influenced by the issues Chapter 4 discusses 

life raised above. For example, a prototyping approach might be used where the user cycles in 

more detail, requirements are not clear. 

Step 3.6: Review overall resource estimates 

✓ Once the major risks have been identified and the broad project approach has been decided upon, 

this would be a good point at which to re-estimate the effort and other resources required to 

implement the project. Where enough information is available, an estimate based on function 

points might be appropriate. 

Step 4: Identify project products and activities 

The more detailed planning of the individual activities that will be needed now takes place. The longer-

term planning is broad and in outline, while the more immediate tasks are planned in some detail. 

Step 4.1: Identify and describe project products (or deliverables) 

✓ In general, there can be no project products that do not have activities that create them. Wherever 

possible, we ought also to ensure the reverse: that there are no activities that do not produce a 

https://www.gristprojectmanagement.us/software-4/step-analyse-project-characteristics.html
https://www.gristprojectmanagement.us/software-4/step-analyse-project-characteristics.html
https://www.gristprojectmanagement.us/software-4/step-analyse-project-characteristics.html
https://www.gristprojectmanagement.us/software-4/select-general-life-cycle-approach.html
https://www.microsoft.com/en-us/microsoft-365/project/project-management-software


25 
 

tangible product. Making sure we have identified all the things the project is to create helps us to 

ensure that all the activities we need to carry out are accounted for. 

✓ These products will include a large number of technical products including training material and 

operating instructions, but also products to do with the management and the quality of the project. 

Planning documents would, for example, be management products. 

✓ The products will form a hierarchy. The main products will have sets of component products, 

which in turn might have sub-component products and so on. These relationships can be 

documented in a Product Breakdown Structure (PBS). 

✓ This part of the planning process draws heavily on the standards laid down in PRINCE 2. These 

specify that products at the bottom of the PBS should be documented by Product Descriptions, 

which contain: 

• the name/identity of the product; 

• the purpose of the product; 

• the derivation of the product (that is, the other products from which it is derived); 

• the composition of the product; 

• the relevant standards; 

the quality criteria that should apply to it. 

Step 4.2: Document generic product flows 

✓ Some of the products will need some other product to exist first before they can be created.  

✓ For example, a program design must be created before the program 

can be written and the program specification must exist before the 

design can be commenced. These relationships can be portrayed in 

a Product Flow Diagram (PFD). Figure 2.3 gives an example. 

Step 4.3: Recognize product instances 

Where the same generic PFD fragment relates to more than one 

instance of a particular type of product, an attempt should be made to 

identify each of those instances. 

Step 4.4: Produce ideal activity network 

✓ In order to generate one product from another there must be one or 

more activities that carry out the transformation. By identifying these activities, we can create an 

activity network, which shows the tasks that have to be carried out and the order in which they 

have to be executed. 

✓ The activity networks are 'ideal' in the sense that no account has been taken of resource 

constraints. For example, in Figure 2.4, it is assumed that resources are available for all four 

software modules to be developed in parallel. 

https://www.gristprojectmanagement.us/effective/the-product-breakdown-structure.html
https://www.gristprojectmanagement.us/effective/the-product-flow-diagram.html
https://www.gristprojectmanagement.us/effective/the-product-flow-diagram.html


26 
 

Step 4.5: Modify the ideal to take into account need for stages and checkpoints 

✓ The approach to sequencing activities described above encourages the formulation of a plan that 

will minimize the overall duration, or 'elapsed time', for the project. It assumes that an activity will 

start as soon as the preceding ones upon which it depends have been completed. 

✓ There might, however, be a need to modify this by dividing the project into stages and introducing 

checkpoint activities.  

✓ These are activities that draw together the products of preceding activities to check that they are 

compatible. These checkpoints are sometimes referred to as milestone events.  

✓ A checkpoint could potentially delay work on some elements of the project - there has to be a 

trade-off between efficiency and quality. 

 

Figure 2.4 An activity network fragment for the IOE Maintenance Group Accounts project. 

Step 5:  Estimate effort for each activity 

Step 5.1: Carry out bottom-up estimates 

✓ Some top-down estimates of effort, cost and duration will already have been done (see Step 3.6). At 

this point, estimates of the staff effort and other resources required, and the probable elapsed time 

needed for each activity will need to be produced. The method of arriving at each of these 

estimates will vary depending on the type of activity. 

✓ The individual activity estimates of effort should be summed to get an overall bottom-up estimate, 

which can be reconciled with the previous top-down estimate. 

✓ The activities on the activity network can be annotated with their elapsed times so that the overall 

duration of the project can be calculated. 

Step 5.2: Revise plan to create controllable activities 

✓ The estimates for individual activities might reveal that some are going to take quite a long time. 

Long activities often make a project difficult to control.  

✓ If an activity involving system testing is to take 12 weeks, it might be difficult after six weeks to 

judge accurately whether 50% of the work is completed.  

✓ It would be better to break this down into a series of smaller sub-tasks. 

https://www.gristprojectmanagement.us/functions/bottomup-estimating.html
https://www.gristprojectmanagement.us/software/software-effort-estimation-techniques.html
https://www.gristprojectmanagement.us/statistics/threepoint-estimate-approximations.html
https://www.gristprojectmanagement.us/microsoft-project/adding-subtasks.html


27 
 

Step 6: Identify activity risks 

Step 6.1: Identify and quantify activity-based risks 

✓  Risks inherent in the overall nature of the project have already been considered in Step 3. We now 

want to look at each activity in turn and assess the risks to its successful outcome. The seriousness 

of each risk and likelihood of it occurring have to be gauged.  

✓ At individual task level some risks are unavoidable, and the general effect if a problem materializes 

is to make the task longer or more costly. A range of estimates can be produced to take into 

account the possible occurrence of the risks. 

Step 6.2: Plan risk reduction and contingency measures where appropriate 

✓ It is possible to avoid or at least reduce some of the identified risks. Contingency plans specify 

action that is to be taken if a risk materializes. For example, a contingency plan could be to use 

contract staff if a member of the project team is unavailable at a key time because of illness. 

Step 6.3: Adjust overall plans and estimates to take account of risks 

✓ We can change our plans, perhaps by adding new activities which reduce risks. For example, a new 

programming language could mean that we schedule training courses and time for the 

programmers to practice their new programming skills on some non-essential work. 

Step 7: Allocate resources 

Step 7.1: Identify and allocate resources 

✓ The type of staff needed for each activity is recorded. The staff available for the project are 

identified and are provisionally allocated to tasks.  

Step 7.2: Revise plans and estimates to take into account resource constraints 

✓ Some staff might be needed for more than one task at the same time and. in this case, an order of 

priority is established. The decisions made here can have an effect on the overall duration of the 

project when some tasks are delayed while waiting for staff to become free. 

✓ Ensuring someone is available to start work on an activity as soon as the preceding activities have 

been completed might mean that they are idle while waiting for the job to start and are therefore 

used inefficiently. 

 Step 8: Review/publicize plan 

Step 8.1: Review quality aspects of the project plan  

✓ A danger when controlling any project is that an activity can reveal that an earlier activity was not 

properly completed and needs to be reworked. This, at a stroke, can transform a project that 

appears to be progressing satisfactorily into one that is badly out of control.  

✓ It is important to know that when a task is reported as completed, it really is- hence the 

importance of quality reviews. Each task should have 'exit requirements. These are quality checks 

that have to be passed before the activity can be 'signed off as completed. 



28 
 

Steps 9 and 10: Execute plan and Lower levels of planning 

✓ Once the project is under way, plans will need to be drawn up in greater detail for each activity as 

it becomes due. Detailed planning of the later stages will have to be delayed because more 

information will be available nearer the start of the stage.  

✓ Of course, it is necessary to make provisional plans for the more distant tasks, because thinking 

about what has to be done can help unearth potential problems, but sight should not be lost of the 

fact that these plans are provisional. 

SIX SIGMA 

✓ Digital transformation has become the hottest word of this world. New technologies and tools 

are supporting the transformation journey of companies big and small as they compete to get a 

bigger slice of business in a fast-paced competitive environment. 

✓ Yet, is it enough to smooth a company's transformative process? Can a standalone technology 

implementation remove a bottleneck in the production process or support troubleshooting a 

service design flaw? 

✓ Over the years, it has been refined and polished into a sound theory of principles and methods, 

aimed at business transformation through a clearly defined process. This finished product is Six 

Sigma. 

Six Sigma 

✓ 6σ is concept to achieve Quality and process improvement, by eliminating defects through 

analysing variance with statistical tools and making necessary improvements in a process 

/product. It aims to reduce variance. This was first introduced by Motorola to reduce defects. 

✓ Motorola was producing TV Sets. It was observed that their market share was reduced due to 

defective products. And they found that their quality management systems were weak and they 

wanted to improve, thus they found Six Sigma (6σ). 

✓ σ means standard deviation. σ is a Greek small Alphabet. Like in English, capital and small 

alphabets, Greek alphabets has capital and small letters. 

✓ Σ (sigma) Capital Greek letter indicating summation. 

✓ σ (sigma) Small Greek letter indicating standard deviation. 

✓ It can only be implemented wherever the variance is measurable. Variance is analysed through 

statistical tools. So statistical and probability knowledge is necessary. 

✓ What is variance? Variance can be termed as deviation from specification. 

✓ Can we produce a product or process without variation? No, because several factors influence 

deviation. We can see in engineering drawing that always some tolerance limits are given to the 

specification (Upper specification limit (USL) and Lower specification limit (LSL)). 



29 
 

✓ If the product made is exactly as per specification or within tolerance limits, Then the product is 

accepted or else rejected. 

✓ What does 6σ do? 6σ is aimed to reduce the variance to the minimum. Variance is the main cause 

of defects. How it is done? By studying variation through statistical tools. And making necessary 

improvements / Corrections/Design changes to reduce the variation. 

✓ Quality can be termed as internal and external quality. External quality - Product or service 

quality given to customer. we always concentrate on external quality. Because product with defects 

cannot be sold to customer. Internal quality - Quality at different stages in producing a product at 

manufacturing facility. 

✓ If the percentage of defects increases externally or internally or in both areas. The company would 

be affected drastically. It has to spend a lot for reworking.  

✓ 6σ aims that no defective product is produced at different process in manufacturing. It is same 

applicable to service industry also. Is it really possible to produce products without defects? Very 

difficult. If a company is on 6σ level the probability of defects is 3.4 or less than 3.4 defects per 

million opportunities. That is If we produce 1 million products the chances of defects are 3.4 

products. It can also be said that 6σ yields 99.9997% good products. 

✓ There are several sigma levels also please find the below. 

⚫ 6σ. (99.9997% good parts) (3.4 DPMO) 

⚫ 5σ. (99.98% good parts) (244 DPMO) 

⚫ 4σ. (99.38% good parts) (6210 DPMO) 

⚫ 3σ. (93.32% good parts) (66807 DPMO) 

⚫ 2σ. (69.13% good parts) (308538 DPMO) 

⚫ 1σ. (30.23% good parts) (697700 DPMO) 

*DPMO - Defects per million opportunities. 

Six Sigma Levels 

White Belt 

✓ This is the simplest stage, where: Any newcomer can join. People work with teams on problem-

solving projects. The participant is required to understand the basic Six Sigma concepts. 

Yellow Belt 

✓ Here, the participant: Takes part as a project team member. Reviews process improvements. Gains 

understanding of the various methodologies, and DMAIC. 

Green level 

✓ This level of expertise requires the following criteria: Minimum of three years of full-time 

employment. Understand the tools and methodologies used for problem-solving. Hands-on 



30 
 

experience on projects involving some level of business transformation. Guidance for Black Belt 

projects in data collection and analysis. Lead Green Belt projects or teams. 

Black Level 

✓ This level includes the following: Minimum of three years of full-time employment Work 

experience in a core knowledge area. Proof of completion of a minimum of two Six Sigma 

projects Demonstration of expertise at applying multivariate metrics to diverse business change 

settings. Leading diverse teams in problem-solving projects. Training and coaching project teams. 

Master Black Belt 

✓ To reach this level, a candidate must: Be in possession of a Black Belt certification Have a minimum 

of five years of full-time employment, or Proof of completion of a minimum of 10 Six Sigma projects 

A proven work portfolio, with individual specific requirements, as given here, for instance. Have 

coached and trained Green Belts and Black Belts. Develop key metrics and strategies. Have worked 

as an organization's Six Sigma technologist and internal business transformation advisor. 

The Six Sigma Certification Levels 

 

What is Six Sigma? 

✓ Six Sigma is a set of management tools and techniques designed to improve business by 

reducing the likelihood of error. It is a data-driven approach that uses a statistical methodology 

for eliminating defects. The etymology is based on the Greek symbol "sigma" or "σ," a statistical 

term for measuring process deviation from the process mean or target. 

✓ "Six Sigma" comes from the bell curve used in statistics, where one Sigma symbolizes a single 

standard deviation from the mean. 

✓ If the process has six Sigma’s, three above and three below the mean, the defect rate is classified as 

"extremely low." So, processes, where the mean is minimum 6σ away from the closest specification 

limit, are aimed at Six Sigma. The concept of Six Sigma has a simple goal – delivering near-perfect 

goods and services for business transformation for optimal customer satisfaction (CX). 

✓ Goals are achieved through a two-pronged approach: 



31 
 

 

The Six Sigma Methodology 

✓ The two main Six Sigma methodologies are DMAIC and DMADV. Each has its own set of 

recommended procedures to be implemented for business transformation. 

✓ DMAIC is a data-driven method used to improve existing products or services for better customer 

satisfaction. It is the acronym for the five phases: D – Define, M – Measure, A – Analyse, I – 

Improve, C – Control. 

✓ DMAIC is applied in the manufacturing of a product or delivery of a service. 

✓ DMADV is a part of the Design for Six Sigma (DFSS) process used to design or re-design different 

processes of product manufacturing or service delivery. 

✓ The five phases of DMADV are: D – Define, M – Measure, A – Analyse, D – Design, V –Validate. 

✓ DMADV is employed when existing processes do not meet customer conditions, even after 

optimization, or when it is required to develop new methods. It is executed by Six Sigma Green 

Belts and Six Sigma Black Belts and under the supervision of Six Sigma Master Black Belts. 

✓ The two methodologies are used in different business settings, and professionals seeking to master 

these methods and application scenarios would do well to take an online certificate program 

taught by industry experts. 

The Six Sigma Process of Business Transformation 

✓ Although Six Sigma uses various methods to discover deviations and solve problems, the DMAIC is 

the standard methodology used by Six Sigma practitioners. Six Sigma uses a data-driven 

management process used for optimizing and improving business processes. The underlying 

framework is a strong customer focus and robust use of data and statistics to conclude. 

✓ The Six Sigma Process of the DMAIC method has five phases: 

 

 

✓ Each of the above phases of business transformation has several steps: 

DEFINE 

✓ The Six Sigma process begins with a customer-centric approach. 



32 
 

Step 1: The business problem is defined from the customer perspective. 

Step 2: Goals are set. What do you want to achieve?  

Step 3: Map the process. Verify with the stakeholders that you are on the right track. 

MEASURE 

✓ The second phase is focused on the metrics of the project and the tools used in the measurement. 

How can you improve? How can you quantify this? 

Step 1: Measure your problem in numbers or with supporting data. 

Step 2: Define performance yardstick. Fix the limits for "Y. “ 

Step 3: Evaluate the measurement system to be used. Can it help you achieve your outcome? 

ANALYZE 

✓ The third phase analyzes the process to discover the influencing variables. 

Step 1: Determine if your process is efficient and effective.  

Step 2: Quantify your goals in numbers. For instance, reduce defective goods by 20%. 

Step 3: Identify variations using historical data. 

IMPROVE 

✓ This process investigates how the changes in "X" impact "Y." This phase is where you identify how 

you can improve the process implementation. 

Step 1: Identify possible reasons. Test to identify which of the "X" variables identified in influence "Y”. 

Step 2: Discover relationships between the variables 

Step 3: Establish process tolerance, defined as the precise values that certain variables can have, and 

still fall within acceptable boundaries, for instance, the quality of any given product. 

CONTROL 

✓ In this final phase, you determine that the performance objective identified in the previous phase is 

well implemented and that the designed improvements are sustainable. 

Step 1: Validate the measurement system to be used. 

Step 2: Establish process capability. Is the goal being met?  

Step 3: Once the previous step is satisfied, implement the process. 

The Six Sigma Tools (2M) 

✓ Cause and Effect Analysis 

✓ Flow Chart 

✓ Pareto Chart 

✓ Histogram 

✓ Check Sheet 

✓ Scatter Plot 

✓ Control Chart 



33 
 

Six Sigma Techniques 

✓ The Six Sigma methodology also uses a mix of statistical and data analysis tools such as process 

mapping and design and proven qualitative and quantitative techniques, to achieve the desired 

outcome. 

 

Brainstorming 

✓ Brainstorming is the key process of any problem-solving method and is often utilized in the 

"improve" phase of the DMAIC methodology. It is a necessary process before anyone starts using 

any tools. Brainstorming involves bouncing ideas and generating creative ways to approach a 

problem through intensive freewheeling group discussions. A facilitator, who is typically the lead 

Black Belt or Green Belt, moderates the open session among a group of participants. 

Root Cause Analysis/The 5 Whys 

✓ This technique helps to get to the root cause of the problems under consideration and is used in the 

"analyze" phase of the DMAIC cycle. In the 5 Whys technique, the question "why" is asked, again 

and again, finally leading up to the core issue. Although "five" is a rule of thumb, the actual number 

of questions can be greater or fewer, whatever it takes to gain clarity. 

Voice of the Customer 

✓ This is the process used to capture the "voice of the customer" or customer feedback by either 

internal or external means. The technique is aimed at giving the customer the best products and 

services. It captures the changing needs of the customer through direct and indirect methods. The 

voice of the customer technique is used in the "define' phase of the DMAIC method, usually to 

further define the problem to be addressed. 

The 5S System 

✓ This technique has its roots in the Japanese principle of workplace energies. The 5S System is 

aimed at removing waste and eliminating bottlenecks from inefficient tools, equipment, or 

resources in the workplace. The five steps used are Seiri (Sort), Seiton (Set in Order), Seiso (Shine), 

Seiketsu (Standardize), and Shitsuke (Sustain). 

 

 



34 
 

Kaizen (Continuous Improvement) 

✓ The Kaizen technique is a powerful strategy that powers a continuous engine for business 

improvement. It is the practice continuously monitoring, identifying, and executing improvements. 

This is a particularly useful practice for the manufacturing sector. Collective and ongoing 

improvements ensure a reduction in waste, as well as immediate change whenever the smallest 

inefficiency is observed. 

Benchmarking 

✓ Benchmarking is the technique that employs a set standard of measurement. It involves making 

comparisons with other businesses to gain an independent appraisal of the given situation. 

Benchmarking may involve comparing important processes or departments within a business 

(internal benchmarking), comparing similar work areas or functions with industry leaders 

(functional benchmarking), or comparing similar products and services with that of competitors 

(competitive benchmarking). 

Poka-yoke (Mistake Proofing) 

✓ This technique's name comes from the Japanese phrase meaning "to avoid errors," and entails 

preventing the chance of mistakes from occurring. In the poka-yoke technique, employees spot and 

remove inefficiencies and human errors during the manufacturing process. 

Value Stream Mapping 

✓ The value stream mapping technique charts the current flow of materials and information to design 

a future project. The objective is to remove waste and inefficiencies in the value stream and create 

leaner operations. It identifies seven different types of waste and three types of waste removal 

operations. 

DEFINING SOFTWARE QUALITY 

What is software quality? 

✓ The quality of software can be defined as the ability of the software to function as per user 

requirement.  When it comes to software products it must satisfy all the functionalities written 

down in the SRS document. 

Key aspects that conclude software quality include, 

• Good design – It’s always important to have a good and aesthetic design to please users 

• Reliability – Be it any software it should be able to perform the functionality impeccably without 

issues 

• Durability- Durability is a confusing term, in this context, durability means the ability of the 

software to work without any issue for a long period of time. 

• Consistency – Software should be able to perform consistently over platform and devices 



35 
 

• Maintainability – Bugs associated with any software should be able to capture and fix quickly and 

news tasks and enhancement must be added without any trouble 

• Value for money – customer and companies who make this app should feel that the money spent 

on this app has not fine to waste. 

 

ISO/IEC 25010:2011 Software Quality Model 

What is Software Quality Model? 

✓ Software quality models were proposed to measure the quality of any software model. There are 

three widely accepted models when it comes to measuring software quality 

• McCall’s Quality Model 

• Boehm quality model 

• Dromey’s quality model 

Mc call’s Model 

✓ Mc Call’s model was first introduced in the US Airforce in the year 1977.  The main intention of this 

model was to maintain harmony between users and developers. 

 

Boehm Quality Model 

✓ Boehm model was introduced in the year 1978. It was a kind of hierarchical model that’s structured 

around high-level characteristics.  Boehm model measures software quality on the basis of certain 



36 
 

characteristics. 

 

Dromey’s quality model 

✓ Dromey’s model is mainly focused on the attributes and sub-attributes to connect properties of the 

software to the quality attributes. There are three principal elements to this model, 

• Product properties that affect the quality 

• High-level quality attributes 

• Linking the properties with quality attributes 

 

Dromeys software quality model 

How can software engineers acquire software quality? 

Management plan – Have a clear idea about how the quality assurance process will be carried out 

through the project. Quality engineering activities required should also be set at the beginning along 

with team skill check. 

Proper checkpoints – Checkpoints at required intervals should be set 

How do we achieve Software quality? 

✓ Achieving quality will ensure maximum profit for your software business. But the biggest hurdle is 

to achieve quality and here are some of the ways. 

o Define characteristics that define quality for a product 

o Decide how to measure each of that quality characteristic 



37 
 

o Set standards for each quality characteristic 

o Do quality control with respect to the standards 

o Find out the reasons that are hindering quality 

o Make necessary improvements 

What are software quality metrics? 

✓ In any software project, you can go on building the code but at some point, you need to take a break 

and check if the work you are doing is right, if the process you followed is correct and so on. Metrics 

help you in exactly that. 

✓ Metrics are pointers or numbers which help you understand the attributes of a product, (like its 

complexity, its size, it’s quality, etc.), the attributes of the process (which can be used to improve 

the quality and speed of development) and the attributes of the project (which includes the number 

of resources, costs, productivity and timeline among others), popularly known as the three P’s. 

Why are software quality metrics important? 

Software quality metrics are an indicator of the health of the product, process, and project. Good 

metrics with accurate data can help in 

• Developing a strategy and giving the right direction to the process/project 

• Recognizing the areas of focus 

• Making strategic decisions 

• Driving Performance and many others. 

Important Software Quality Metrics 

For any metrics to truly serve the purpose, there are 2 parts. One is the data accuracy and the second is 

metrics selection. All metrics will not be suitable for all processes and projects. So, the selection of the 

metrics needs to be done carefully. Let us now look at some very important and most commonly used 

Software Quality Metrics and how they are helpful in driving a better code 

Defect Density 

✓ The first measure of the quality of any products is the number of defects found and fixed. Though 

there a many “conditions apply” cases this is the first ballpark estimate of the quality of the 

software. The more the number of defects found, would be the quality of development is poor. So, 

the management should strive hard to improve development and do an RCA (Root Cause Analysis) 

to find why the quality is taking the hit. 

Defect Density = No. of Defects Found / Size of AUT or module 

Defect Removal Efficiency (DRE) 

This is an important metric for assessing the effectiveness of a testing team. DRE is an indicator of the 

number of defects the tester or the testing team was able to remove from going into a production 

environment. Every quality team wants to ensure a 100% DRE. 



38 
 

DRE = A/(A+B) x 100 

A – number of defects found before production 

B – Number of defects found in production 

Product operation quality factors 

• Correctness The extent to which a program satisfies its specifications and fulfils the user's objectives. 

• Reliability The extent to which a program can be expected to perform its intended function with 

required precision. 

• Efficiency The amounts of computer resources required by the software. 

• Integrity The extent to which access to software or data by unauthorized persons can be controlled. 

• Usability The effort required to learn, operate, prepare input and interpret output. 

Product revision quality factors 

• Maintainability The effort required to locate and fix an error in an operational program. 

• Testability The effort required to test a program to ensure it performs its intended function. 

• Flexibility The effort required to modify an operational program. Product transition quality factors 

• Portability The effort required to transfer a program from one hardware configuration and/or 

software system environment to another. 

• Reusability The extent to which a program can be used in other applications. 

• Interoperability The effort required to couple one system to another. 

ISO 9126 SOFTWARE QUALITY CHARACTERISTICS 

✓ ISO 9126 is an international standard for the evaluation of software. The standard is divided into 

four parts which addresses, respectively, the following subjects: quality model; external metrics; 

internal metrics; and quality in use metrics. 

✓ ISO9126–1 represents the latest (and ongoing) research into characterizing software for the 

purposes of software quality control, software quality assurance and software process improvement 

(SPI). The ISO 9126 documentation itself, from the official ISO 9126 documentation, can only be 

purchased and is subject to copyright. SQA.net only reproduces the basic structure of the ISO 9126 

standard and any descriptions, commentary or guidance are original material based on public 

domain information as well as our own experience. 

✓ The ISO 9126–1 software quality model identifies 6 main quality characteristics, namely: 

• Functionality 

• Reliability 

• Usability 

• Efficiency 

• Maintainability 

• Portability 

http://www.iso.org/iso/en/ISOOnline.frontpage


39 
 

✓ These characteristics are broken down into sub characteristics. It is at the sub characteristic level 

that measurement for SPI will occur. The main characteristics of the ISO9126–1 quality model, can 

be defined as follows: 

Functionality 

✓ Functionality is the essential purpose of any product or service. For certain items this is relatively 

easy to define, for example a ship’s anchor has the function of holding a ship at a given location.  

✓ The more functions a product has, e.g. an ATM machine, then the more complicated it becomes to 

define its functionality. For software a list of functions can be specified, i.e. a sales order processing 

system should be able to record customer information so that it can be used to reference a sales 

order. A sales order system should also provide the following functions: 

• Record sales order product, price and quantity. 

• Calculate total price. 

• Calculate appropriate sales tax. 

• Calculate date available to ship, based on inventory. 

• Generate purchase orders when stock falls below a given threshold. 

Reliability 

✓ Once a software system is functioning, as specified, and delivered the reliability characteristic 

defines the capability of the system to maintain its service provision under defined conditions for 

defined periods of time. One aspect of this characteristic is fault tolerance that is the ability of a 

system to withstand component failure. For example, if the network goes down for 20 seconds then 

comes back the system should be able to recover and continue functioning. 

Usability 

✓ Usability only exists with regard to functionality and refers to the ease of use for a given function. 

For example, a function of an ATM machine is to dispense cash as requested. Placing common 

amounts on the screen for selection, i.e. $20.00, $40.00, $100.00 etc., does not impact the function of 

the ATM but addresses the Usability of the function. The ability to learn how to use a system 

(learnability) is also a major sub characteristic of usability. 

Efficiency 

✓ This characteristic is concerned with the system resources used when providing the required 

functionality. The amount of disk space, memory, network etc. provides a good indication of this 

characteristic. As with a number of these characteristics, there are overlaps. For example, the 

usability of a system is influenced by the system’s Performance, in that if a system takes 3 hours to 

respond the system would not be easy to use although the essential issue is a performance or 

efficiency characteristic. 

 



40 
 

Maintainability 

✓ The ability to identify and fix a fault within a software component is what the maintainability 

characteristic addresses. In other software quality models this characteristic is referenced as 

supportability. Maintainability is impacted by code readability or complexity as well as 

modularization. Anything that helps with identifying the cause of a fault and then fixing the fault is 

the concern of maintainability. Also, the ability to verify (or test) a system, i.e. testability, is one of 

the sub characteristics of maintainability. 

Portability 

✓ This characteristic refers to how well the software can adopt to changes in its environment or 

with its requirements. The sub characteristics of this characteristic includes adaptability. Object 

oriented design and implementation practices can contribute to the extent to which this 

characteristic is present in a given system. 

UNIT - II (SOFTWARE EVALUVATION AND COSTING) 

STRATEGIC ASSESSMENT 

Programme management 

✓ It is being increasingly recognized that individual projects need to be seen as components of a 

programme and should be evaluated and managed as such. A programme, in this context, is a 

collection of projects that all contribute to the same overall organizational goals.  

✓ Effective programme management requires that there is a well-defined programme goal and that 

all the organization's projects are selected and tuned to contribute to this goal. A project must be 

evaluated according to how it contributes to this programme goal and its viability, timing, 

resourcing and final worth can be affected by the programme as a whole.  

✓ It is to be expected that the value of any project is increased by the fact that it is part of a 

programme - the whole, as they say, being greater than the sum of the parts. 

✓ In order to carry out a successful strategic assessment of a potential project there should therefore 

be a strategic plan clearly defining the organization's objectives. This provides the context for 

defining the programme and programme goals and, hence, the context for assessing the individual 

project.  

✓ It is likely, particularly in a large organization, that there will be an organizational structure for 

programme management and it will be, for example, the programme director and programme 

executive, rather than, say, a project manager, who will be responsible for the strategic assessment 

of a proposed project. 

✓ Even where there is no explicitly defined programme, any proposed project must be evaluated 

within the context of the organization's overall business objectives.  

https://www.gristprojectmanagement.us/project-manager.html


41 
 

✓ Moreover, any potential software system will form part of the user organization's overall 

information system and must be evaluated within the context of the existing information system 

and the organization's information strategy. Table 2.1 illustrates typical issues that must be 

addressed as part of the strategic 

assessment of a project. 

✓ Where a well-defined 

information systems strategy does 

not exist, system development and 

the assessment of project proposals 

will be based on a more piecemeal 

approach - each project being 

individually assessed early in its life 

cycle. In such cases it is likely that 

cost-benefit analysis will have more 

importance and some of the questions 

of Table 3.1 will be more difficult to 

answer.  

Portfolio management 

✓ Where an organization such as a software house is developing a software system, they could be 

asked to carry out a strategic and operational assessment on behalf of the customer. Whether or 

not this should be the case, they will require an assessment of any proposed project themselves.  

✓ They will need to ensure that carrying out the development of a system is consistent with their own 

strategic plan - it is unlikely, for example, that a software house specializing in financial and 

accounting systems would wish to undertake development of a factory control system unless their 

strategic plan placed an emphasis on diversification. 

✓ The proposed project will form part of a portfolio of ongoing and planned projects and the selection 

of projects must take account of the possible effects on other projects in the portfolio (competition 

for resources, for example) and the overall portfolio profile (for example, specialization versus 

diversification). 

Technical assessment 

✓ Technical assessment of a proposed system consists of evaluating the required functionality against 

the hardware and software available.  

✓ Where an organization has a strategic information systems plan, this is likely to place limitations on 

the nature of solutions that might be considered. The constraints will, of course, influence the cost 

of the solution and this must be taken into account in the cost benefit analysis. 



42 
 

COST BENEFIT ANALYSIS 

✓ The most common way of carrying out an economic assessment of a proposed information system, 

or other development, is by comparing the expected costs of development and operation of the 

system with the benefits of having it in place. 

✓ Assessment is based upon the question of whether the estimated costs are exceeded by the 

estimated income and other benefits. Additionally, it is usually necessary to ask whether or not the 

project under consideration is the best of a number of options. There might be more candidate 

projects than can be undertaken at any one time and, in any case, projects will need to be 

prioritized so that any scarce resources may be allocated effectively. 

✓ The standard way of evaluating the economic benefits of any project is to carry out a cost-benefit 

analysis, which consists of two steps. 

o Identifying and estimating all of the costs and benefits of carrying out the project This 

includes development costs of the system, the operating costs and the benefits that are 

expected to accrue from the operation of the system. Where the proposed system is 

replacing an existing one, these estimates should reflect the costs and benefits due to the 

new system. A sales order processing system, for example, could not claim to benefit an 

organization by the total value of sales - only by the increase due to the use of the new 

system. 

o Expressing these costs and benefits in common units We must evaluate the net benefit, 

which is the difference between the total benefit and the total cost. To do this, we must 

express each cost and each benefit in monetary terms. 

✓ Most costs are relatively easy to identify and quantify in approximate monetary. It is helpful to 

categorize costs according to where they originate in the life of the project. 

o Development costs - include the salaries and other employment costs of the staff involved 

in the development project and all associated costs. 

o Setup costs - include the costs of putting the system into place. These consist mainly of the 

costs of any new hardware and ancillary equipment but will also include costs of file 

conversion, recruitment and staff training. 

o Operational costs - consist of the costs of operating the system once it has been installed. 

✓ Benefits, on the other hand, are often quite difficult to quantify in monetary terms even once they 

have been identified. Benefits may be categorized as follows. 

o Direct benefits - these accrue directly from the operation of the proposed system. These 

could, for example, include the reduction in salary bills through the introduction of a new, 

computerized system. 



43 
 

o Assessable indirect benefits - these are generally secondary benefits, such as increased 

accuracy through the introduction of a more user-friendly screen design where we might be 

able to estimate the reduction in errors, and hence costs, of the proposed system. 

o Intangible benefits - these are generally longer term or benefits that are considered very 

difficult to quantify. Enhanced job interest can lead to reduced staff turnover and, hence, 

lower recruitment costs. 

Any project that shows an excess of benefits over costs is clearly worth considering for implementation. 

However, as we shall see later, it is not a sufficient justification for going ahead: we might not be able to 

afford the costs; there might be even better projects we could allocate our resources to instead; the 

project might be too risky. 

CASH FLOW FORECASTING 

✓ As important as estimating the overall costs and benefits of a project is the forecasting of the cash 

flows that will take place and their timing. A cash flow forecast will indicate when expenditure and 

income will take place (Figure 3.2). 

 

Figure 3.2 Typical product life cycle cash flow. 

✓ We need to spend money, such as staff wages, during the development stages of a project. Such 

expenditure cannot be deferred until income is received (either from using the software if it is 

being developed for in-house use or from selling it). It is important that we know that we can fund 

the development expenditure either from the company's own resources or by borrowing from the 

bank. 

✓ In any event, it is vital to have some forecast of when expenditure such as the payment of salaries 

and bank interest will take place and when any income is to be expected, such as payment on 

completion or, possibly, stage payments. 

✓ Accurate cash flow forecasting is not easy, as it generally needs to be done early in the project's life 

cycle (at least before any significant expenditure is committed) and many items to be estimated 

(particularly the benefits of using software or decommissioning costs) might be some years in the 

future. 

✓ When estimating future cash flows, it is usual to ignore the effects of inflation. Trying to forecast the 

effects of inflation increases the uncertainty of the forecasts. Moreover, if expenditure is increased 

due to inflation it is likely that income will increase proportionately.  



44 
 

✓ However, measures to deal with increases in costs where work is being done for an external 

customer must be in place - for example index linked prices where work involves use of raw. 

✓ Table 3.2 illustrates cash flow forecasts for four projects. In each case it is assumed that the cash 

flows take place at the end of each year. For short-term projects or where candidate projects 

demonstrate significant seasonal cash flow patterns it can be advisable to produce quarterly, or 

even monthly, cash flow forecasts. 

 

COST BENEFIT EVALUATION TECHNIQUES 

✓ We would consider proceeding with a project only where the benefits outweigh the costs. However, 

in order to choose among projects, we need to take into account the timing of the costs and benefits 

as well as the benefits relative to the size of the investment. In the following sections we will take a 

brief look at some common methods for comparing projects on the basis of their cash flow forecasts. 

Net profit 

✓ The net profit of a project is the difference between the total costs and the total income over the life 

of the project. Project 2 in Table 3.2 shows the greatest net profit but this is at the expense of a 

large investment. Indeed, if we had £lm to invest, we might undertake all of the other three projects 

and obtain an even greater net profit. Note also, that all projects contain an element of risk and we 

might not be prepared to risk £1 m.  

✓ Moreover, the simple net profit takes no account of the timing of the cash flows. Projects 1 and 3 

each have a net profit of £50,000 and therefore, according to this selection criterion, would be 

equally preferable. The bulk of the income occurs late in the life of project 1, whereas project 3 

returns a steady income throughout its life. Having to wait for a return has the disadvantage that 

the investment must be funded for longer.  

✓ Add to that the fact that, other things being equal, estimates in the more distant future are less 

reliable that short-term estimates and we can see that the two projects are not equally preferable. 

Payback period 

✓ The payback period is the time taken to break even or pay back the initial investment. Normally, the 

project with the shortest payback period will be chosen on the basis that an organization will wish 

to minimize the time that a project is 'in debt'. 

✓ The advantage of the payback period is that it is simple to calculate and is not particularly sensitive 

to small forecasting errors. Its disadvantage as a selection technique is that it ignores the overall 



45 
 

profitability of the project - in fact, it totally ignores any income (or expenditure) once the project 

has broken even. Thus, the fact that projects 2 and 4 are, overall, more profitable than project 3 is 

ignored. 

Return on investment 

✓ The return on investment (ROI), also known as the accounting rate of return (ARR), provides a way 

of comparing the net profitability to the investment required. There are some variations on the 

formula used to calculate the return on investment but a straightforward common version is 

 

✓ The main difficulty with NPV for deciding between projects is selecting an appropriate discount 

rate. Some organizations have a standard rate but, where this is not the case, then the discount rate 

should be chosen to reflect available interest rates (borrowing costs where the project must be 

funded from loans) plus some premium to reflect the fact that software projects are inherently 

more risky than lending money to a bank. The exact discount rate is normally less important than 

ensuring that the same discount rate is used for all projects being compared. However, it is 

important to check that the ranking of projects is not sensitive to small changes in the discount rate 

- have a look at the following exercise. 

Internal rate of return 

✓ One disadvantage of NPV as a measure of profitability is that, although it may be used to compare 

projects, it might not be directly comparable with earnings from other investments or the costs of 

borrowing capital. Such costs are usually quoted as a percentage interest rate.  

✓ The internal rate of return (IRR) attempts to provide a profitability measure as a percentage return 

that is directly comparable with interest rates. Thus, a project that showed an estimated IRR of 10% 

would be worthwhile if the capital could be borrowed for less than 10% or if the capital could not 

be invested elsewhere for a return greater than 10%. 

✓ The IRR is calculated as that percentage discount rate that would produce an NPV of zero. It is most 

easily calculated using a spreadsheet or other computer program that provides functions for 

calculating the IRR. Microsoft Excel and Lotus, for example, both provide IRR functions which, 

provided with an initial guess or seed value (which may be zero), will search for and return an IRR. 

✓ Manually, it must be calculated by trial-and-error or estimated using the technique illustrated in 

Figure 3.3. This technique consists of guessing two values. 

https://www.gristprojectmanagement.us/microsoft-excel.html


46 
 

 

RISK MANAGEMENT IN SOFTWARE DEVELOPMENT 

✓ Every project involves risk of some form. When assessing and planning a project, we are concerned 

with the risk of the project's not meeting its objectives. We are concerned with taking risk into 

account when deciding whether to proceed with a proposed project. 

Risk identification and ranking 

✓ In any project evaluation we should attempt to identify the risks and quantify their potential effects. 

One common approach to risk analysis is to construct a project risk matrix utilizing a checklist of 

possible risks and to classify each risk according to its relative importance and likelihood.  

✓ Note that the importance and likelihood need to be separately assessed - we might be less 

concerned with something that, although serious, is very unlikely to occur than with something less 

serious that is almost certain.  

✓ Table 3.7 illustrates a basic project risk matrix listing some of the risks that might be considered for 

a project, with their importance and likelihood classified as high (H), medium (M), low (L) or 

exceedingly unlikely (—). So that projects may be compared the list of risks must be the same for 

each project being assessed. It is likely, in reality, that it would be somewhat longer than shown and 

more precisely defined. 

✓ The project risk matrix may be used as a way of evaluating projects (those with high risks being 

less favoured) or as a means of identifying and ranking the risks for a specific project. In Chapter 7 

we shall consider a method for scoring the importance and likelihood of risks that may be used in 

conjunction with the project risk matrix to score and rank projects. 

Risk and net present value 

✓ Where a project is relatively risky it is common practice to use a higher discount rate to calculate 

net present value. This addition or risk premium, might, for example, be an additional 2% for a 

reasonably safe project or 5% for a fairly risky one. Projects may be categorized as high, medium or 

low risk using a scoring method and risk premiums designated for each category. The premiums, 

even if arbitrary, provide a consistent method of taking risk into account. 

Cost-benefit analysis 

✓ A rather more sophisticated approach to the evaluation of risk is to consider each possible outcome 

and estimate the probability of its occurring and the corresponding value of the outcome. Rather 



47 
 

than a single cash flow forecast for a project, we will then have a set of cash flow forecasts, each 

with an associated probability of occurring. The value of the project is then obtained by summing 

the cost or benefit for each possible outcome weighted by its corresponding probability. 

A fragment of a basic project risk matrix 

Risk Importance Likelihood 

Software never completed or delivered H - 

Project cancelled after design stage H - 

Software delivered late M M 

Development budget exceeded < 20% L M 

Development budget exceeded > 20% M L 

Maintenance costs higher than estimated L L 

Response time targets not met L H 

✓ This approach is frequently used in the evaluation of large projects such as the building of new 

motorways, where variables such as future traffic volumes, and hence the total benefit of shorter 

journey times, are subject to uncertainty. The technique does, of course, rely on our being able to 

assign probabilities of occurrence to each scenario and, without extensive study, this can be 

difficult. 

✓ When used to evaluate a single project, the cost-benefit approach, by 'averaging out' the effects of 

the different scenarios, does not take account an organization's reluctance to risk damaging 

outcomes. Because of this, where overall profitability is the primary concern, it is often considered 

more appropriate for the evaluation of a portfolio of projects. 

Risk profile analysis 

✓ An approach which attempts to overcome some of the objections to cost-benefit averaging is the 

construction of risk profiles using sensitivity analysis. 

✓ This involves varying each of the parameters that affect the project's cost or benefits to ascertain 

how sensitive the project's profitability is to each factor. We might, for example, vary one of our 

original estimates by plus or minus 5% and recalculate the expected costs and benefits for the 

project. By repeating this exercise for each of our estimates in turn we can evaluate the sensitivity 

of the project to each factor. 

✓ By studying the results of a sensitivity analysis we can identify those factors that are most 

important to the success of the project. We then need to decide whether we can exercise greater 

control over them or otherwise mitigate their effects.  

✓ If neither is the case, then we must live with the risk or abandon the project. For an explanation of 

the Sensitivity analysis demands that we vary each factor one at a time. It does not Monte Carlo 

https://www.gristprojectmanagement.us/economics/cash-flow-series-with-a-special-pattern.html
https://www.gristprojectmanagement.us/software-2/cash-flow-forecasting.html
https://www.gristprojectmanagement.us/economics/sensitivity-analysis.html


48 
 

technique easily allow us to consider the effects of combinations of circumstances, neither see any 

textbook on does it evaluate the chances of a particular outcome occurring.  

✓ In order to do this operational research. we need to use a more sophisticated tool such as Monte 

Carlo simulation. There are a number of risk analysis applications available (such as @Risk from 

Palisade) that use Monte Carlo simulation and produce risk profiles. 

✓ Projects may be compared as in Figure 3.4, which compares three projects with the same expected 

profitability. Project A is unlikely to depart far from this expected value compared to project B, 

which exhibits a larger variance. Both of these have symmetric profiles, which contrast with project 

C. Project C has a skewed distribution, which indicates that although it is unlikely ever to be much 

more profitable than expected, it is quite likely to be far worse. 

Using decision trees 

✓ The approaches to risk analysis discussed previously rather assume that we are passive bystanders 

allowing nature to take its own course - the best we can do is to reject over-risky projects or choose 

those with the best risk profile. There are many situations, however, where we can evaluate 

whether a risk is important and, if it is, indicate a suitable course of action. 

✓ Many such decisions will limit or affect future options and, at any point, it is important to be able to 

see into the future to assess how a decision will affect the future profitability of the project. 

✓ Prior to giving Amanda the job of extending their invoicing system, IOE must consider the 

alternative of completely replacing the existing system - which they will have to do at some point in 

the future. 

✓ The decision largely rests upon the rate at which their equipment maintenance business expands - 

if their market share significantly increases (which they believe will happen if rumours of a 

competitor's imminent bankruptcy are fulfilled) the existing system might need to be replaced 

within 2 years.  

✓ Not replacing the system in time could be an expensive option as it could lead to lost revenue if they 

cannot cope with the increase in invoicing demand. Replacing it immediately will, however, be 

expensive as it will mean deferring other projects that have already been scheduled.  

✓ All three projects have the same expected profitability. The profitability of project A is unlikely to 

depart greatly from its expected value (indicated by 

the vertical axis) compared to the likely variations for 

project B. Project A is therefore less risky than project 

B. 

✓ They have calculated that extending the 

existing system will have an NPV of £57,000, although 

if the market expands significantly, this will be turned 



49 
 

into a loss with an NPV of -£100,000 due to lost revenue. If the market does expand, replacing the 

system now has an NPV of £250,000 due to the benefits of being able to handle increased sales and 

other benefits such as improved management information. If sales do not increase, however, the 

benefits will be severely reduced and the project will suffer a loss with an NPV of -£50,000. 

✓ The company estimate the likelihood of the market increasing significantly at 20% - and, hence, the 

probability that it will not increase as 80%. This scenario can be represented as a tree structure as 

shown in Figure 3.5. 

✓ The analysis of a decision tree consists of evaluating the expected benefit of taking each path from a 

decision point (denoted by D in Figure 3.5). The expected value of each path is the sum of the value 

of each possible outcome multiplied by its probability of occurrence. The expected value of 

extending the system is therefore £40,000 (75,000 x 0.8 - 100,000 x 0.2) and the expected value of 

replacing the system £ 10,000 (250,000 x 0.2 - 50,000 x 0.8). IOE should therefore choose the 

option of extending the existing system. 

✓ This example illustrates the use of a decision tree to evaluate a simple decision at the start of a 

project. One of the great advantages of using decision trees to model and analyse problems is the 

ease with which they can be extended. Figure 3.6 illustrates an extended version of Amanda's 

decision tree, which includes the possibility of a later decision should they decide to extend the 

system and then find there is an early market expansion. 

 

The net present values shown in italic are those identified in Amanda's original decision tree. 

An extension to Amanda's decision tree. 

 



50 
 

SELECTION OF AN APPROPRIATE PROJECT APPROACH 

Choosing technologies 

✓ An outcome of project analysis will be the selection of the most appropriate methodologies and 

technologies. Methodologies include techniques like the various flavours of object-oriented (OO) 

development, SSADM and JSP (Jackson Structured Programming) while technologies might include 

an appropriate application-building environment, or the use of knowledge-based system tools. 

✓ As well as the products and activities, the chosen technology will influence the following aspects of 

a project: 

• the training requirements for development staff; 

• the types of staff to be recruited; 

• the development environment - both hardware and software; 

• system maintenance arrangements. 

✓ We are now going to describe some of the steps of project analysis. 

Identify project as either objectives-driven or product-driven 

✓ You will recall from Chapter 1 that we distinguished between objectives-driven and product-driven 

projects. Very often a product-driven project will have been preceded by an objectives-driven 

project which chose the general software solution that is to be implemented. 

✓ There will be cases where things are so vague that even the objectives of the project are uncertain 

or are the subject of disagreement. People may be experiencing a lot of problems but no-one knows 

exactly what the solution to the problems might be. It could be that the IT specialists can provide 

help in some places but assistance from other specialisms is needed in others. In these kinds of 

situation, a soft systems approach might need to be considered. 

Analyse other project characteristics 

✓ The sorts of question that would need to be asked include the following. 

o Is a data orientated or a control orientated system to be implemented?' Data 

orientated* systems generally mean information systems that will have a considerable 

database. 'Control orientated' systems refer to embedded control systems. These days it is 

not uncommon to have systems with components of both types. 

o Will the software that is to be produced be a general package or application specific? 

An example of a general package would be a spreadsheet or a word processing package. An 

application specific package could be, for example, an airline seat reservation system. 

o Is the system to be implemented of a particular type for which specific tools have been 

developed? For example: 

• does it involve concurrent processing? - if so the use of techniques appropriate to the 

analysis and design of such systems would be considered; 

https://www.gristprojectmanagement.us/it-2/positive-aspects-of-the-project.html
https://www.gristprojectmanagement.us/it-2/positive-aspects-of-the-project.html
https://www.gristprojectmanagement.us/software-4/step-identify-project-infrastructure.html
https://www.gristprojectmanagement.us/software-4/step-analyse-project-characteristics.html
https://www.gristprojectmanagement.us/spreadsheet.html


51 
 

• will the system to he created he knowledge-based? - expert systems have a set of rules 

which result in some 'expert advice' when applied to a problem domain (sets of methods 

and tools have been developed to assist in the creation of such systems); or 

• will the system to be produced make heavy use of computer graphics? 

o Is the system to be created safety-critical? For instance, could a malfunction in the system 

endanger human life? 

o What is the nature of the hardware/software environment in which the system will 

operate? It might be that the environment in which the final software will operate is 

different from that in which it will be developed. Embedded software may be developed on a 

large development machine that has lots of supporting software tools in the way of 

compilers, debuggers, static analyzers and so on, but might then be down-loaded to a small 

processor in the larger engineered product. A system destined for a personal computer will 

need a different approach to one destined for a main-frame or a client-server environment. 

Identify high level project risks 

✓ When we first embark on a project, we might be expected to work out elaborate plans even though 

we are at least partially ignorant of many important factors that will affect the project.  

✓ For example, until we do a detailed investigation of the users' requirements, we will not be able to 

estimate how much effort will be needed to build a system to meet those requirements.  

✓ The greater the uncertainties at the beginning of the project, the greater the risk that the project 

will be unsuccessful. Once we recognize a particular area of uncertainty we can, however, take 

steps to reduce its uncertainty. 

✓ One suggestion is that uncertainty can be associated with the products, processes, or resources 

associated with the project. 

o Product uncertainty Here we ask how well the requirements are understood. It might be 

that the users themselves are uncertain about what a proposed information system is to do. 

The government, say, might introduce a new form of taxation but the way this is going to 

operate in detail will not be known until a certain amount of case law has been built up. 

Some environments can change so quickly that what was a precise and valid statement of 

requirements rapidly becomes out of date. 

o Process uncertainty It might be that the project under consideration is the first OMT is an 

object-oriented where an organization has tried to use a method, such as SSADM or OMT, 

that is design approach, new to them. Perhaps a new application building tool is being used. 

Any change in the way that the systems are developed is going to introduce uncertainty. 

o Resource uncertainty the main area of uncertainty here will almost surely be the 

availability of staff of the right ability and experience. A major influence on the degree of 

https://www.gristprojectmanagement.us/software-development/product-competency-selecting-methods-and-toolsdefining-selection-processes.html
https://www.gristprojectmanagement.us/software-development/product-competency-selecting-methods-and-toolsdefining-selection-processes.html


52 
 

uncertainty in a project will be the sheer size of a project. The larger the number of 

resources needed or the longer the duration of the project, the more inherently risky it is 

likely to be.  

Take into account user requirements concerning implementation 

✓ A user organization lays down standards that have to be adopted by any contractor providing 

software for them. For example, the UK Civil Service favors the SSADM standard where information 

systems are being developed. 

It is common for organizations to specify that suppliers of software have BS EN 9001:1994 or Tick IT 

accreditation. This will affect the way projects are conducted. 

Select general life cycle approach 

✓ Control systems A real-time system will have to be implemented using an appropriate 

methodology, for example, Mascot. Real-time systems that employ concurrent processing will use 

techniques such as Petri nets. 

✓ Information systems Similarly, an information system will need a methodology, such as SSADM or 

Information Engineering, that matches that type of environment. SSADM will be especially 

appropriate where the project will employ a large number of development staff whose work will 

need to be coordinated: the method lays down in detail what needs to be done and what products 

need to be created at each step. Team members would therefore know exactly what is expected of 

them. 

✓ General applications Where the software to be produced is for the general market rather than for 

a specific application and user, then a methodology such as SSADM would have to be thought about 

very carefully. This is because the framers of the method make the assumption that a specific user 

exists. Some parts in the method also assume that there is an existing system that can be analyzed 

to yield the logical features of the new, computer-based, system. 

✓ Specialized techniques These have been invented to expedite the development of, for example, 

knowledge-based systems where there are a number of specialized tools and logic-based 

programming languages that can be used to implement this type of system. Similarly, a number of 

specialized techniques and tools have been developed to assist in the development of graphics-

based systems. 

✓ Hardware environment the environment in which the system is to operate can put constraints on 

the way it is to be implemented. For instance, the need for a fast response time or for the software 

to take up only a small part of computer memory may mean that only low-level programming 

languages can be used - particularly in real-time and embedded systems. 

✓ Safety-critical systems Where safety and reliability are of the essence, it might be possible to 

justify the additional expense of a formal specification using a notation such as Z or VDM. Really 



53 
 

critical systems call for expensive measures such as having independent teams develop parallel 

systems with the same functionality. The parallel systems can then run concurrently when the 

application is in operation so that the results of each of the parallel systems can be crosschecked. 

✓ Imprecise requirements Uncertainties or a novel hardware/software platform may mean that a 

prototyping approach should be considered. If the environment in which the system is to be 

implemented is a rapidly changing one, then serious consideration would need to be given 

to incremental delivery. If the users have uncertain objectives in connection with the project, then a 

soft systems approach might be desirable. 

Choice of process models 

✓ The word 'process' is sometimes used to emphasize the idea of a system in action. In order to 

achieve an outcome, the system will have to execute one or more activities: this is its process. This 

idea can be applied to the development of computer-based systems where a number of interrelated 

activities have to be undertaken to create a final product. These activities can be organized in 

different ways and we can call these process models. 

✓ A major part of the planning will be the choosing of the development methods to be used and the 

slotting of these into an overall process model. 

✓ The planner needs not only to select methods but also to specify how the method is to be applied. 

With methods such as SSADM, there is a considerable degree of choice about how it is to be applied: 

not all parts of SSADM are compulsory. Many student projects have the rather basic failing that at 

the planning stage they claim that, say, SSADM is to be used: in the event, all that is produced are a 

few SSADM fragments such as a top-level data flow diagram and a preliminary logical data 

structure diagram. If this is all the particular project requires, it should be stated at the outset. 

Structured methods 

✓ Although some "object-oriented' specialists may object(!), we include the 00 approach as a 

structured method - after all, we hope it is not unstructured. Structured methods are made up of 

sets of steps and rules, which, when applied produce system products such as data flow diagrams. 

Each of these products is carefully documented.  

✓ Such methods are often time consuming compared to more intuitive approaches and this implies 

some additional cost. The pay-off is such things as a less error prone and more maintainable final 

system. This balance of costs and benefits is more likely to be justified on a large project involving 

many developers and users. This is not to say that smaller projects cannot justify the use of such 

methods. 

 

 

 

https://www.gristprojectmanagement.us/software-2/incremental-delivery.html
https://www.gristprojectmanagement.us/software/choice-of-process-models.html


54 
 

UNIT – 3 

SOFTWARE EFFORT ESTIMATION 

Where are estimates done? 

✓ Estimates are carried out at various stages of a software project. At each stage, the reasons for the 

estimate and the methods used will vary. 

Strategic planning: The costs of computerizing potential applications as well as the benefits of doing 

so might need to be estimated to help decide what priority to give to each project. Such estimates 

might also influence the numbers of various, types of development staff to be recruited by the 

organization. 

Feasibility study: This ascertains that the benefits of the potential system will justify the costs. 

System specification: Most system development methodologies usefully distinguish between the 

definition of the users' requirements and the design that documents how those requirements are to be 

fulfilled. The effort needed to implement different design proposals will need to be estimated. 

Estimates at the design stage will also confirm that the feasibility study is still valid, taking into account 

all that has been learnt during detailed requirements analysis. 

Project planning: As the planning and implementation of the project progresses to greater levels of 

detail, more detailed estimates of smaller work components will be made. As well as confirming the 

earlier and more broad-brush estimates, these will help answer questions about, for example, when 

staff will have completed particular tasks and be available for new activities. Two general points can be 

made here: 

• as the project proceeds, so the accuracy of the estimates should improve as knowledge about the 

nature of the project increases; 

• conventional wisdom is that at the beginning of the project the user requirement (that is. a logical 

model of the required system) is of paramount importance and that premature consideration of the 

physical implementation is to be avoided. In order to do an estimate, however, the estimator will have 

to speculate about this physical implementation, for instance about the number of software modules to 

be written. 

Evaluation of suppliers' proposals: In the case of the IOE maintenance group accounts subsystem, 

for example. IOE might consider putting the actual system-building out to tender. Staff in the software 

houses that are considering a bid would need to scrutinize the system specification and produce 

estimates on which to base proposals. Amanda might still be required to carry out her own estimate to 

help judge the bids received. IOE might wish to question a proposal that seems too low: they might 

wonder, for example, whether the proposer had properly understood the requirements. If. on the other 

hand, the bids seem too high, they might reconsider in-house development. 

 

https://www.gristprojectmanagement.us/software-2/introduction-nre.html


55 
 

Problems with over and underestimates 

✓ A project leader such as Amanda will need to be aware that the estimate itself, if known to the 

development team, will influence the time required to implement the system. An over-estimate 

might cause the project to take longer than it would otherwise. This can be explained by the 

application of two 'laws'. 

Parkinson's Law 'Work expands to fill the time available', which implies that given an easy target staff 

will work less hard. 

Brooks' Law The effort required to implement a project will go up disproportionately with the 

number of staff assigned to the project. As the project team grows in size so will the effort that has to 

go into management, co-ordination and communication. This has given rise, in extreme cases, to the 

notion of Brooks'. 

✓ Law: 'putting more people on a late job 

makes it later'. If there is an over-estimate of 

the effort required then this might lead to 

more staff being allocated than are needed and 

managerial overheads will be increased. This is 

more likely to be of significance with large 

projects. 

✓ Some have suggested that while the 

under-estimated project might not be 

completed on time or to cost, it might still be 

implemented in a shorter time than a project 

with a more generous estimate. There must, 

however, be limits to this phenomenon where 

all the slack in the project is taken up. 

✓ The danger with the under-estimate is 

the effect on quality. Staff, particularly those with less experience, might respond to pressing 

deadlines by producing work which is sub-standard. Since we are into laws, this might be seen as a 

manifestation of Weinberg's zeroth law of reliability: 'if a system does not have to be reliable, it can 

meet any other objective'.  

✓ In other words, if there is no need for the program actually to work, you can meet any 

programming deadline that might be set! Sub-standard work might only become visible at the later, 

testing, phases of a project, which are particularly difficult to control and where extensive rework 

can have catastrophic consequences for the project completion date. 

https://www.gristprojectmanagement.us/guide/info.html


56 
 

✓ Because of the possible effects on the behaviour of development staff caused by the size of 

estimates, they might be artificially reduced by their managers to increase pressure on staff. This 

will work only where staff are unaware that this has been done.  

✓ Research has found that motivation and morale are enhanced where targets are achievable. If, over 

a period of time, staff become aware that the targets set are unattainable and that projects are 

routinely not meeting their published targets, then this will help to destroy motivation. 

✓ Furthermore, people like to think of themselves as winners and there is a general tendency to put 

success down to our own efforts, while failure is blamed on the organization. 

✓ In the end, an estimate is not really a prediction, it is a management goal. Barry Boehm has 

suggested that if a software development cost is within 20% of the estimated cost estimate for the 

job then a good manager can turn it into a self-fulfilling prophecy.  

✓ A project leader like Amanda will work hard to make the actual performance conform to the 

estimate. 

The basis for software estimating 

The need for historical data 

✓ Nearly all estimating methods need information about how projects have been implemented in the 

past. However, care needs to be taken in judging the applicability of data to the estimator's own 

circumstances because of possible differences in environmental factors such as the programming 

languages used, the software tools available, the standards enforced and the experience of the staff. 

Measure of work 

✓ It is normally not possible to calculate directly the actual cost or time required to implement a 

project. The time taken to write a program might vary according to the competence or experience 

of the programmer. Implementation times might also vary because of environmental factors such 

as the software tools available. The usual practice is therefore to express the work content of the 

system to be implemented independently of effort, using a measure such as source lines of code 

(SLOC). The reader might also come across the abbreviation KLOC which refers to thousands of 

lines of code. 

Complexity 

✓ Two programs with the same KLOC will not necessarily take the same time to write, even if done by 

the same developer in the same environment. One program might be more complex. Because of this, 

SLOC estimates have to be modified to take complexity into account. Attempts have been made to 

find objective measures of complexity, but often it will depend on the subjective judgement of the 

estimator. 

 

 



57 
 

Software effort estimation techniques 

✓ Barry Boehm, in his classic work on software effort models, identified the main ways of deriving 

estimates of software development effort as: 

• algorithmic models - which use 'effort drivers' representing characteristics of the target system 

and the implementation environment to predict effort; 

• expert judgement - where the advice of knowledgeable staff is solicited; 

• analogy - where a similar, completed, project is identified and its actual effort is used as a basis for 

the new project; 

• Parkinson - which identifies the staff effort available to do a project and uses that as the 'estimate'; 

• price to win - where the 'estimate' is a figure that appears to be sufficiently low to win a contract; 

• top-down - where an overall estimate is formulated for the whole project and is then broken 

down into the effort required for component tasks; 

• bottom-up - where component tasks are identified and sized and these individual estimates are 

aggregated. 

✓ Clearly, the 'Parkinson' method is not really an effort prediction method, but a method of setting 

the scope of a project. Similarly, 'price to win' is a way of deciding a price and not a prediction 

method. On these grounds, Boehm rejects them as prediction techniques although they might have 

some value as management techniques. There is, for example, a perfectly acceptable engineering 

practice of 'design to cost' which is one example of the broader approach of 'design by objectives'. 

✓ We will now look at some of these techniques more closely. First we will examine the difference 

between top-down and bottom-up estimating. 

Bottom-up estimating 

✓ Estimating methods can be generally divided into bottom-up and top-down approaches. With the 

bottom-up approach, the estimator breaks the project into its component tasks and then estimates 

how much effort will be required to carry out each task.  

✓ With a large project, the process of breaking down into tasks would be a repetitive one: each task 

would be analysed into its component sub-tasks and these in turn would be further analysed.  

✓ This is repeated until you get to components that can be executed by a single person in about a 

week or two. The reader might wonder why this is not called a top-down approach: after all you are 

starting from the top and working down! Although this top-down analysis is an essential precursor 

to bottom-up estimating, it is really a separate one - that of producing a Work Breakdown Structure 

(WBS). The bottom-up part comes in adding up the calculated effort for each activity to get an 

overall estimate. 

✓ The bottom-up approach is most appropriate at the later, more detailed, stages of project planning. 

If this method is used early on in the project cycle then the estimator will have to make some 

https://www.gristprojectmanagement.us/software-2/expert-judgement.html
https://www.gristprojectmanagement.us/functions/bottomup-estimating.html
https://www.gristprojectmanagement.us/microsoft-project/adding-subtasks.html
https://www.gristprojectmanagement.us/functions/bottomup-estimating.html
https://www.gristprojectmanagement.us/work-breakdown.html
https://www.gristprojectmanagement.us/guide/info.html
https://www.gristprojectmanagement.us/guide/info.html


58 
 

assumptions about the characteristics of the final system, for example the number and size of 

software modules. These will be working assumptions that imply no commitment when it comes to 

the actual design of the system. 

✓ Where a project is completely novel or there is no historical data available, the estimator would be 

well advised to use the bottom-up approach. 

The top-down approach and parametric models 

✓ The top-down approach is normally associated with parametric (or algorithmic) models. These 

may be explained using the analogy of estimating the cost of rebuilding a house. This would be of 

practical concern to a house-owner who needs sufficient insurance cover to allow for rebuilding the 

property if it were destroyed.  

✓ Unless the house-owner happens to be in the building trade it is unlikely that he or she would be 

able to work out how many bricklayer-hours, how many carpenter-hours, electrician-hours and so 

on would be required. Insurance companies, however, produce convenient tables where the house-

owner can find an estimate of rebuilding costs based on such parameters as the number of storeys 

and the floor space that a house has. This is a simple parametric model. 

✓ The effort needed to implement a project will be related mainly to variables associated with 

characteristics of the final system. The form of the parametric model will normally be one or more 

formulae in the form: 

effort = (system size) x (productivity rate) 

✓ For example, system size might be in the form 'thousands of lines of code' (KLOC) and the 

productivity rate 40 days per KLOC. The values to be used will often be matters of subjective 

judgement. 

✓ A model to forecast software development effort therefore has two key components. The first is a 

method of assessing the size of the software development task to be undertaken. The second 

assesses the rate of work at which the task can be done. For example, Amanda at IOE might 

estimate that the first software module to be constructed is 2 KLOC. She might then judge that if 

Kate undertook the development of the code, with her expertise she could work at a rate of 40 days 

per KLOC and complete the work in 2 x 40 days, that is, 80 days, while Ken, who is less experienced, 

would need 55 days per KLOC and take 2 x 55 that is, 110 days to complete the task. 

✓ Some parametric models, such as that implied by function points, are focused on system or task size, 

while others, such are COCOMO, are more concerned with productivity factors. 

✓ Having calculated the overall effort required, the problem is then to allocate proportions of that 

effort to the various activities within that project. 

✓ The top-down and bottom-up approaches are not mutually exclusive. Project managers will 

probably try to get a number of different estimates from different people using different methods. 

https://www.gristprojectmanagement.us/software-4/the-topdown-approach-and-parametric-models.html
https://www.gristprojectmanagement.us/software-4/the-topdown-approach-and-parametric-models.html
https://www.gristprojectmanagement.us/software/cocomo-a-parametric-model.html
https://www.gristprojectmanagement.us/project-manager.html


59 
 

Some parts of an overall estimate could be derived using a top-down approach while other parts 

could be calculated using a bottom-up method. 

Expert judgement 

✓ This is asking someone who is knowledgeable about either the application area or the development 

environment to give an estimate of the effort needed to carry out a task. This method will most 

likely be used when estimating the effort needed to change an existing piece of software. The 

estimator would have to carry out some kind of impact analysis in order to judge the proportion of 

code that would be affected and from that derive an estimate. Someone already familiar with the 

software would be in the best position to do this. 

✓ Some have suggested that expert judgement is simply a matter of guessing, but our own research 

has shown that experts tend to use a combination of an informal analogy approach where similar 

projects from the past are identified and bottom-up estimating. 

Estimating by analogy 

✓ The use of analogy is also called case-based reasoning. The estimator seeks out projects that have 

been completed (source cases) and that have similar characteristics to the new project (the target 

case). The effort that has been recorded for the matching source case can then be used as a base 

estimate for the target. The estimator should then try to identify any differences between the target 

and the source and make adjustments to the base estimate for the new project. 

✓ This might be a good approach where you have information about some previous projects but not 

enough to draw generalized conclusions about what variables might make good size parameters. 

✓ A problem here is how you actually identify the similarities and differences between the different 

systems. Attempts have been made to automate this process. One software application that has 

been developed to do this is ANGEL.  

✓ This identifies the source case that is nearest the target by measuring the Euclidean distance 

between cases. The source case that is at the shortest Euclidean distance from the target is deemed 

to be the closest match. The Euclidean distance is calculated: 

 

ACTIVITY PLANNING 

✓ We looked at methods for forecasting the effort required for a project - both for the project as a 

whole and for individual activities. A detailed plan for the project, however, must also include a 

schedule indicating the start and completion times for each activity. This will enable us to: 

• ensure that the appropriate resources will be available precisely when required; 

• avoid different activities competing for the same resources at the same time; 

• produce a detailed schedule showing which staff carry out each activity; 

https://www.gristprojectmanagement.us/functions/bottomup-estimating.html


60 
 

• produce a detailed plan against which actual achievement may be measured; 

• produce a timed cash flow forecast; 

• replan the project during its life to correct drift from the target. 

✓ To be effective, a plan must be stated as a set of targets, the achievement or non-achievement of 

which can be unambiguously measured. The activity plan does in this by providing a target start 

and completion date for each activity. within which each activity may be carried out).  

✓ The starts and completions of activities must be clearly visible and this is one of the reasons why it 

is advisable to ensure that each and every project activity produces some tangible product or 

'deliverable'.  

✓ Monitoring the project's progress is then, at least in part, a case of ensuring that the products of 

each activity are delivered on time. As a project progresses it is unlikely that everything will go 

according to plan. Much of the job of project management concerns recognizing when something 

has gone wrong, identifying its causes and revising the plan to mitigate its effects.  

✓ The activity plan should provide a means of evaluating the consequences of not meeting any of the 

activity target dates and guidance as to how the plan might most effectively be modified to bring 

the project back to target. We shall see that the activity plan may well also offer guidance as to 

which components of a project should be most closely monitored. This co-ordination will normally 

form part of Programme Management. 

The objectives of activity planning 

✓ In addition to providing project and resource schedules, activity planning aims to achieve a number 

of other objectives which may be summarized as follows. 

Feasibility assessment Is the project possible within required timescales and resource constraints? It 

is not until we have constructed a detailed plan that we can forecast a completion date with any 

reasonable knowledge of its achievability. The fact that a project may have been estimated as requiring 

two work-years effort might not mean that it would be feasible to complete it within, say, three months 

were eight people to work on it - that will depend upon the availability of staff and the degree to which 

activities may be undertaken in parallel. 

Resource allocation What are the most effective ways of allocating resources to the project and when 

should they be available? The project plan allows us to investigate the relationship between timescales 

and resource availability (in general, allocating additional resources to a project shortens its duration) 

and the efficacy of additional spending on resource procurement. 

Detailed costing How much will the project cost and when is that expenditure likely to take place? 

After producing an activity plan and allocating specific resources, we can obtain more detailed 

estimates of costs and their timing. 

https://www.gristprojectmanagement.us/project-management.html


61 
 

Motivation Providing targets and being seen to monitor achievement against targets is an effective 

way of motivating staff, particularly where they have been involved in setting those targets in the first 

place. 

Co-ordination When do the staff in different departments need to be available to work on a particular 

project and when do staff need to be transferred between projects? The project plan, particularly with 

large projects involving more than a single project team, provides an effective vehicle for 

communication and co-ordination among teams. In situations where staff may need to be transferred 

between project teams (or work concurrently on more than one project), a set of integrated project 

schedules should ensure that such staff are available when required and do not suffer periods of 

enforced idleness. 

Activity planning and scheduling techniques place an emphasis on completing the project in a 

minimum time at an acceptable cost or, alternatively, meeting an arbitrarily set target date at minimum 

cost. These are not, in themselves, concerned with meeting quality targets, which generally impose 

constraints on the scheduling process. 

One effective way of shortening project durations is to carry out activities in parallel. Clearly we cannot 

undertake all the activities at the same time - some require the completion of others before they can 

start and there are likely to be resource constraints limiting how much may be done simultaneously. 

Activity scheduling will, however, give us an indication of the cost of these constraints in terms of 

lengthening timescales and provide us with an indication of how timescales may be shortened by 

relaxing those constraints. It is up to us, if we try relaxing precedence constraints by, for example, 

allowing a program coding task to commence before the design has been completed, to ensure that we 

are clear about the potential effects on product quality. 

When to plan 

✓ Planning is an ongoing process of refinement, each iteration becoming more detailed and more 

accurate than the last. Over successive iterations, the emphasis and purpose of planning will shift. 

✓ During the feasibility study and project start-up, the main purpose of planning will be to estimate 

timescales and the risks of not achieving target completion dates or keeping within budget. As the 

project proceeds beyond the feasibility study, the emphasis will be placed upon the production of 

activity plans for ensuring resource availability and cash flow control. 

✓ Throughout the project, until the final deliverable has reached the customer, monitoring 

and replanning must continue to correct any drift that might prevent meeting time or cost targets. 

Project schedules 

✓ Before work commences on a project or, possibly, a stage of a larger project, the project plan must 

be developed to the level of showing dates when each activity should start and finish and when and 

https://www.gristprojectmanagement.us/project-schedule.html
https://www.gristprojectmanagement.us/project-schedule.html
https://www.gristprojectmanagement.us/economics/project-scheduling.html
https://www.gristprojectmanagement.us/cycle/replanning.html


62 
 

how much of each resource will be required. Once the plan has been refined to this level of detail 

we call it a project schedule. Creating a project schedule 

comprises four main stages. 

✓ The first step in producing the plan is to decide 

what activities need to be carried out and in what order 

they are to be done. From this we can construct an ideal 

activity plan - that is, a plan of when each activity 

would ideally be undertaken were resources not a 

constraint. It is the creation of the ideal activity plan 

that we shall discuss in this chapter. This activity plan 

is generated by Steps 4 and 5 of Step Wise. Activity 

planning is carried out in Steps 4 and 5. 

✓ The ideal activity plan will then be the subject of 

an activity risk analysis, aimed at identifying potential 

problems. This might suggest alterations to the ideal 

activity plan and will almost certainly have implications 

for resource allocation. 

✓ The third step is resource allocation. The 

expected availability of resources might place 

constraints on when certain activities can be carried 

out, and our ideal plan might need to be adapted to take 

account of this. 

✓ The final step is schedule production. Once 

resources have been allocated to each activity, we will be in a position to draw up and publish a 

project schedule, which indicates planned start and completion dates and a resource requirements 

statement for each activity. 

Projects and activities 

Defining activities 

✓ Before we try to identify the activities that make up a project it is worth reviewing what we mean 

by a project and its activities and adding some assumptions that will be relevant when we start to 

produce an activity plan. 

• a project is composed of a number of inter-related activities; 

• a project may start when at least one of its activities is ready to start; 

• a project will be completed when all of the activities it encompasses have been completed; 



63 
 

• an activity must have a clearly defined start and a clearly defined end-point, normally marked by 

the production of a tangible deliverable; 

• if an activity requires a resource (as most do) then that resource requirement must be 

forecastable and is assumed to be required at a constant level throughout the duration of the 

activity; 

• the duration of an activity must be forecastable - assuming normal circumstances, and the 

reasonable availability of resources; 

• some activities might require that others are completed before they can begin (these are known 

as precedence requirements). 

Identifying activities 

✓ Essentially there are three approaches to identifying the activities or tasks that make up a project - 

we shall call them the activity-based approach, the product-based approach and the hybrid 

approach. 

The activity-based approach The activity-based approach consists of creating a list of all the 

activities that the project is thought to involve. This might involve a brainstorming session involving 

the whole project team or it might stem from an analysis of similar past projects. When listing activities, 

particularly for a large project, it might be helpful to subdivide the project into the main life style stages 

and consider each of these separately. 

✓ Rather than doing this in an ad hoc manner, with the obvious risks of omitting or double-counting 

tasks, a much favoured way of generating a task list is to create a Work Breakdown Structure 

(WBS). This involves identifying the main (or high-level) tasks required to complete a project and 

then breaking each of these down into a set of lower-level tasks. Figure 6.2 shows a fragment of a 

WBS where the design task has been broken down into three tasks and one of these has been 

further decomposed into two tasks. 

✓ Activities are added to a branch in the structure if they directly contribute to the task immediately 

above - if they do not contribute to the parent task, then they should not be added to that branch. 

The tasks at each level in any branch should 

✓ Activities must be defined so that they meet these criteria. Any activity that does not meet these 

criteria must be redefined. 

✓ A complete task catalogue will normally include task definitions along with task input and output 

products and other task-related information. 

✓ include everything that is required to complete the task at the higher level - if they are not a 

comprehensive definition of the parent task, then something is missing. 

✓ When preparing a WBS, consideration must be given to the final level of detail or depth of the 

structure. Too great a depth will result in a large number of small tasks that will be difficult to 

https://www.gristprojectmanagement.us/software-2/identifying-resource-requirements.html
https://www.gristprojectmanagement.us/brainstorming-session.html
https://www.gristprojectmanagement.us/work-breakdown.html


64 
 

manage, whereas a too shallow structure will provide insufficient detail for project control. Each 

branch should, however, be broken down at least to a level where each leaf may be assigned to an 

individual or responsible section within the organization. 

 

Figure 6.2 A fragment of an activity-based Work Breakdown Structure. 

✓ Advantages claimed for the WBS approach include the belief that it is much more likely to result in 

a task catalogue that is complete and is composed of non-overlapping activities. Note that it is only 

the leaves of the structure that comprise the list of activities comprising the project - higher-level 

nodes merely represent collections of activities. 

✓ The WBS also represents a structure that may be refined as the project proceeds. In the early part 

of a project we might use a relatively high-level or shallow WBS, which can be developed as 

information becomes available, typically during the project's analysis and specification phases. 

✓ Once the project's activities have been identified (whether or not by using a WBS) they need to be 

sequenced in the sense of deciding which activities need to be completed before others can start. 

The product-based approach It consists of producing a Product Breakdown Structure and a Product 

Flow Diagram. The PFD indicates, for each product, which other products are required as inputs. The 

PFD can therefore be easily transformed into an ordered list of activities by identifying the 

transformations that turn some products into others. Proponents of this approach claim that it is less 

likely that a product will be left out of a PBS than that an activity might be omitted from an 

unstructured activity list. 

✓ This approach is particularly appropriate if using a methodology such as SSADM, which clearly 

specifies, for each step or task, each of the products required and the activities required to produce 

it. The SSADM Reference Manual provides a set of generic PBSs for each stage in SSADM (such as 

that shown in Figure 6.3), which can be used as a basis for generating a project-specific PBS. 

✓ The SSADM Reference Manual also supplies generic activity networks and, using the project-

specific PBS and derived PFD, these may be used as a basis for developing a project-specific activity 

network. Figure 6.4 illustrates an activity network for the activities required to create the products 

in Figure 6.3. 

https://www.gristprojectmanagement.us/effective/the-product-breakdown-structure.html
https://www.gristprojectmanagement.us/effective/the-product-flow-diagram.html
https://www.gristprojectmanagement.us/effective/the-product-flow-diagram.html
https://www.gristprojectmanagement.us/good-decisions/common-ordered-lists.html


65 
 

 

✓ Notice how the development of a PFD leads directly to an activity network that indicates the 

sequencing of activities - in Figure 6.4, activity 340 (Enhance required data model) requires 

products from activity 330 and activity 360 needs products from both activities 330 and 340. 

The hybrid approach The WBS illustrated in Figure 6.2 is based entirely on a structuring of activities. 

Alternatively, and perhaps more commonly, a WBS may be based upon the project's products as 

illustrated in Figure 6.5, which is in turn based on a simple list of final deliverables and, for each 

deliverable, a set of activities required to produce that product. Figure 6.5 illustrates a flat WBS and it 

is likely that, in a project of any size, it would be beneficial to introduce additional levels - structuring 

both products and activities. The degree to which the structuring is product-based or activity-based 

might be influenced by the nature of the project and the particular development method adopted. As 

with a purely activity-based WBS, having identified the activities we are then left with the task of 

sequencing them. 

 

✓ A framework dictating the number of levels and the nature of each level in the structure may be 

imposed on a WBS. For example, in their MITP methodology, IBM recommend that the following 

five levels should be used in a WBS: 

o Level 1: Project 

o Level 2: Deliverables such as software, manuals and training courses. 

o Level 3: Components which are the key work items needed to produce deliverables, such as 

the modules and tests required to produce the system software. 

https://www.gristprojectmanagement.us/developing-schedule/breaking-down-the-final-deliverable.html


66 
 

o Level 4: Work-packages which are major work items, or collections of related tasks, required 

to produce a component. 

o Level 5: Tasks which are tasks that will normally be the responsibility of a single person. 

Sequencing and scheduling activities 

✓ Throughout a project, we will require a schedule that clearly indicates when each of the project's 

activities is planned to occur and what resources it will need. We shall be considering scheduling in 

more detail in Chapter 8, but let us consider in outline how we might present a schedule for a small 

project. One way of presenting such a plan is to use a bar chart as shown in Figure 6.6. 

✓ The chart shown has been drawn up taking account of the nature of the development process (that 

is, certain tasks must be completed before others may start) and the resources that are available 

(for example, activity C follows activity B because Andy cannot work on both tasks at the same 

time). In drawing up the chart, we have therefore done two things - we have sequenced the tasks 

(that is, identified the dependencies among activities dictated by the development process) and 

scheduled them (that is, specified when they should take place). The scheduling has had to take 

account of the availability of staff and the ways in which the activities have been allocated to them. 

The schedule might look quite different were there a different number of staff or were we to 

allocate the activities differently. 

✓ The bar chart does not show why certain decisions have been made. It is not clear, for example, why 

activity H is not scheduled to start until week 9. It could be that it cannot start until activity F has 

been completed or it might be because Charlie is going to be on holiday during week 8. 

 

Figure 6.6 A project plan as a bar chart. 

✓ Activity key:  

A: Overall design 

B: Specify module 1 

C: Specify module 2 

D: Specify module 3  

E: Code module 1 

F: Code module 3  

G: Code module 2  

H: Integration testing  

I: System testing 

 



67 
 

✓ In the case of small projects, this combined sequencing-scheduling approach might be quite 

suitable, particularly where we wish to allocate individuals to particular tasks at an early planning 

stage. However, on larger projects it is better to separate out these two activities: to sequence the 

task according to their logical relationships and then to schedule them taking into account 

resources and other factors. 

✓ Approaches to scheduling that achieve this separation between the logical and the physical use 

networks to model the project and it is these approaches that we will consider in subsequent 

sections of this chapter. 

Network Planning Models 

✓ These project scheduling techniques model the project's activities and their relationships as a 

network. In the network, time flows from left to right. These techniques were originally developed 

in the 1950s - the two best known being CPM (Critical Path Method) and PERT (Program 

Evaluation Review Technique). More recently a variation on these techniques, called precedence 

networks, has become popular and it is this method that is adopted in the majority of computer 

applications currently available. All three methods are very similar and it must be admitted that 

many people use the same name (particularly CPM) indiscriminately to refer to any or all of the 

methods. 

Formulating a network model 

✓ The first stage in creating a network model is to represent the activities and their interrelationships 

as a graph. In CPM we do this by representing activities as links (arrowed lines) in the graph - the 

nixies (circles) representing the events of activities starting and finishing. 

 

 

 

https://www.gristprojectmanagement.us/advantages/logical-relationships.html
https://www.gristprojectmanagement.us/economics/project-scheduling.html
https://www.gristprojectmanagement.us/microsoft-project-solutions/critical-path-method-cpm.html
https://www.gristprojectmanagement.us/software-2/precedence-networks.html
https://www.gristprojectmanagement.us/software-2/precedence-networks.html
https://www.gristprojectmanagement.us/software-2/formulating-a-network-model.html


68 
 

Constructing CPM networks  

✓ Before we look at how CPM networks are used, it is worth spending a few moments considering the 

rules for their construction. 

o A project network may have only one start node The start node designates the point at 

which the project may start. All activities coming from that node may start immediately 

resources are available - that is. they do not have to wait for any other activities to be 

completed. 

o A project network may have only one end node The end node designates the completion 

of the project and a project may only finish once! The end node for the project fragment 

shown in Figure 6.8 is the one numbered 10. 

o A link has duration A link represents an activity and, in general, activities take time to 

execute. Notice, however, that the network in Figure 6.8 does not contain any reference to 

durations. The links are not drawn in any way to represent the activity durations. The 

network drawing merely represents the logic of the project - the rules governing the order 

in which activities are to be carried out. 

o Nodes have no duration Nodes are events and. as such, are instantaneous points in time. 

The source node is the event of the project becoming ready to start and the sink node is the 

event of the project becoming completed. Intermediate nodes represent two simultaneous 

events - the event of all activities leading in to a node having been completed and the event 

of all activities leading out of that node being in a position to be started. In Figure 6.9 node 3 

is the event that both coding and data take-on have been completed and activity program 

testing is free to start. Installation may be started only when event 4 has been achieved, that 

is, as soon as program testing has been completed. 

 

o Time moves from left to right If at all possible, networks are drawn so that time moves 

from left to right. It is rare that this convention needs to be flouted but. in any case, the 

arrow s on the activity lines give a strong visual indication of the lime flow of the project. 

o Nodes are numbered sequentially There are no precise rules about node numbering but 

nodes should be numbered so that head nodes (those at the "arrow' end of an activity) 

always have a higher number than tail events (those at the "non-arrow' end of an activity. 

This convention makes it easy to spot loops. 

o A network may not contain loops Figure 6.10 demonstrates a loop in a CPM network. A 

loop is an error in that it represents a situation that cannot occur in practice. While loops, in 



69 
 

the sense of iteration, may occur in practice, they cannot be directly represented in a project 

network. Note that the logic of Figure 6.10 suggests that program testing cannot start until 

the errors have been corrected. 

 

If we know the number of times we expect to repeat a set of activities, a test-diagnose-correct 

sequence, for example, then we can draw that set of activities as a straight sequence, repeating 

it the appropriate number of times. If we do not know how many times a sequence is going to be 

repeated then we cannot calculate the duration of the project unless we adopt an alternative 

strategy such as redefining the complete sequence as a single activity and estimating how long it 

will take to complete it. 

o A network may not contain dangles A dangling activity such as Write user manual in 

Figure 6.11 cannot exist, as it would suggest there are two completion points for the project. 

If. in Figure 6.11 node 5 represents the true project completion point and there are no 

activities dependent on activity Write user manual, then the network should be redrawn so 

that activity Write user manual starts at node 2 and terminates at node 5 - in practice, we 

would need to insert a dummy activity between nodes 3 and 5 as described in Section 6.9. In 

other words, all events, except the first and the last, must have at least one activity entering 

them and at least one activity leaving them and all activities must start and end with an 

event. 

o Precedents are the immediate preceding activities In Figure 6.9. the activity Program 

test cannot start until both Code and Data take-on have been completed and activity Install 

cannot start until Program test has finished. Code and Data take-on can therefore be said to 

be precedents of Program test, and Program test is a precedent of Install. Note that we do 

not speak of Code and Data take-on as precedents of Install - that relationship is implicit in 

the previous statement. 

 

 

 



70 
 

UNIT - IV - RISK MANAGEMENT 

RISK MANAGEMENT 

Introduction 

✓ In project evaluation, including assessment of the risk of the project's not delivering the 

expected benefits. we are concerned with the risk of the development project's not proceeding 

according to plan. We are primarily concerned with the risks of the project's running late or 

over budget and with the identification of the steps that can be taken to avoid or minimize those 

risks. 

✓ Some risks are more important than others. Whether or not a particular risk is important depends 

on the nature of the risk, its likely effects on a particular activity and the criticality of the activity.  

✓ High risk activities on a project's critical path are a cause for concern. To reduce these dangers, we 

must ensure that risks are minimized or, at least, distributed over the project and, ideally, 

removed from critical path activities.  

✓ The risk of an activity's running over time is likely to depend, at least in part, on who is doing or 

managing it. The evaluation of risk and the allocation of staff and other resources are therefore 

closely connected. 

THE NATURE OF RISK 

✓ For the purpose of identifying and managing those risks that may cause a project to overrun its 

time-scale or budget, it is convenient to identify three types of risk: 

⚫  those caused by the inherent difficulties of estimation; 

⚫  those due to assumptions made during the planning process; 

⚫  those of unforeseen (or at least unplanned) events occurring. 

Estimation errors 

✓ Some tasks are harder to estimate than others because of the lack of experience of similar tasks 

or because of the nature of a task.  

✓ Producing a set of user manuals is reasonably straightforward and, given that we have carried out 

similar tasks previously, we should be able to estimate with some degree of accuracy how long it 

will take and how much it will cost. 

✓  On the other hand, the time required for program testing and debugging, might be difficult to 

predict with a similar degree of accuracy - even if we have written similar programs in the past. 



71 
 

✓ Estimation can be improved by analyzing historic data for similar activities and similar systems. 

Keeping records comparing our original estimates with the final methods of estimation, 

outcome will reveal the type of tasks that are difficult 

to estimate correctly. 

Planning assumptions:  

✓ At every stage during planning, assumptions 

are made which, if not valid, may put the plan at 

risk. 

✓ Our activity network, for example, is likely to 

be built on the assumption of using a particular design 

methodology - which may be subsequently changed. 

✓ We generally assume that, following coding, a 

module will be tested and then integrated with others 

- we might not plan for module testing showing up the 

need for changes in the original design but, in the 

event, it might happen. 

✓ At each stage in the planning process, it is 

important to list explicitly all of the assumptions 

that have been made and identify what effects they 

might have on the plan if they are inappropriate. 

Eventualities: 

✓ Some eventualities might never be foreseen and 

we can only resign ourselves to the fact that 

unimaginable things do, sometimes, happen. They 

are, however, very rare.  

✓ The majority of unexpected events can, in fact, be 

identified - the requirements specification might be 

altered after some of the modules have been coded, 

the senior programmer might take maternity 

leave, the required hardware might not be 

delivered on time. Such events do happen from time 

to time and, although the likelihood of any one of them happening during a particular project may 

be relatively low, they must be considered and planned for. 



72 
 

MANAGING RISK 

✓ The objective of risk management is to avoid or minimize the adverse effects of unforeseen events 

by avoiding the risks or drawing up contingency plans for dealing with them. 

✓ There are a number of models for risk management, but most are similar, in that they identify two 

main components - risk identification and risk management. An example of an often-used 

model is that in Figure 7.2, which shows a task breakdown structure for what Barry Boehm calls 

risk engineering. 

◼ Risk identification consists of listing all of the risks that can adversely affect the successful 

execution of the project. 

◼ Risk estimation consists of assessing the likelihood and impact of each hazard.  

 

◼ Risk evaluation consists of ranking the risks and determining risk aversion strategies. 

◼ Risk planning consists of drawing up contingency plans and, where appropriate, adding these 

to the project's task structure. With small projects, risk planning is likely to be the 

responsibility of the project manager but medium or large projects will benefit from the 

appointment of a full-time risk manager. 

◼ Risk control concerns the main functions of the risk manager in minimizing and reacting to 

problems throughout the project. This function will include aspects of quality control in 

addition to dealing with problems as they occur. 

◼ Risk monitoring must be an ongoing activity, as the importance and likelihood of particular 

risks can change as the project proceeds.  

◼ Risk directing and risk staffing are concerned with the day-to-day management of risk. Risk 

aversion and problem-solving strategies frequently involve the use of additional staff and this 

must be planned for and directed. 

https://www.gristprojectmanagement.us/engineering-2/task-statements-statement-of-work-sow-and-work-breakdown-structure-wbs.html
https://www.gristprojectmanagement.us/software-2/software-effort-estimation-techniques.html
https://www.gristprojectmanagement.us/quality-control.html
https://www.gristprojectmanagement.us/guide/monitor-and-control-risk.html


73 
 

✓ Whatever task model or whichever techniques are used, risk management will not be effective 

unless all project staff are risk-oriented and are provided with an environment where they can 

freely discuss the risks that might affect a project. All too often, team members who identify 

potential risks at an early stage are seen as having a negative attitude. 

✓ Writing about attitudes to risk, Dwayne Phillips remarks that 'I have seen a room get suddenly 

quiet when someone brings up a "concern"' but says that 'pretending that problems will not 

occur will not prevent them'.  

✓ For effective risk management, it is important that the project team are encouraged to identify 

and discuss risks as early as possible in the project's life. 

RISK IDENTIFICATION 

✓ The first stage in any risk assessment exercise is to identify the hazards that might affect the 

duration or resource costs of the project.  

✓ A hazard is an event that might occur and will, if it does occur, create a problem for the successful 

completion of the project.  

✓ In identifying and analyzing risks, we can usefully distinguish between the cause (or hazard), its 

immediate effect (the problem that it creates) and the risk that it will pose to the project. 

✓ For example, the Illness of a team member is a hazard that might result in the problem of late 

delivery of a component. The late delivery of that component is likely having an effect on other 

activities and might, particularly if it is on the critical path, put the project completion date at 

risk. 

✓ A common way of identifying hazards is to use a checklist listing all the possible hazards and 

factors that influence them. Typical checklists list many, even hundreds, of factors and there are, 

today, a number of knowledge-based software products available to assist in this analysis. 

✓ Some hazards are generic risks - that is, they are relevant to all software projects and standard 

checklists can be used and augmented from an analysis of past projects to identify them. These 

will include risks such as misunderstanding the requirements or key personnel being ill.  

✓ There will also be specific risks that are relevant to an individual project and these are likely to be 

more difficult to identify without an involvement of the members of the project team and a 

working environment that encourages risk assessment. 

✓ The categories of factors that will need to be considered include the following. 

⚫ Application factors: The nature of the application - whether it is a simple data processing 

application, a safety-critical system or a large distributed system with real-time elements - is 

likely to be a critical factor. The expected size of the application is also important - the larger 

https://www.gristprojectmanagement.us/classifications/core-team-members.html


74 
 

the system, the greater is the likelihood of errors and communication and management 

problems. 

⚫ Staff factors: The experience and skills of the staff involved are clearly major factors - an 

experienced programmer is, one would hope, less likely to make errors than one with little 

experience. We must, however, also consider the appropriateness of the experience - 

experience in coding small data processing, modules in Cobol may be of little value if we are 

developing a complex real-time control system using C++. Such factors as the level of staff 

satisfaction and the staff turn-over rates are also important to the success of any project - 

demotivated staff or key personnel leaving unexpectedly have caused many a project to fail. 

⚫ Project factors: It is important that the project and its objectives are well defined and that 

they are absolutely clear to all members of the project team and all key stakeholders. Any 

possibility that this is not the case will pose a risk to the success of the project. Similarly, an 

agreed and formal quality plan must be in place and adhered to by all participants and any 

possibility that the quality plan is inadequate or not adhered to will jeopardize the project. 

⚫ Project methods: Using well specified and structured methods for project 

management and system development will decrease the risk of delivering a system that is 

unsatisfactory or late. Using such methods for the first time, though, may cause problems and 

delays - it is only with experience that the benefits accrue. 

⚫ Hardware/software factors: A project that requires new hardware for development is likely 

to pose a higher risk than one where the software can be developed on existing (and familiar) 

hardware. Where a system is developed on one type of hardware or software platform to be 

used on another there might be additional (and high) risks at installation. 

⚫ Changeover factors: The need for an 'all-in-one' changeover to the new system poses 

particular risks. Incremental or gradual changeover minimizes the risks involved but is not 

always practical. Parallel running can provide a safety net but might be impossible or too 

costly. 

⚫ Supplier factors: The extent to which a project relies on external organizations that cannot be 

directly controlled often influences the project's success. Delays in, for example, the 

installation of telephone lines or delivery of equipment may be difficult to avoid - particularly 

if the project is of little consequence to the external supplier. 

⚫ Environment factors: Changes in the environment can affect a project's success. A significant 

change in the taxation regulations could, for example, have serious consequences for the 

development of a payroll application. 

⚫ Health and safety factors: While not generally a major issue for software projects (compared, 

say, to civil engineering projects), the possible effects of project activities on the health and 

https://www.gristprojectmanagement.us/project-management.html
https://www.gristprojectmanagement.us/project-management.html


75 
 

safety of the participants and the environment should be considered. BS 6079 states that 

'every project should include an audit of these specific risks before work starts' and that 'audit 

updates should be scheduled as part of the overall project plan'. 

Although some factors might influence the project as a whole, it is necessary to consider them 

individually for each activity - a key member of staff being ill during fact-finding might, for example, be 

far less serious than a similar absence during user training. Within a PRINCE 2 environment it can be 

appropriate to list the factors for each of the products identified in the product breakdown structure. 

RISK ANALYSIS 

✓ Having identified the risks that might affect our project we need some way of assessing their 

importance. Some risks will be relatively unimportant (for example, the risk that some of the 

documentation is delivered a day late), whereas some will be of major significance (such as the 

risk that the software is delivered late). Some are quite likely to occur (it is quite likely, for 

example, that one of the software developers in a team will take a few days sick leave during a 

lengthy project), whereas others are relatively unlikely (hardware failure causing loss of 

completed code, perhaps). 

✓ The probability of a hazard's occurring is known as the risk likelihood; the effect that the 

resulting problem will have on the project, if it occurs, is known as the risk impact and the 

importance of the risk is known as the risk value or risk exposure. The risk value is calculated as: 

risk exposure = risk likelihood x risk impact 

✓ Ideally the risk impact is estimated in monetary terms and the likelihood assessed as a probability. 

In that case the risk exposure will represent an expected cost in the same sense that we calculated 

expected costs and benefits when discussing cost-benefit analysis.  

✓ The risk exposures for various risks can then be compared with each other to assess the relative 

importance of each risk and they can be directly compared with the costs and likelihoods of 

success of various contingency plans. 

✓ However, estimation of these costs and probabilities is likely to be difficult, subjective, time-

consuming and costly. In spite of this, it is valuable to obtain some quantitative measure of risk 

likelihood and impact because, without these, it is difficult to compare or rank risks in a 

meaningful way. Moreover, the effort put into obtaining a good quantitative estimate can provide a 

deeper and valuable understanding of the problem. 

https://www.gristprojectmanagement.us/effective/the-product-breakdown-structure.html
https://www.gristprojectmanagement.us/planning-resources/risk-probability-and-impact-assessment.html
https://www.gristprojectmanagement.us/planning-resources/risk-probability-and-impact-assessment.html
https://www.gristprojectmanagement.us/planning-resources/risk-probability-and-impact-assessment.html


76 
 

✓ Many risk managers use a simple scoring method to provide a quantitative measure for assessing 

each risk. Some just categorize likelihoods and impacts as high, medium or low, but this form of 

ranking does not allow the calculation of a risk exposure.  

✓ A better and popular approach is to score the likelihood and impact on a scale of, say, 1 to 10 

where the hazard that is most likely to occur receives a score of 10 and the least likely a score of 1. 

✓ Ranking likelihoods and impacts on a scale of 1 to 10 is relatively easy, but most risk managers will 

attempt to assign scores in a more meaningful way such that, for example, a likelihood scoring 8 is 

considered twice as likely as one with a score of 4. 

✓ Impact measures, scored on a similar scale, must take into account the total risk to the project. This 

must include the following potential costs: 

⚫ the cost of delays to scheduled dates for deliverables; 

⚫ cost overruns caused by using additional or more expensive resources; 

⚫ the costs incurred or implicit in any compromise to the system's quality or functionality. 

Table 7.1 illustrates part of Amanda's risk value assessment. Notice that the hazard with the highest 

risk value might not be the one that is most likely nor the one with the greatest potential impact. 

risk Hazard Likelihood Impact Risk exposure 

R1 Changes to requirements specification during coding 1 8 8 

R2 Specification takes longer than expected 3 7 21 

R3 Staff sickness affecting critical path activities 5 7 35 

R4 Staff sickness affecting non-critical activities 10 3 30 

R5 Module coding takes longer than expected 4 5 20 

R6 Module testing demonstrates errors or deficiencies in 

design 

1 10 10 

Prioritizing the risks 

✓ Managing risk involves the use of two strategies:  

⚫ reducing the risk exposure by reducing the likelihood or impact; 

⚫ drawing up contingency plans to deal with the risk should it occur. 

✓ Any attempt to reduce a risk exposure or put a contingency plan in place will have a cost 

associated with it. It is therefore important to ensure that this effort is applied in the most effective 

https://www.gristprojectmanagement.us/planning-resources/critical-path-method.html
https://www.gristprojectmanagement.us/software-4/identifying-critical-activities.html
https://www.gristprojectmanagement.us/software-2/reducing-the-risks.html


77 
 

way and we need a way of prioritizing the risks so that the more important ones can receive the 

greatest attention. 

✓ Risk exposures based on scoring methods must be treated with some caution. Amanda's 

assessment shown in Table 7.1 does not indicate, for example, that risk R5 is twice as important as 

R6. Nor can it be taken as necessarily meaning that R2 is more important than R5.  

✓ In the first case, this is because we cannot interpret the risk exposure values quantitatively 

because they are based on a non-cardinal scoring method. In the second case, the exposure values 

are far too close for us to be able to distinguish between them - particularly in view of the 

somewhat approximate and subjective way in which Amanda is likely to have assessed the 

likelihoods and, perhaps to a lesser extent, the impacts. 

✓ The risk exposures will, however, allow us to obtain an approximate ranking in order of 

importance. Considering just the risks in Table 7.1, R3 and R4 are, on this basis, clearly the most 

important and we could classify them as being high risk concerns.  

✓ There is a significant difference between the exposure scores of these two and one with the next 

highest exposure, R2. R2 and R5 have similar scores and might be thought of as medium priority 

risks. The two remaining risks, R1 and R6 have quite low exposure values and can therefore be 

classified as low risk items. 

✓ In practice, there are generally other factors, in addition to the risk exposure value, that must also 

be taken into account when prioritizing risks. 

⚫ Confidence of the risk assessment Some of our risk exposure assessments will be relatively 

poor. Where this is the case, there is a need for further investigation before action can be 

planned. 

⚫ Compound risks Some risks will be dependent on others. Where this is the case, they should 

be treated together as a single risk. 

⚫ The number of risks There is a limit to the number of risks that can be effectively considered 

and acted on by a project manager. We might therefore wish to limit the size of the prioritized 

list. 

⚫ Cost of action Some risks, once recognized, can be reduced or avoided immediately with very 

little cost or effort and it is sensible to take action on these regardless of their risk value. For 

other risks we need to compare the costs of taking action with the benefits of reducing the risk. 

One method for doing this is to calculate the risk reduction leverage (RRL) using the equation 

Classifying risks into these three categories is clearly not always as easy as in this example although, in 

practice, risks do frequently cluster and break points are often quite distinct. 



78 
 

 

The RRL is used as a factor in prioritizing risks and for evaluating alternative courses of action in 

dealing with a particular risk. 

where REbefore, fon, is the original risk exposure value, REafter is the expected risk exposure value after 

taking action and the risk reduction cost is the cost of implementing the risk reduction action. Risk 

reduction costs must be expressed in the same units as risk values - that is, expected monetary values 

or score values. 

REDUCING THE RISKS 

Broadly, there are five strategies for risk reduction. 

✓ Hazard prevention Some hazards can be prevented from occurring or their likelihood reduced to 

insignificant levels. The risk of key staff being unavailable for meetings can be minimized by early 

scheduling, for example. 

✓ Likelihood reduction Some risks, while they cannot be prevented, can have their likelihoods 

reduced by prior planning. The risk of late changes to a requirements specification can, for 

example, be reduced by prototyping. Prototyping will not eliminate the risk of late changes and will 

need to be supplemented by contingency planning. 

✓ Risk avoidance A project can, for example, be protected from the risk of overrunning the schedule 

by increasing duration estimates or reducing functionality. 

✓ Risk transfer the impact of some risks can be transferred away from the project by, for example, 

contracting out or taking out insurance. 

✓ Contingency planning Some risks are not preventable and contingency plans will need to be 

drawn up to reduce the impact should the hazard occur. A project manager should draw up 

contingency plans for using agency programmers to minimize the impact of any unplanned 

absence of programming staff. 

 The use of checklists for hazard identification. 

Many of these generic checklists, as well as listing common generic hazards, list typical actions for risk 

reduction. The checklist in Table 7.2 is based upon an often-quoted list produce by Barry Boehm. 

 

https://www.gristprojectmanagement.us/project-manager.html
https://www.gristprojectmanagement.us/software-2/software-effort-estimation-techniques.html


79 
 

Risk Risk reduction techniques 

Personnel shortfalls staffing with top talent; job matching; team building; training and career development; 
early scheduling of key personnel. 

Unrealistic time and cost 
estimates 

multiple estimation techniques; design to cost; incremental development; recording and 
analysis of past projects; standardization of methods. 

Developing the wrong 
software functions 

improved project evaluation; formal specification methods; user surveys; prototyping; 
early users' manuals. 

Developing the wrong user 
interface 

prototyping; task analysis; user involvement. 

Gold plating requirements scrubbing; prototyping; cost-benefit analysis; design to cost. 

Late changes to requirements stringent change control procedures; high change threshold; incremental prototyping; 
incremental development (defer changes). 

Shortfalls in external supplied 
components 

benchmarking; inspections; formal specifications; contractual agreements; quality 
assurance procedures and certification. 

Shortfalls in externally 
performed tasks 

quality assurance procedures; competitive design or prototyping; teambuilding; contract 
incentives. 

Real-time performance 
shortfalls 

simulation; benchmarking; prototyping; tuning; technical analysis. 

Development technically too 
difficult 

technical analysis; cost-benefit analysis; prototyping; staff training and development. 

RESOURCE ALLOCATION 

✓  In general, the allocation of resources to activities will lead us to review and modify the ideal 

activity plan. It may cause us to revise stage or project completion dates. In any event, it is likely 

to lead to a narrowing of the time-spans within which 

activities may be scheduled. The final result of 

resource allocation will normally be a number of 

schedules including: 

◼  activity schedule indicating the planned 

start and completion dates for each activity. 

◼ resource schedule showing the dates on 

which each resource will be required and the level of 

that requirement. 

◼ cost schedule showing the planned 

cumulative expenditure incurred by the use of 

resources over time. 

The nature of resources 

✓ A resource is any item or person required for the 

execution of the project. This covers many things-from 

https://www.gristprojectmanagement.us/software-2/change-control.html
https://www.gristprojectmanagement.us/software-2/change-control.html
https://www.gristprojectmanagement.us/quality-assurance.html
https://www.gristprojectmanagement.us/quality-assurance.html
https://www.gristprojectmanagement.us/quality-assurance.html


80 
 

paper clips to key personnel- and it is unlikely that we would wish to itemize every resource 

required, let alone draw up a schedule for their use!  

✓ Stationery and other standard office supplies, for example, need not normally be the concern of the 

project manager - ensuring there is always an adequate supply is the role of the office manager.  

✓ The project manager must concentrate on those resources where there is a possibility that, 

without planning. they might not be sufficiently available when required. Individual programmers, 

for example, might be committed to working on a number of projects and it will be important to 

book their time well in advance. In general, resources will fall into one of seven categories. 

◼ Labor The main items in this category will be members of the development project team such 

as the project manager, systems analysts and software developers. Equally important will be 

the quality assurance team and other support staff and any employees of the client 

organization who might be required to undertake or participate in specific activities. 

◼ Equipment Obvious items will include workstations and other computing and office 

equipment. We must not forget that staff also need basic equipment such as desks and chairs. 

◼ Materials Materials are items that are consumed, rather than equipment that is used. They 

are of little consequence in most software projects but can be important for some software 

that is to be widely distributed might, for example, require supplies of floppy disks to be 

specially obtained. 

◼  Space For projects that are undertaken with existing staff, space is normally readily 

available. If any additional staff (recruited or contracted) should be needed then office space 

will need to be found. 

◼  Services Some projects will require procurement of specialist services development of a wide 

area distributed system, for example, requires scheduling of telecommunications services. 

◼ Time Time is the resource that is being offset against the other primary evaluation resources - 

project time-scales can sometimes be reduced by increasing other resources and will almost 

certainly be extended if they are unexpectedly reduced. 

◼ Money Money is a secondary resource-it is used to buy other resources and will be 

consumed as other resources are used. It is similar to other resources in that it is available at a 

cost- in this case interest charges. 

Identifying resource requirements 

✓ The first step in producing a resource allocation plan is to list the resources that will be 

required along with the expected level of demand.  This will normally be done by considering each 

activity in turn and identifying the resources required. 



81 
 

✓ It is likely, however, that there will also be resources required that are not activity specific but are 

part of the project's infrastructure (such as the project manager) or required to support other 

resources (office space, for example, might be required to house contract software developers). 

✓ At this stage, it is necessary that the resource requirements list be as comprehensive as possible - it 

is better that something is included that may later be deleted as unnecessary than to omit 

something essential.  

SCHEDULING RESOURCES 

✓ Having produced the resource 

requirements list, the next stage is to map 

this onto the activity plan to assess the 

distribution of resources required over 

the duration of the project.  

✓ This is best done by representing the 

activity plan as a bar chart and using this 

to produce a resource histogram for each 

resource. Figure 8.3 illustrates Amanda's 

activity plan as a bar chart and a resource 

histogram for analyst-designers.  

✓ Each activity has been scheduled to 

start at its earliest start date - a sensible 

initial strategy, since we would, other 

things being equal, wish to save any float 

to allow for contingencies. Earliest start date 

scheduling, as is the case with Amanda's project, 

frequently creates resource histograms that 

start with a peak and then tail off. 

✓ Changing the level of resources on a project 

over time, particularly personnel, generally adds 

to the cost of a project. Recruiting staff has costs 

and even where staff are transferred internally, 

time will be needed for familiarization with the 

new project environment. 

✓ The resource histogram in Figure 8.3 poses 

particular problems in that it calls for two 

https://www.gristprojectmanagement.us/estimating/what-is-a-resource-histogram.html
https://www.gristprojectmanagement.us/multiple/the-backward-pass-determining-stack-times-and-earliest-start-and-finish-dates.html


82 
 

analyst-designers to be idle for eleven days, one for six days and one for two days between the 

specification and design stage.  

✓ It is unlikely that lOE would have another project requiring their skills for exactly those periods of 

time and this raises the question as to whether this idle time should be charged to Amanda's 

project. The ideal resource histogram will 

he smooth with. perhaps an initial buildup 

and a staged run-down. 

✓ An additional problem with an uneven 

resource histogram is that it is more likely 

to call for levels of resource beyond those 

available.  

✓ Figure 8.4 illustrates how, by adjusting 

the start date of some activities and splitting 

others, a resource histogram can. subject to 

constraints such as precedence 

requirements, be smoothed to contain 

resource demand at available levels.  

✓ The different letters represent staff 

working on a series of module testing tasks, 

that is. one person working on task A, two 

on tasks B and C etc. 

✓ In Figure 8.4. the original histogram was 

created by scheduling the activities at their 

earliest start dates. The resource histogram shows the typical peaked shape caused by earliest 

start date scheduling and calls for a total of nine staff where only five are available for the project. 

✓ By delaying the start of some of the activities, it has been possible to smooth the histogram and 

reduce the maximum level of demand for the resource. Notice that some activities, such as C and I), 

have been split. Where non-critical activities can be split they can provide a useful way of filling 

troughs in the demand for a resource, but in software projects it is difficult to split tasks without 

increasing the time they take. 

✓ Some of the activities call for more than one unit of the resource at a time -activity F. for example, 

requires two programmers, each working for two weeks. It might be possible to reschedule this 

activity to use one programmer over four weeks although that has not been considered in this case. 

✓ In practice, resources have to be allocated to a project on an activity-by-activity basis and finding 

the 'best' allocation can be time consuming and difficult. As soon as a member of the project team 

https://www.gristprojectmanagement.us/finance/ideal-resources.html
https://www.gristprojectmanagement.us/software-4/identifying-critical-activities.html


83 
 

is allocated to an activity that activity acquires a scheduled start and finish date and the team 

member becomes unavailable for other activities for that period. Thus. allocating a resource to one 

activity limits the flexibility for resource allocation and scheduling of other activities. 

✓ It is therefore helpful to prioritize activities so that resources can be allocated to competing 

activities in some rational order. The priority must always be to allocate resources to critical path 

activities and then to those activities that are most likely to affect others. In that way. lower 

priority activities are made to lit around the more critical, already scheduled activities. Of the 

various ways of prioritizing activities, two are described below. 

▪ Total float priority Activities are ordered according to their total float, those with the smallest 

total float having the highest priority. In the simplest application of this method, activities 

are allocated resources in ascending order of total float. However, as scheduling proceeds, 

activities will be delayed (if resources are not available at their earliest start dates) and total 

floats will be reduced. It is therefore desirable to recalculate floats (and hence reorder the list) 

each time an activity is delayed.  

▪ Ordered list priority with this method, activities that can proceed at the same time are 

ordered according to a set of simple criteria. An example of this is Barman's priority list, which 

takes into account activity duration as well as total float: 

1. shortest critical activity; 

2. critical activities; 

3. shortest non-critical activity; 

4. non-critical activity with least float; 

5. non-critical activities. 

Unfortunately, resource smoothing, or even containment of resource demand to available levels, is not 

always possible within planned time-scales - deferring activities to smooth out resource peaks often 

puts back project completion. Where that is the case, we need to consider ways of increasing the 

available resource levels or altering working methods. 

CRITICAL PATH METHOD 

✓ The critical path method calculates the theoretical early start and finish dates, and late start and 

finish dates, for all activities without regard for any resource limitations, by performing a forward 

pass analysis and a backward pass analysis through the project schedule network paths.  

https://www.gristprojectmanagement.us/planning-resources/critical-path-method.html
https://www.gristprojectmanagement.us/planning-resources/critical-path-method.html
https://www.gristprojectmanagement.us/software-2/prioritizing-monitoring.html
https://www.gristprojectmanagement.us/microsoft-project-solutions/inside-out-jaj.html
https://www.gristprojectmanagement.us/good-decisions/common-ordered-lists.html
https://www.gristprojectmanagement.us/software-4/identifying-critical-activities.html
https://www.gristprojectmanagement.us/software-2/getting-the-project-back-to-target.html
https://www.gristprojectmanagement.us/planning-resources/critical-path-method.html
https://www.gristprojectmanagement.us/software-4/the-forward-pass.html
https://www.gristprojectmanagement.us/software-4/the-forward-pass.html
https://www.gristprojectmanagement.us/software-2/the-backward-pass.html
https://www.gristprojectmanagement.us/project-schedule.html


84 
 

✓ The resulting early and late start and finish dates are not necessarily the project schedule; rather, 

they indicate the time periods within which the schedule activity should be scheduled, given 

activity durations, logical relationships, leads, lags, and other known constraints. 

✓ Calculated early start and finish dates, and late start and finish dates, may or may not be the same 

on any network path since total float, which provides schedule flexibility, may be positive, negative, 

or zero. On any network path, the schedule flexibility is measured by the positive difference 

between early and late dates, and is termed "total float." Critical paths have either a zero or 

negative total float, and schedule activities on a critical path are called "critical activities. 

✓ " A critical path is normally characterized by zero total/free float across the critical path and 

network paths can have multiple near critical paths. Adjustments to activity durations, logical 

relationships, leads and lags, or other schedule constraints may be necessary to produce network 

paths with a zero or positive total float.  

✓ Once the total float for a network path is zero or positive, then the free float—the amount of time 

that a schedule activity can be delayed without delaying the early start date of any immediate 

successor activity within the network path—can also be determined. 

COST SCHEDULES 

✓ It is now time to produce a detailed cost schedule showing weekly or monthly costs over the life of 

the project. This will provide a more detailed and accurate estimate of costs and will serve as a plan 

against which project progress can be monitored. Calculating cost is straightforward where the 

organization has standard cost figures for staff and other resources. Where this is not the case, then 

the project manager will have to calculate the costs. In general, costs are categorized as follows. 

▪ Staff costs These will include staff salaries as well as the other direct costs of employment 

such as the employer's contribution to social security funds, pension scheme contributions, 

holiday pay and sickness benefit. These are commonly charged to projects at hourly rates 

based on weekly work records completed by staff. Note that contract staff are usually 

charged by the week or month - even when they are idle. 

▪ Overheads Overheads represent expenditure that an organization incurs, which cannot be 

directly related to individual projects or jobs including space rental, interest charges and the 

costs of service departments (such as personnel). Overhead costs can be recovered by 

making a fixed charge on development departments (in which case they usually appear as a 

weekly or monthly charge for a project), or by an additional percentage charge on direct 

staff employment costs. These additional charges or on costs can easily equal or exceed the 

direct employment costs. 

https://www.gristprojectmanagement.us/advantages/logical-relationships.html
https://www.gristprojectmanagement.us/integration/calculating-float-in-a-pnd.html
https://www.gristprojectmanagement.us/microsoft-project/using-multiple-critical-paths.html
https://www.gristprojectmanagement.us/planning-resources/critical-path-method.html
https://www.gristprojectmanagement.us/software-4/identifying-critical-activities.html
https://www.gristprojectmanagement.us/strategic-planning/applying-leads-and-lags.html
https://www.gristprojectmanagement.us/planning-resources/project-constraints.html
https://www.gristprojectmanagement.us/software-5/creating-an-accurate-estimate.html
https://www.gristprojectmanagement.us/project-manager.html


85 
 

▪ Usage charges in some organizations, projects are charged directly for use of resources 

such as computer time (rather than their cost being recovered as an overhead). This will 

normally be on an 'as used' basis. 

CREATING THE FRAMEWORK 

✓ Exercising control over a project and ensuring 

that targets are met is a matter of regular monitoring, 

finding out what is happening, and comparing it with 

current targets. If there is a mismatch between the 

planned outcomes and the actual ones then 

either replanning is needed to bring the project back on 

target or the target will have to be revised.  

✓ Figure 9.1 illustrates a model of the 

project control cycle and shows how, once the initial 

project plan has been published, project control is a 

continual process of monitoring progress against that 

plan and, where necessary, revising the plan to take 

account of deviations.  

✓ It also illustrates the important steps that must 

be taken after completion of the project so that the 

experienced gained in any one project can feed into the 

planning stages of future projects, thus allowing us to 

learn from past mistakes.  

✓ In practice we are normally concerned with 

departures from the plan in four dimensions - delays in 

meeting target dates, shortfalls in quality, inadequate 

functionality, and costs going over target. In this chapter 

we are mainly concerned with the first and last of these. 

Responsibility 

✓ The overall responsibility for ensuring 

satisfactory progress on a project is often the role of the project steering committee or Project 

Board. Day-to-day responsibility will rest with the project manager and, in all but the smallest of 

projects, aspects of this can be delegated to team leaders. 

https://www.gristprojectmanagement.us/cycle/replanning.html
https://www.gristprojectmanagement.us/software-2/management-control.html
https://www.gristprojectmanagement.us/termination/initial-project-coordination-1.html
https://www.gristprojectmanagement.us/termination/initial-project-coordination-1.html
https://www.gristprojectmanagement.us/success/steering-committee-checklist.html
https://www.gristprojectmanagement.us/project-manager.html


86 
 

✓ Figure 9.2 illustrates the typical reporting structure found with medium and large projects. With 

small projects (employing around half a dozen or fewer staff) individual team members usually 

report directly to the project manager, but most cases team leaders will collate reports on their 

section's progress and forward summaries to the project manager. These, in turn, will be 

incorporated into project-level reports for the steering committee and, via them or directly, 

progress reports for the client. 

✓ Reporting may be oral or written, 

formal or informal, or regular or ad 

hoc and some examples of each type 

are given in Table 9.1. While any 

effective team leader or project 

manager will be in touch with team 

members and available to discuss 

problems, any such informal reporting 

of project progress must be 

complemented by formal reporting 

procedures. 

Assessing progress 

✓ Progress assessment will 

normally be made on the basis of 

information collected and 

collated at regular intervals or 

when specific events occur. 

✓ Wherever possible, this 

information will be objective and 

tangible - whether or not a 

particular report has been 

delivered, for example. However, 

such end-of-activity deliverables 

might not occur sufficiently frequently throughout the life of the project. Here progress assessment 

will have to rely on the judgement of the team members who are carrying out the project activities. 

 

Setting checkpoints 



87 
 

✓ It is essential to set a series of checkpoints in the initial activity plan. Checkpoints may be: 

o regular (monthly, for example); 

o tied to specific events such as the production of a report or other deliverable.  

Taking snap-shots 

✓ The frequency with which a manager needs to receive information about progress will depend 

upon the size and degree of risk of the project or that part of the project under their control. Team 

leaders, for example, need to assess progress daily (particularly when employing inexperienced 

staff) whereas project managers may find weekly or monthly reporting appropriate. In general, the 

higher the level, the less frequent and less detailed the reporting needs to be. 

✓ There are, however, strong arguments in favour of formal weekly collection of information from 

staff carrying out activities. Collecting data at the end of each week ensures that information is 

provided while memories are still relatively fresh and provides a mechanism for individuals to 

review and reflect upon their progress during the past few days. 

✓ Major, or project-level, progress reviews will generally take place at particular points during the life 

of a project - commonly known as review points or control points. PRINCE 2, for example, 

designates a series of checkpoints where the status of work in a project or for a team is reviewed. 

At the end of each project Stage, PRINCE 2 provides for an End Stage Assessment where an 

assessment of the project and consideration of its future are undertaken. 

COST MONITORING 

✓ Expenditure monitoring is an important component of project control. Not only in itself, but also 

because it provides an indication of the effort that has gone into (or at least been charged to) a 

project. A project might be on time but only because more money has been spent on activities than 

originally budgeted. A cumulative expenditure chart such as that shown in Figure 9.9 provides a 

simple method of comparing actual and planned expenditure. By itself it is not particularly 

meaningful - Figure 9.9 could, for example, illustrate a project that is running late or one that is on 

time hut has shown substantial costs savings! We need to take account of the current status of the 

project activities before attempting to interpret the meaning of recorded expenditure. Project 

costs may be monitored by a company's accounting system. By themselves, they provide little 

information about project status. 

 

Figure 9.9 Tracking cumulative expenditure. 

https://www.gristprojectmanagement.us/it/tasks-completed-during-end-of-life.html
https://www.gristprojectmanagement.us/it/tasks-completed-during-end-of-life.html
https://www.gristprojectmanagement.us/guide/projects-vs-operational-work.html
https://www.gristprojectmanagement.us/project-costs.html
https://www.gristprojectmanagement.us/project-costs.html


88 
 

✓ Cost charts become much more useful if we add projected future costs calculated by adding the 

estimated costs of uncompleted work to the costs already incurred. Where a computer-based 

planning tool is used, revision of cost schedules is generally provided automatically once actual 

expenditure has been recorded.  

Prioritizing monitoring 

✓ So far we have assumed that all aspects of a project will receive equal treatment in terms of the 

degree of monitoring applied. We must not forget, however, that monitoring takes time and uses 

resources that might sometimes be put to better use! In this section we list the priorities we might 

apply in deciding levels of monitoring. 

o Critical path activities Any delay in an activity on the critical path will cause a delay in the 

completion date for the project. Critical path activities are therefore likely to have a very 

high priority for close monitoring. 

o Activities with no free float A delay in any activity with no free float will delay at least 

some subsequent activities even though, if the delay is less than the total float, it might not 

delay the project completion date. These subsequent delays can have serious effects on 

our resource schedule as a delay in a subsequent activity could mean that the resources for 

that activity will become unavailable before that activity is completed because they are 

committed elsewhere. 

o Free float is the amount of time an activity may be delayed without affecting any 

subsequent activity. 

o Activities with less than a specified float If any activity has very little float it might use up 

this float before the regular activity monitoring brings the problem to the project manager's 

attention. It is common practice to monitor closely those activities with less than, say, one-

week free float. 

o High risk activities A set of high-risk activities should have been identified as part of the 

initial risk profiling exercise. If we are using the PERT three-estimate approach we will 

designate as high risk those activities that have a high estimated duration variance. These 

activities will be given close attention because they are most likely to overrun or overspend. 

o Activities using critical resources Activities can be critical because they are very 

expensive (as in the case of specialized contract programmers). Staff or other resources 

might be available only for a limited period, especially if they are controlled outside the 

project team. In any event, an activity that demands a critical resource requires a high level 

of monitoring. 

 

 

https://www.gristprojectmanagement.us/microsoft-project/letting-project-reschedule-uncompleted-work.html
https://www.gristprojectmanagement.us/it-2/positive-aspects-of-the-project.html
https://www.gristprojectmanagement.us/planning-resources/critical-path-method.html
https://www.gristprojectmanagement.us/microsoft-project-solutions/critical-path-method-cpm.html
https://www.gristprojectmanagement.us/integration/calculating-float-in-a-pnd.html
https://www.gristprojectmanagement.us/software-4/publishing-the-resource-schedule.html


89 
 

UNIT - V 

GLOBALIZATION ISSUES IN PROJECT 

What is globalization? 

✓ Globalization is the process by which ideas, knowledge, information, goods and services spread 

around the world.  

✓ In business, the term is used in an economic context to describe integrated economies marked 

by free trade, the free flow of capital among countries and easy access to foreign resources, 

including labor markets, to maximize returns and benefit for the common good. 

✓ Globalization, or globalization as it is known in some parts of the world, is driven by the 

convergence of cultural and economic systems.  

✓ This convergence promotes -- and in some cases necessitates -- increased interaction, 

integration and interdependence among nations.  

✓ The more countries and regions of the world become intertwined politically, culturally and 

economically, the more globalized the world becomes.  

How globalization works 

✓ In a globalized economy, countries specialize in the products and services they have a competitive 

advantage in. This generally means what they can produce and provide most efficiently, with the 

least amount of resources, at a lower cost than competing nations.  

✓ If all countries are specializing in what they do best, production should be more efficient 

worldwide, prices should be lower, economic growth widespread and all countries should 

benefit -- in theory. 

✓ Policies that promote free trade, open borders and international cooperation all drive economic 

globalization. They enable businesses to access lower priced raw materials and parts, take 

advantage of lower cost labor markets and access larger and growing markets around the world in 

which to sell their goods and services. 

✓ Money, products, materials, information and people flow more swiftly across national 

boundaries today than ever.  

✓ Advances in technology have enabled and accelerated this flow and the resulting international 

interactions and dependencies. These technological advances have been especially pronounced 

in transportation and telecommunications. 

✓ Among the recent technological changes that have played a role in globalization are the 

following: 

⚫ Internet and internet communication. The internet has increased the sharing and flow of 

information and knowledge, access to ideas and exchange of culture among people of 

https://www.techtarget.com/searchcio/definition/labor-arbitrage
https://www.techtarget.com/searchnetworking/definition/telecommunications-telecom


90 
 

different countries. It has contributed to closing the digital divide between more and less 

advanced countries. 

⚫ Communication technology. The introduction of 4G and 5G technologies has dramatically 

increased the speed and responsiveness of mobile and wireless networks. Increased speed and 

bandwidth are among the benefits of 5G technology. 

 

⚫ IoT and AI. These technologies are enabling the tracking of assets in transit and as they move 

across borders, making cross-border product management more efficient. 

⚫ Blockchain. This technology is enabling the development of decentralized databases and 

storage that support the tracking of materials in the supply chain. Blockchain facilitates the 

secure access to data required in industries such as healthcare and banking. For example, 

blockchain provides a transparent ledger that centrally records and vets’ transactions in a 

way that prevents corruption and breaches. 

 

⚫ Transportation. Advances in air and fast rail technology have facilitated the movement of 

people and products. And changes in shipping logistics technology moves raw materials, parts 

and finished products around the globe more efficiently. 

⚫ Manufacturing. Advances such as automation and 3D printing have reduced geographic 

constraints in the manufacturing industry. 3D printing enables digital designs to be sent 

https://www.techtarget.com/whatis/definition/digital-divide
https://www.techtarget.com/searchnetworking/feature/A-deep-dive-into-the-differences-between-4G-and-5G-networks
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Want-to-power-up-trade-Boost-your-access-to-IoT-ecosystems
https://www.techtarget.com/searcherp/feature/4-key-blockchain-in-supply-chain-use-cases-and-examples
https://www.techtarget.com/whatis/definition/supply-chain
https://www.techtarget.com/searcherp/definition/logistics


91 
 

anywhere and physically printed, making distributed, smaller-scale production near the point 

of consumption easier. Automation speeds up processes and supply chains, giving workforces 

more flexibility and improving output. 

Why is globalization important? 

✓ Globalization changes the way nations, businesses and people interact. Specifically, it changes the 

nature of economic activity among nations, expanding trade, opening global supply chains and 

providing access to natural resources and labor markets. 

✓ Changing the way trade and financial exchange and interaction occurs among nations also 

promotes the cultural exchange of ideas. It removes the barriers set by geographic constraints, 

political boundaries and political economies. 

✓ For example, globalization enables businesses in one nation to access another nation's resources. 

More open access changes the way products are developed, supply chains are managed and 

organizations communicate. Businesses find cheaper raw materials and parts, less expensive 

or more skilled labor and more efficient ways to develop products. 

✓ With fewer restrictions on trade, globalization creates opportunities to expand. Increased trade 

promotes international competition. This, in turn, spurs innovation and, in some cases, the 

exchange of ideas and knowhow. In addition, people coming from other nations to do business and 

work bring with them their own cultures, which influence and mix with other cultures. 

✓ The many types of exchange that globalization facilitates can have positive and negative effects. 

For instance, the exchange of people and goods across borders can bring fresh ideas and help 

business. However, this movement can also heighten the spread of disease and promote ideas 

that might destabilize political economies. 

EVOLUTION OF GLOBALIZATION 

⚫ Globalization is an historical process that began with the first movement of people out of Africa 

into other parts of the world. Traveling short or long distances, migrants’ merchants and others 

have delivered their ideas, customs and products to new lands. The melding, borrowing and 

adaptation of outside influences are found in many areas of human life. 

History of globalization 

✓ Although many people consider globalization a twentieth century phenomenon, the process has 

been happening for millennia. Examples include the following: 

⚫ The Roman Empire. Going back to 600 B.C., the Roman Empire spread its economic and 

governing systems through significant portions of the ancient world for centuries. 

⚫ Silk Road trade. These trade routes, which date from 130 B.C. to 1453 A.D., represented 

another wave of globalization. They brought merchants, goods and travelers from China 

through Central Asia and the Middle East to Europe. 

https://www.techtarget.com/searcherp/essentialguide/A-guide-to-global-supply-chain-management
https://www.techtarget.com/searcherp/Guide-to-supply-chain-management
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Driving-IoT-innovation


92 
 

⚫ Pre-World War I. European countries made significant investments overseas in the decades 

before World War I. The period from 1870 to 1914 is called the golden age of globalization. 

⚫ Post-World War II. The United States led the effort to create a global economic system with a 

set of broadly accepted international rules. Multinational institutions were established such as 

the United Nations (UN), International Monetary Fund, World Bank and World Trade 

Organization to promote international cooperation and free trade. 

✓ The term globalization as it's used today came to prominence in the 1980s, reflecting several 

technological advancements that increased international interactions. IBM's introduction of the 

personal computer in 1981 and the subsequent evolution of the modern internet are two examples 

of technology that helped drive international communication, commerce and globalization. 

✓ Globalization has ebbed and flowed throughout history, with periods of expansion and 

retrenchment. The 21st century has witnessed both. Global stock markets plummeted after the 

Sept. 11, 2001, terrorist attacks in the United States, but rebounded in subsequent years. 

✓ More recently, nationalist political movements have slowed immigration, closed borders and 

increased trade protectionism. The pandemic has had similar effects on borders and immigration 

and also disrupted supply chains.  

✓ However, overall, the early 21st century has seen a dramatic increase in the pace of global 

integration. Rapid advances in technology and telecommunications are responsible for much of 

this change. 

Globalization in the modem era  

✓ Globalization, in the modem sense of the term, came into existence after the Second World War. 

One of the main factors for this was the plan by the world leaders to break down the borders for 

fostering trade relations between nations. It was also in this that major countries like India, So 

Lanka, Indonesia and some countries in South America gained independence.  

✓ As a result, these countries too started having their own economic systems and made established 

trade relations with the rest of the world. The establishment of the United Nations Organization 

(UNO) was also a major step in this regard.  

✓ Gradually, the economic scenario of the world strengthened and it led to better trade relations and 

communication. Some other factors which have put a positive impact on globalization are:  

⚫ Promotion of free commerce and trade 

⚫ Abolition of various double taxes, tariffs, and capital controls 

⚫ Reduction of transport cost and development of infrastructure  

⚫ Creation of global corporations 

⚫ Blend of culture and tradition across the countries  

https://www.techtarget.com/searcherp/feature/Coronavirus-outbreak-puts-focus-on-supply-chain-risk


93 
 

✓ Another milestone in the history of globalization is the creation of the World Trade Organization 

which led to the growth of a uniform platform to settle trade and commercial disputes.   

✓ According to economic surveys the world exports improved from 8.5% to around 16.2% due to 

globalization. 

India and globalization 

✓ The wake of globalization was first felt in the 1990s in India when the then finance minister Dr 

Manmohan Singh initiated the economic liberalization plan.  

✓ Since then, India has gradually become one of the economic giants in the world. Today, it has one of 

the fastest growing economies in the world with an average growth rate of around 67%. There 

has also been a rise in the per capital income and the standard of living Poverty has also reduced 

by around 10%. 

✓ The service industry has a share of around 54% of the annual Gross Domestic Product while the 

industrial and agricultural sectors share around 29% and 17% respectively. Due to the process of 

globalization, the exports have also improved significantly. 

✓ Globalization has really out a positive impact on today's economy and it is expected to develop in 

the years to come. 

What is the G20? 

✓ The G20, or Group of Twenty, is an international forum that aims to foster international 

cooperation by addressing global economic issues, such as  financial stability and climate change. 

✓ The G20 is made up of 19 countries and the European Union, including most of the world's 

largest economies. 

✓ The nations involved account for 60% of the planet's population, 75% of global trade and 80% of 

world GDP. It was founded in 1999, following the 1997 financial crisis, and has met every year 

since then. 

✓ Since 2008, the G20 has held an annual summit that brings together heads of state to discuss 

important economic issues. The G20's president is selected annually on a rotating basis, and that 

person's home country hosts the summit. 

✓ In 2019, the summit was held in Osaka, Japan, and it addressed issues such as women's 

empowerment, climate change and artificial intelligence. The 2020 summit was to be in Riyadh, 

Saudi Arabia, but was held virtually because of the pandemic.  

✓ Three of the main themes addressed were empowering people, especially women and youth; 

safeguarding the planet; and long-term strategies to share the benefits of innovation and 

technological advancement. The 2021 summit will be held in Rome, Italy, and will focus on 

recovery from the pandemic and climate change. 

https://www.g20.org/about-the-g20.html


94 
 

✓ The members of G20 are Argentina, Australia, Brazil, Canada, China, France, Germany, Japan, India, 

Indonesia, Italy, Mexico, Russia, South Africa, Saudi Arabia, South Korea, Turkey, the United 

Kingdom, the United States and the European Union. Spain is a permanent guest of the 

organization. 

Types of globalization: Economic, political, cultural 

✓ Economic globalization. Here, the focus is on the integration of international financial 

markets and the coordination of financial exchange. Free trade agreements, such the North 

American Free Trade Agreement and the Trans-Pacific Partnership are examples of economic 

globalization. Multinational corporations, which operate in two or more countries, play a large role 

in economic globalization. 

✓ Political globalization. This type covers the national policies that bring countries together 

politically, economically and culturally. Organizations such as NATO and the UN are part of the 

political globalization effort. 

✓ Cultural globalization. This aspect of globalization focuses in a large part on the technological 

and societal factors that are causing cultures to converge. These include increased ease of 

communication, the pervasiveness of social media and access to faster and better transportation. 

These three types influence one another. For example, liberalized national trade policies drive 

economic globalization. Political policies also affect cultural globalization, enabling people to 

communicate and move around the globe more freely. Economic globalization also affects cultural 

globalization through the import of goods and services that expose people to other cultures. 

Effects of globalization 

✓ The effects of globalization can be felt locally and globally, touching the lives of individuals as well 

as the broader society in the following ways: 

⚫ Individuals. Here, a variety of international influences affect ordinary people. Globalization 

affects their access to goods, the prices they pay and their ability to travel to or even move 

to other countries. 

⚫ Communities. This level encompasses the impact of globalization on local or regional 

organizations, businesses and economies. It affects who lives in communities, where they work, 

who they work for, their ability to move out of their community and into one in another 

country, among other things. Globalization also changes the way local cultures develop 

within communities. 

⚫ Institutions. Multinational corporations, national governments and other organizations such 

as colleges and universities are all affected by their country's approach to and acceptance of 

globalization. Globalization affects the ability of companies to grow and expand, a university's 

https://www.techtarget.com/whatis/definition/Big-Tech
https://www.techtarget.com/whatis/definition/social-media


95 
 

ability to diversify and grow its student body and a government's ability to pursue specific 

economic policies. 

While the effects of globalization can be observed, analyzing the net impact is more complex. 

Proponents often see specific results as positive and critics of globalization view the same results as 

negative. A relationship that benefits one entity may damage another, and whether globalization 

benefits the world at large remains a point of contention.  

Examples of globalization 

Multinational corporations are a tangible example of globalization. Some examples include the 

following: 

⚫ McDonald's had 39,198 fast-food restaurants in 119 countries and territories, according to its 

Securities and Exchange Commission filing at the end of 2020. It employed more than 2.2 million 

people at that time, the filing said. 

⚫ Ford Motor Company reported in 2021 that it works with about 1,200 tier 1 suppliers around the 

globe. 

⚫ Amazon's recent expansion has it using tens of thousands of suppliers and employing more than 

nearly 1.3 million full- and part-time employees. 

⚫ Through their influence on social and economic development in the countries that host them, 

multinational corporations embody the contradictions of globalization. They bring jobs, skills and 

wealth to the region they are investing or doing business in. But they also can destroy local 

businesses, exploit cheap labor and threaten indigenous cultures. The benefits they offer are 

often unsustainable because the loyalty of multinationals is to their investors and bottom lines and 

not to the local people, economies and cultures where they are doing business. 

⚫ Another example of globalization is the response to the COVID-19 pandemic. Because the world 

was able to communicate across boundaries, nations were able to work together to quickly 

produce vaccines for the virus.  

⚫ In addition, doctors traveled where they were needed. For example, Cuba sent doctors to Italy at 

the beginning of the pandemic to assist with the crisis as it developed there. 

⚫ However, countries also enacted strict travel restrictions and many closed their borders to cut 

down on the free movement of people and spread of the virus. 

Benefits of globalization 

✓ Globalization enables countries to access less expensive natural resources and lower cost labor. 

✓ As a result, they can produce lower cost goods that can be sold globally. Proponents of 

globalization argue that it improves the state of the world in many ways, such as the following: 

https://sec.report/Document/0000063908-21-000013/
https://www.techtarget.com/searchitchannel/definition/tier-1-vendor
https://www.techtarget.com/searchaws/feature/Heres-why-Amazons-global-expansion-wont-come-easy


96 
 

⚫ Solves economic problems. Globalization moves jobs and capital to places that need these 

resources. It gives rich countries access to lower cost resources and labor and poorer countries 

access to jobs and the investment funds they need for development. 

⚫ Promotes free trade. Globalization puts pressure on nations to reduce tariffs, subsidies and 

other barriers to free trade. This consequently promotes economic growth, creates jobs, makes 

companies more competitive and lowers prices for consumers. 

⚫ Spurs economic development. Theoretically, globalization gives poorer countries access to 

foreign capital and technology they would not otherwise have. Foreign investment can result 

in an improved standard of living for the citizens of those nations. 

⚫ Encourages positive trends in human rights and the environment. Advocates of 

globalization point to improved attention to human rights on a global scale and a shared 

understanding of the impact of people and production on the environment. 

⚫ Promotes shared cultural understanding. Advocates view the increased ability to travel and 

experience new cultures as a positive part of globalization that can contribute to international 

cooperation and peace. 

Negative consequences of globalization 

✓ Many proponents view globalization as way to solve systemic economic problems. But critics see it 

as increasing global inequality. Among the critiques of globalization are the following issues: 

⚫ Destabilizes markets. Critics of globalization blame the elimination of trade barriers and the 

freer movement of people for undermining national policies and local cultures. Labor 

markets in particular are affected when people move across borders in search of higher paying 

jobs or companies outsource work and jobs to lower cost labor markets. 

⚫ Damages the environment. The transport of goods and people among nations generates 

greenhouse gas and all the negative effects it has on the environment. Global travel and trade 

also can introduce, sometimes inadvertently, invasive species to foreign ecosystems. Industries 

such as fishing and logging tend to go where business is most lucrative or regulations are less 

strict, which has resulted in overfishing and deforestation in some parts of the world. 

⚫ Lowers living standards. When companies move operations overseas to minimize costs, such 

moves can eliminate jobs and increase unemployment in sectors of the home country. 

⚫ Facilitates global recessions. Tightly integrated global markets carry a greater risk of global 

recessions. The 2007-2009 financial crisis and Great Recession is a good example of how 

intertwined global markets are and how financial problems in one country or region can 

quickly affect other parts of the world. Globalization reduces the ability of individual nations to 

effectively use monetary and fiscal policy to control the national economy. 

https://www.techtarget.com/searchitchannel/news/252450512/Hardware-makers-discuss-tariff-effects-at-channel-event
https://www.techtarget.com/searchcio/definition/outsourcing
https://www.techtarget.com/searchcio/definition/The-Great-Recession


97 
 

⚫ Damages cultural identities. Critics of globalization decry the decimation of unique cultural 

identities and languages that comes with the international movement of businesses and people. 

At the same time, the internet and social media are driving this trend even without the 

movement of people and commerce. 

⚫ Increases the likelihood of pandemics. Increased travel, critics say, has the potential to 

increase the risk of pandemics. The H1N1 (swine flu) outbreak of 2009 and coronavirus in 

2020 and 2021 are two examples of serious diseases that spread to multiple nations quickly. 

Future of globalization 

✓ Technological advances, particularly blockchain, mobile communication and banking, are 

fueling economic globalization. Nonetheless, rising levels of protectionism and anti-globalization 

sentiment in several countries could slow or even reverse the rapid pace of globalization. 

✓ Nationalism and increasing trends toward conservative economic policies are driving these anti-

globalization efforts. 

✓ Global trade is also made more difficult and facing rising threats from other factors, such as these: 

⚫ climate change 

⚫ decaying infrastructure 

⚫ cyber attacks 

⚫ human rights abuses 

⚫ The takeaway 

✓ Globalization is a longstanding trend that is in the process of changing and possibly slowing. There 

are advantages to the more open border and free trade that globalization promotes, as well as 

negative consequences. 

✓ In a modern, post-pandemic world, individuals, businesses and countries must consider both sides 

of the globalization issue. Learn how companies are rethinking global supply chains to avoid 

disruption and reap the benefits of globalization. 

CHALLENGES IN BUILDING GLOBAL TEAMS 

✓ One of the biggest requests and agenda items that arises when coaching chief executives, chief 

marketing officers and other global leaders today is: "How do I lead my global team effectively?" 

✓ As a result of globalization, the traditional boundaries that existed within organizations are 

becoming increasingly blurred. This is having an impact on how top teams are being organized in 

effect, how they must be led. This can also create greater challenges.  

✓ Many executives say that leading a team spanning border can be difficult, if not frustrating. 

✓ Getting their teams in shape can be a slow process and take a great deal of patience, due to the 

complications of time-zone differences, loss of face-to-face Contact, language barriers, 

technology issues or having different ways of conducting business in different regions. 

https://www.techtarget.com/searchcio/definition/blockchain
https://www.techtarget.com/searcherp/news/252499129/Supply-chain-disruptions-force-companies-to-rethink-strategy


98 
 

Five challenges can emerge within global teams:  

✓ "Cannot trust what I cannot see", where a lack of face-to-face contact makes it difficult to build 

relationships. 

✓ "Out of sight, out of mind", where real work takes priority over virtual work.  

✓ "Stifled diversity", when force-fitting universal processes can kill creativity. 

✓ "Old-school leadership”, where the command-and-control style may not be appropriate. 

✓ “Time-zone resentment" conducting meetings consistently in the "middle" zone can create 

resentment from those having to dial in during the early morning or late evening. 

MODELS FOR THE EXECUTION OF SOME EFFECTIVE MANAGEMENT TECHNIQUES FOR 

MANAGING GLOBAL TEAMS 

Waterfall Model - Design 

✓ Waterfall approach was first SDLC Model to be used widely in Software Engineering to ensure 

success of the project. In "The Waterfall" approach, the whole process of software development is 

divided into separate phases. In this Waterfall model, typically, the outcome of one phase acts as the 

input for the next phase sequentially. The following illustration is a representation of the different 

phases of the Waterfall Model. 

✓ The sequential phases in Waterfall model are − 

• Requirement Gathering and analysis − All possible requirements of the system to be 

developed are captured in this phase and documented in a requirement specification 

document. 

• System Design − The requirement specifications from first phase are studied in this phase 

and the system design is prepared. This system design helps in specifying hardware and 

system requirements and helps in defining the overall system architecture. 

• Implementation − With inputs from the system design, the system is first developed in 

small programs called units, which are integrated in the next phase. Each unit is developed 

and tested for its functionality, which is referred to as Unit Testing. 

 



99 
 

• Integration and Testing − All the units developed in the implementation phase are integrated 

into a system after testing of each unit. Post integration the entire system is tested for any faults 

and failures. 

• Deployment of system − Once the functional and non-functional testing is done; the product is 

deployed in the customer environment or released into the market. 

• Maintenance − There are some issues which come up in the client environment. To fix those 

issues, patches are released. Also, to enhance the product some better versions are released. 

Maintenance is done to deliver these changes in the customer environment. 

✓ All these phases are cascaded to each other in which progress is seen as flowing steadily 

downwards (like a waterfall) through the phases. The next phase is started only after the defined 

set of goals are achieved for previous phase and it is signed off, so the name "Waterfall Model". In 

this model, phases do not overlap. 

Spiral model 

✓ The spiral model combines the idea of iterative development with the systematic, controlled 

aspects of the waterfall model.  

✓ This Spiral model is a combination of iterative development process model and sequential 

linear development model i.e. the waterfall model with a very high emphasis on risk analysis. It 

allows incremental releases of the product or incremental refinement through each iteration 

around the spiral. 

✓ The spiral model has four phases. A software project repeatedly passes through these phases in 

iterations called Spirals. 

• Identification: This phase starts with gathering the business requirements in the baseline 

spiral. In the subsequent spirals as the product matures, identification of system requirements, 

subsystem requirements and unit requirements are all done in this phase. This phase also 

includes understanding the system requirements by continuous communication between the 

customer and the system analyst. At the end of the spiral, the product is deployed in the 

identified market. 

• Design: The Design phase starts with the conceptual design in the baseline spiral and involves 

architectural design, logical design of modules, physical product design and the final design in 

the subsequent spirals. 

• Construct or Build: The Construct phase refers to production of the actual software product at 

every spiral. In the baseline spiral, when the product is just thought of and the design is being 

developed a POC (Proof of Concept) is developed in this phase to get customer feedback. Then 

in the subsequent spirals with higher clarity on requirements and design details a working 



100 
 

model of the software called build is produced with a version number. These builds are sent to 

the customer for feedback. 

• Evaluation and Risk Analysis: Risk Analysis 

includes identifying, estimating and monitoring 

the technical feasibility and management risks, 

such as schedule slippage and cost overrun. After 

testing the build, at the end of first iteration, the 

customer evaluates the software and provides 

feedback. 

✓ The following illustration is a representation of the 

Spiral Model, listing the activities in each phase. Based 

on the customer evaluation, the software 

development process enters the next iteration and 

subsequently follows the linear approach to 

implement the feedback suggested by the customer. The process of iterations along the spiral 

continues throughout the life of the software. 

V-model 

✓ The V-model is an SDLC model where execution of processes happens in a sequential manner in a 

V-shape. It is also known as Verification and Validation model. 

✓ The V-Model is an extension of the waterfall model and is based on the association of a testing 

phase for each corresponding development stage. This means that for every single phase in the 

development cycle, there is a directly associated testing phase.  

✓ This is a highly-disciplined model and the next phase starts only after completion of the previous 

phase. 

V-Model - Design 

✓ Under the V-Model, the corresponding 

testing phase of the development phase is planned 

in parallel. So, there are Verification phases on one 

side of the ‘V’ and Validation phases on the other 

side. The Coding Phase joins the two sides of the V-

Model. The following illustration depicts the 

different phases in a V-Model of the SDLC. 

V-Model - Verification Phases 

There are several Verification phases in the V-

Model, each of these are explained in detail below. 



101 
 

Business Requirement Analysis 

This is the first phase in the development cycle where the product requirements are understood 

from the customer’s perspective. This phase involves detailed communication with the customer to 

understand his expectations and exact requirement. This is a very important activity and needs to be 

managed well, as most of the customers are not sure about what exactly they need. The acceptance 

test design planning is done at this stage as business requirements can be used as an input for 

acceptance testing. 

System Design 

Once you have the clear and detailed product requirements, it is time to design the complete system. 

The system design will have the understanding and detailing the complete hardware and 

communication setup for the product under development. The system test plan is developed based on 

the system design. Doing this at an earlier stage leaves more time for the actual test execution later. 

Architectural Design 

Architectural specifications are understood and designed in this phase. Usually more than one 

technical approach is proposed and based on the technical and financial feasibility the final decision is 

taken. The system design is broken down further into modules taking up different functionality. This is 

also referred to as High Level Design (HLD). 

The data transfer and communication between the internal modules and with the outside world (other 

systems) is clearly understood and defined in this stage. With this information, integration tests can be 

designed and documented during this stage. 

Module Design 

In this phase, the detailed internal design for all the system modules is specified, referred to as Low 

Level Design (LLD). It is important that the design is compatible with the other modules in the system 

architecture and the other external systems. The unit tests are an essential part of any development 

process and helps eliminate the maximum faults and errors at a very early stage. These unit tests can 

be designed at this stage based on the internal module designs. 

Coding Phase 

The actual coding of the system modules designed in the design phase is taken up in the Coding phase. 

The best suitable programming language is decided based on the system and architectural 

requirements. 

The coding is performed based on the coding guidelines and standards. The code goes through 

numerous code reviews and is optimized for best performance before the final build is checked into the 

repository. 

Validation Phases  

The different Validation Phases in a V-Model are explained in detail below. 



102 
 

Unit Testing 

Unit tests designed in the module design phase are executed on the code during this validation phase. 

Unit testing is the testing at code level and helps eliminate bugs at an early stage, though all defects 

cannot be uncovered by unit testing. 

Integration Testing 

Integration testing is associated with the architectural design phase. Integration tests are performed to 

test the coexistence and communication of the internal modules within the system. 

System Testing 

System testing is directly associated with the system design phase. System tests check the entire 

system functionality and the communication of the system under development with external systems. 

Most of the software and hardware compatibility issues can be uncovered during this system test 

execution. 

Acceptance Testing 

Acceptance testing is associated with the business requirement analysis phase and involves testing the 

product in user environment. Acceptance tests uncover the compatibility issues with the other systems 

available in the user environment. It also discovers the non-functional issues such as load and 

performance defects in the actual user environment. 

IMPACT OF THE INTERNET ON PROJECT MANAGEMENT 

What is Internet of Things (IoT)? 

✓ The Internet of Things (IoT) can be defined as “a network of physical objects or people called 

things" that are embedded with software electronics, network, and sensors which allows these 

objects to collect and exchange data.  

✓ The goal of lot is to extend to internet connectivity from standard devices like computer, mobile, 

tablet to relatively dumb devices like a toaster.  

✓ lot makes virtually everything "smart," by improving aspects of our life with the power of data 

collection, Al algorithm, and networks 

✓ The thing in lot can also be a person with a diabetes monitor implant, an animal with tracking 

devices, etc. 

✓ The IoT is essentially the global network of devices that can communicate with one another and 

end users through the internet. 

✓ “Gartner, Inc. forecasts that 8.4 billion connected things will be in use worldwide in 2017, up 31 

percent from 2016, and will reach 20.4 billion by 2020.” 

✓ That’s almost three devices per person, and each of those devices will be measuring data and 

facilitating communication. 



103 
 

✓ Many major technology firms are developing their own IoT platforms, such as Amazon Web 

Services, Microsoft Azure, and Google Cloud. 

✓ But preparing for the IoT isn’t just a concern for mega corporations. Project managers and small 

business leaders also need to be ready for a connected workplace. 

✓ The IoT intersects with project management on everything from team collaboration to data 

collection. You can expect real-time status reporting via IoT to user in a new era of dynamic 

planning and revolutionized project execution. 

✓ Data collection will happen seamlessly and constantly, allowing leaders to make more informed 

decisions. Inventory and resources will be easily monitored at all times. 

✓ Devices can automatically sense and respond to what is happening around them or in their 

network, reducing the need for human intervention, lowering operating costs, increasing response 

times, and minimizing errors. Moreover, customers can expect to receive better and faster service. 

✓ In terms of project management technology, the IoT will fundamentally alter the speed of 

project execution. Organizations that capitalize on the IoT will complete projects faster than 

those that don’t, and organizations that fail to adapt to the IoT revolution will be left hopelessly 

behind. 

✓ At least six things will change, which will require project managers to adapt both technically and 

systematically. 

THE EFFECT OF INTERNET ON PROJECT MANAGEMENT 

IoT enables hyper speed reporting  

✓ lot substantially reduces the cost of communication. 

✓ The hyper connected devices and constant flow of data 

that automate systems will speed things up 

considerably.  

✓ No more idle times are required in between activities. 

✓ No more silos from support systems such as databases, 

storage, and its operations. 

IMPACT Say you're an IT project manager, and you need to 

run a status report on all of your organization's desktop and 

laptop computers and tablets and mobile devices. In the 

past, this might take weeks. But with the lot, a project manager could run a report on the quantity 

and condition of all of those pieces in an instant. 

IoT allows complete monitoring and process control  

https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/?v=18.20
https://cloud.google.com/
https://www.capterra.com/project-management-software/


104 
 

✓ loT allows project managers, management, and stakeholders to monitor and control activities in 

real time. The overall snapshot of a comprehensive system is monitored on a single screen, which 

allows overseers to immediately attend to any interruptions.  

IMPACT Using equipment as an example, sensors will be used for monitoring and predicting 

maintenance needs throughout a project's lifetime. The scope of devices, activities and conditions that 

need to be tested will increase exponentially as projects become more complex. Ease of use and 

environments suddenly become critical. 

IOT creates an explosion of valuable project data  

✓ In the past, archiving historical data was a time and labour-intensive process. With the lot, 

historical data will become available immediately, which is extremely helpful for current and 

future projects. Everything from budgeting to individual meetings with team members will be 

recorded in great detail, providing a solid foundation for future decisions. 

IMPACT Pro Management tool will need to be more responsive and scalable to accommodate this data 

explosion. Organizations need to make sure that their project management software package is capable 

of growing to accommodate this incoming of data. They also need to know what's time to pored-for 

example, if your team is capping out on your storage allowance each month. 

IoT allows super-deep data analytics  

✓ With the loT comes advanced data analytics, and advanced data analytics require advanced 

interpretations and management. 

IMPACT Project managers must upgrade their skills related to data handling, which could mean 

increasing spend and resources toward data hiring experienced data analysts, and accounting for data 

analysis when creating the project timeline.  In other words, the more familiar project managers are 

with the importance advanced data analysis, the better the chances for project success. 

lOT users in stricter ethical and legal implications  

✓ Today's internet-connected devices send data to each other extremely fast. We're not dealing with 

dial-up modems anymore. One error could create a domino effect that could topple an entire 

project or, in extreme cases, an entire career before you can say "Enron". 

IMPACT Businesses of all sizes need to impose stricter ethical and legal implications on any slight 

mistake or oversight, Project managers and team members should be aware of this early on so that the 

project can be completed with minimal ethical and legal risks. 

IOT raises expectations for all stakeholders 

✓ Once companies adopt loT, the marketplace will be transformed into a level playing field. Only the 

strongest and the fittest will survive. No can organizations hide behind old excuses such as, "We 

don't have to that data" or "We need a few weeks to get that report back" 



105 
 

IMPACT Project managers need to lead the charge when it comes to raising standards in the late era. 

As a project manager, your job is to be aware of the most useful technology available and enable 

your team to use it. 

MANAGING PROJECTS FOR THE INTERNET 

✓ The entire IOT process starts with the devices themselves like smartphones, smartwatches, 

electronic appliances like TV, Washing Machine which helps you to communicate with the IOT 

platform. Here, are four fundamental components of an IoT system: 

1)Sensors/Devices: Sensors or devices are a key component that helps you to collect live data from 

the surrounding environment. All this data may have various levels of complexities. It could be a 

simple temperature monitoring sensor, or it may be in the form of the video feed. A device may have 

various types of sensors which performs multiple tasks apart from sensing. Example. A mobile 

phone is a device which has multiple sensors like GPS, camera but your smartphone is not able to sense 

these things. 

2)Connectivity: All the collected data is sent to a cloud infrastructure. The sensors should be 

connected to the doUD (Department of Urban Development) using various mediums of 

communications. These communication mediums include mobile or satellite networks, Bluetooth, 

WI-FI, WAN, etc  

3) Data Processing: Once that data is collected, and it gets to the cloud, the software performs 

processing on the gathered data. This process can be just checking the temperature, reading on 

devices like AC or heaters. However, it can sometimes also be very complex like identifying objects, 

using computer vision on video. 

4)User Interface: The information needs to be available to the end-user in some way which can be 

achieved by triggering alarms on their phones or sending them notification through email or text 

message. The user sometimes might need an interface which actively checks their IOT system.  For 

example, the user has a camera installed in his home. He wants to access video recording and all the 

feeds with the help of a web server. However, it's not always one-way communication.  

✓ Depending on the lot application and complexity of the system, the user may also be able to 

perform an action which may create cascading effects. For example, if a user detects any changes 

in the temperature of the refrigerator, with the help of IOT technology the user should able to 

adjust the temperature with the help of their mobile phone. 

EFFECTS OF PROJECT MANAGEMENT ACTIVITIES 

✓ With the advent of globalization, project management is no longer a local issue, but an 

international affair that is risky in nature. Changes in the global environment are presenting 

organizations with both opportunities and challenges.  



106 
 

✓ However, a review of the results of project monitoring and evaluation on World Bank projects 

indicates that many of the key problems of implementation lie in the general environment of the 

project, and are not under the direct control of the project manager.  

✓ The project management (PM) environment for international development projects is also much 

more complicated than domestic projects in industrialized countries. Project managers should 

understand the social, economic, political and cultural factors that affect the project environment. 

✓ International projects are more complicated and riskier than domestic projects. Some risks 

encountered in international projects are not the same as those in domestic projects. 

✓ The cultural differences issue has been recognized as one of the main concerns in international 

projects management. Although there may also be cultural differences in a domestic project team 

because of the team members' difference in origin, international project teams seem to be more 

easily influenced by cultural differences.  

✓ Kwak (2002) states that the culture issue is the least known but the most hazardous in the context 

of international development projects. 

Some Issues in Managing International Projects 

Many researchers and practitioners are aware of the challenge of managing international projects, 

since international projects face uncertainties caused by host country conditions. Researchers have 

previously identified some key factors that constrain the success of international projects. 

Cultural differences 

Large-scale international projects are of a global nature. Therefore, a high degree of coordination 

and communication is needed. Communication in the international environment is complicated by 

different languages, cultures and etiquette.  

✓ The internationalization in project management creates intercultural communication problems 

that result in significant misunderstanding and conflict. Pheng and Leong (2000) conducted 

research on international construction in China, and determined that cultural differences are a 

critical factor that can actually affect the outcome of an international project.  

✓ For an international project manager, understanding key concepts in cross-cultural 

management and project management is the basic requirement in the era of globalization.  

✓ Muriithi and Crawford (2003) also argue that Western management concepts may not be 

applicable to other cultures that are not so deeply rooted in the Western philosophy. They suggest 

that appropriate modifications can be made to current management theories by studying cultural 

differences. 

Political factors 

Khattab, Anchor and Davies (2007) did a study to examine the vulnerability of international projects to 

political risks. Their study results showed that political risks are ranked first by respondents. Other 



107 
 

authors also mention that political interventions can sometimes decide the success of foreign-invested 

firms (Buckley, Clegg & Hui, 2006).  

✓ Political risks are the key risks to successful international construction contracting. For 

international projects, these factors can produce problems that may not be problematic in 

domestic projects. Dikmen, Birgonul and Han (2007) state that political risk factors receive the 

most attention from researchers in international projects. 

Legal factors. 

One of the more difficult aspects of doing business globally is dealing with vast differences in legal 

and regulatory environments. The United States, for example, has an established set of laws and 

regulations that provide direction to businesses operating within its borders.  

But because there is no global legal system, key areas of business law, for example, contract 

provisions and copyright protection, can be treated in different ways in different countries. 

Companies doing international business often face many inconsistent laws and regulations (Buckley, 

Clegg & Hui, 2006). 

Economic factors 

If you plan to do business in a foreign country, you need to know its level of economic development. 

You also should be aware of factors influencing the value of its currency and the impact that 

changes in that value will have on your profits. If you don't understand a nation's level of economic 

development, you'll have trouble answering some basic questions, such as; will consumers in this 

country be able to afford the product I want to sell? How many units can I expect to sell? Will it be 

possible to make a reasonable profit? Researchers pay a great deal of attention to economic risk factors 

in international projects. 

COMPARISON OF PROJECT MANAGEMENT SOFTWARE 

Dot Project 

✓ DotProject is a web-based, multi-user and multi-language project management application. It is 

free and open so investitware, and is maintained by an community of volunteer programmers. 

✓ Dot Project is an Open Source Project Management application supported free of charge by web 

developers from all over the world.  

✓ DotProject is in PHP and is free to anyone who would like to download and use it. It is easy to work 

with dotProject because it has cleaned and simple user interface.  

✓ dotProject is mostly a task-oriented project management system, predating contemporary tools 

addressing methodologies such as Agile software development. Instead, it uses 

the "waterfall" model to manage tasks, sequentially and/or in parallel, assigned to different 

members of a team or teams, and establishing dependencies between tasks and milestones. It can 

display such relationships visually using Gantt charts. 

https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Gantt_charts


108 
 

✓ It is not specifically designed for software project management but can be used by most kinds of 

project-oriented service companies (such as design studios, architects, media producers, lawyer 

offices, and the like), all of which organize their work conceptually in similar ways.  

✓ Unlike most contemporary software project management tools, dotProject cannot be easily 

integrated with the usual constellation of 'business tools'; instead, it is a complete, standalone 

application, not requiring anything else besides a platform that supports PHP (it is web server 

agnostic) and MySQL/MariaDB. Except for drawing Gantt graphics, it has a reasonably small 

footprint in terms of memory and disk space requirements. 

✓ While dotProject is self-contained in terms of user authentication and management, it can also 

integrate with an external LDAP server, as well as synchronize its users with 

a phpNuke installation. Further authentication methods are possible to be developed separately 

but are currently not part of the core software. 

✓ The core of dotProject focuses on Companies, which may have subunits known as Departments, 

which, in turn, have Users. Companies can be internal or external; thus, a project can be 

shared/viewed by customers, by giving them access via a special Role. Roles have a reasonably 

complex permissions system, allowing a certain degree of fine-tuning of what kind of information 

can be viewed and/or edited by the users. There is even the possibility of having a 'public' role 

with no access to any information but nevertheless able to submit tickets via the 

integrated ticketing system. 

✓ Projects, in turn, are linked to one company and (optionally) one or more departments in that 

company; users assigned to a specific project, however, may come from any company or 

department — thus allowing cross-company development, or the involvement of external users. 

✓ Projects are divided into Tasks, which can have all sorts of dependencies between them; tasks 

can also have subtasks, and they can be assigned to specific milestones. This allows the 

establishment of complex relationships between the team members, the many projects they might 

be involved in, and the amount of work to be distributed among all. 

✓  As is common with other project management tools, tasks can be created as mere stubs and 

completed later; assigned and reassigned to team members; or even moved across projects (or 

becoming subtasks of other tasks). 

✓ Team members are expected to register the amount of time they spend on each task, which is 

accomplished via Logs. These are often one-line comments with an estimate of the time 

consumed (but can optionally have much more information); dotProject will take those logs into 

account when calculating the workload, the overall cost of the project so far (and compare it to the 

budget), as well as figuring out what tasks are being completed in due time or are overdue. 

https://en.wikipedia.org/wiki/LDAP
https://en.wikipedia.org/wiki/PhpNuke
https://en.wikipedia.org/wiki/Issue_tracking_system


109 
 

✓ Depending on the company style and its level of activity tracking — according to their business 

culture — time-tracking can be as simple as just closing a task, or it might involve several logs until 

a supervisor deems that the task can be safely closed. 

✓ All these activities are tracked and made part of the overall project history.  

✓ Optionally, dotProject can send emails to the involved parties, triggered by special conditions — 

such as a task being overdue, or having been completed so that a customer can be invoiced.  

✓ While dotProject is not a fully-fledged invoicing system, it can produce enough data output to send 

reasonably detailed invoices to customers.  

✓ At the same time, via its reporting facility, the management or the board can get properly 

formatted reports about ongoing projects, besides having access to the Gantt charts. 

✓ Communication between team members can be as simple as leaving comments on tasks and/or 

logs, but dotProject also includes a minimalistic Forum facility. These are usually assigned to a 

single project (but each project can have several separate forums, with separate moderators, 

serving different purposes). 

✓ And while dotProject is not a sophisticated document management system, it nevertheless 

allows files to be uploaded to a special directory, also assigned to specific projects/tasks, and 

under control of the permission system (file names get hashed, and only someone with the proper 

permission will be able to retrieve those files).  

✓ There is a very simple built-in file management system to allow for file uploading and categorizing 

with metadata. The file folder can theoretically be mounted on an external file system on a cloud 

storage provider — so long as this is achieved at the operating system level; dotProject, by itself, 

does not connect directly to any storage provider. dotProject also includes a very simple versioning 

system. 

✓ Tasks and milestones are also integrated into the built-in Calendar module, which is usually the 

preset entry point of the user — allowing them to keep up with the tasks they're involved in, or 

those that they supervise.  

✓ There is some flexibility in how the information is presented. It is unknown if there is a way to 

automatically subscribe to a specific calendar; by contrast, Contacts, a module that allows editing 

the data related to each user, also permits exports using the vCard format. 

✓ Its features include, 

⚫ User Management 

⚫ Ticketing Support System provided via email 

⚫ Client Management 

⚫ Task Listing 

⚫ File Archive 

https://en.wikipedia.org/wiki/VCard


110 
 

⚫ Contact List 

⚫ Calendar 

⚫ Discussion Forum 

Launchpad 

✓ Launchpad is a collaboration and project management software solution designed to be a unique 

collaboration and hosting platform for developing software projects. Some of the goals Launchpad 

was created for are: 

⚫ Encourage project contribution 

⚫ Develop, endorse and publish software 

⚫ Build communities through teams and mailing lists  

⚫ Improve collaboration with other developers and projects 

⚫ Share cross-project code, bug reports, ideas and translations  

✓ Utilizing Launchpad removes the need for external mail hosting and provides users with a single 

account to manage their involvement in multiple mailing lists.  

✓ Launchpad mailing lists are user-friendly and team-oriented. They things by allowing teams to 

manage one central mailing list. All team are able to subscribe to the team mailing list. 

✓ TECHNOLOGY: Once you register as a user, Launchpad software can be assessed by logging online 

through their website. Launchpad provides convenient 24/7 access. 

✓ USERS: Launchpad is designed primarily for small businesses of any type. 

✓ PRICING: Launchpad is free to use for open source software projects and is available at a low 

annual subscription price for all other projects. It can be accessed from anywhere at any time. 

FEATURES  

⚫ Bugs by email 

⚫ Bug tracking 

⚫ Share bug reports across projects 

⚫ Code hosting and review 

⚫ Direct links to code 

⚫ Mailing lists 

⚫ Blueprint specification tracking 

⚫ Transform patches into fixes  

⚫ Team PPAs 

⚫ Multiple architectures 

⚫ Web services API 

 

⚫ People profiles 

⚫ Team branches 

⚫ Team responsibility 

⚫ Python library 

⚫ Karma 

⚫ Multi-language 

⚫ Ubuntu package hosting 

⚫ Automatic software updates and distribution 

⚫  Information on publishing your software 

⚫ Commercial project subscriptions 

⚫ Quick and easy account authentication 

 



111 
 

open Proj 

✓ Open Proj is open source project management software intended as a complete desktop 

replacement for Microsoft Project, being able to open existing native Project files. OpenProj runs 

on the Java Platform, allowing it to run on a variety of different operating systems 

✓ OpenProject is free and open source software for classical as well as agile project management to 

support your team along the entire project life-cycle. OpenProject is available in more than 30 

languages. 

✓ OpenProject is licensed under GNU GPL V3. The source code is freely published on GitHub. We 

understand free as in free speech. We do offer paid subscriptions for our software. 

✓ OpenProject exists since 2011 and is a fork of the deprecated ChiliProject which was a fork of 

Redmine. 

First steps to get started 

✓ To get started with OpenProject, there are a few easy steps to follow: 

⚫ Get an account and sign in 

⚫ Create a new project 

⚫ Invite team members to collaborate 

⚫ Create work packages 

⚫ Set up a project plan 

The entire Project Management Life-Cycle 

✓ OpenProject offers a full feature set to support project teams along the entire project management 

process: 

 

✓ OpenProject enables project collaboration and communication without system interruption 

from the initial project idea until project closure and documentation. The following sections 

provide links to the documentation for each project phase: 

PROJECT PHASE DOCUMENTATION FOR 

Project concept and initiation 

Collect ideas and specify project scope and deliverables: 

set up a project, document initial ideas, project 

description, invite members. 

https://www.openproject.org/docs/getting-started/openproject-introduction/#the-entire-project-management-life-cycle
https://github.com/opf/openproject
https://www.openproject.org/docs/getting-started/openproject-introduction/#openproject-products
https://www.openproject.org/docs/getting-started/openproject-introduction/#project-concept-and-initiation


112 
 

PROJECT PHASE DOCUMENTATION FOR 

Project definition and planning 
Create a project overview with detailed information, set 

up a project plan, create your roadmap. 

Project launch or execution 

Manage all project activities, such as tasks, deliverables, 

risks, features, bugs, change requests. Use agile boards 

with your teams, document meetings, share news. 

Project performance and control 

Create and manage project budgets, track and evaluate 

time and costs. Have custom reports for accurate, 

current insight into project performance and allocated 

resources. 

Project close 

Document project achievements, lessons learned, best 

practices and easily summarize the main results of a 

project. Archive projects for later reference and lessons 

learned. 

 

Project concept and initiation OpenProject supports the initial set-up and configuration of a project 

structure. 

FEATURES DOCUMENTATION FOR 

Create a new project Create and set up a new project in OpenProject 

Set up a project structure 
Create a project hierarchy to structure your work in 

OpenProject 

Project settings Create first ideas, tasks, rough milestones. 

Add members Invite your team to collaborate in OpenProject. 

 

Project definition and planning Create a project overview with more detailed information, set up 

your project plan, structure your work, create a roadmap. 

FEATURES DOCUMENTATION FOR 

Global projects overview Create a project overview with important project information. 

https://www.openproject.org/docs/getting-started/openproject-introduction/#project-definition-and-planning
https://www.openproject.org/docs/getting-started/openproject-introduction/#project-launch-or-execution
https://www.openproject.org/docs/getting-started/openproject-introduction/#project-performance-and-control
https://www.openproject.org/docs/getting-started/openproject-introduction/#project-close
https://www.openproject.org/docs/getting-started/projects/#create-a-new-project
https://www.openproject.org/docs/user-guide/projects/#project-structure
https://www.openproject.org/docs/user-guide/projects/#project-settings
https://www.openproject.org/docs/getting-started/invite-members
https://www.openproject.org/docs/user-guide


113 
 

FEATURES DOCUMENTATION FOR 

Structure your work Create work packages and structure your work 

Roadmap planning Create a roadmap for your project. 

 

Project launch or execution Manage all project activities, such as tasks, deliverables, risks, features, 

bugs, change requests in the work packages. Use agile boards with your teams. Document meetings, 

share news. 

FEATURES DOCUMENTATION FOR 

Work packages Create and manage all project deliverables, tasks, features, risks, and more. 

Boards Manage your work with an Agile approach in the flexible boards view. 

Meetings 
Plan and document your project meetings and share minutes with all your 

team. 

News Share project news with your team. 

Wiki 
Document all important project information and keep it up to date with your 

team. 

 

Project performance and control Create and manage project budgets, track and evaluate time and 

costs. Have custom reports for accurate, current insight into project performance and allocated 

resources. 

FEATURES DOCUMENTATION FOR 

Dashboard Visualize your progress within a project or project overarching. 

Budgets Create and manage budgets in your project. 

Time tracking Track time for any work within your project. 

Track unit costs Track unit costs for your project. 

Time and cost 

reporting 

Have accurate detailed reports of current spent time and costs within 

your project. 

 

https://www.openproject.org/docs/getting-started/work-packages-introduction
https://www.openproject.org/docs/getting-started/gantt-chart-introduction
https://www.openproject.org/docs/user-guide/work-packages/create-work-package
https://www.openproject.org/docs/user-guide/agile-boards
https://www.openproject.org/docs/user-guide/meetings
https://www.openproject.org/docs/user-guide/news
https://www.openproject.org/docs/user-guide/wiki
https://www.openproject.org/docs/user-guide/start-page
https://www.openproject.org/docs/user-guide/budgets
https://www.openproject.org/docs/user-guide/time-and-costs/time-tracking
https://www.openproject.org/docs/user-guide/time-and-costs/cost-tracking
https://www.openproject.org/docs/user-guide/time-and-costs/reporting
https://www.openproject.org/docs/user-guide/time-and-costs/reporting


114 
 

Project close Document project achievements, lessons learned, best practices and easily summarize 

the main results of a project. Archive projects for later reference and lessons learned. 

FEATURES DOCUMENTATION FOR 

Wiki 
Document all relevant project information, lessons learned, best 

practices, results, and more. 

Project archive Archive your project for further reference and documentation. 

 

CASE STUDY PRINCE2 (refer internet) 

 

 

 

https://www.openproject.org/docs/user-guide/wiki/create-edit-wiki
https://www.openproject.org/docs/user-guide/projects/#archive-a-project


 

29 

 

6. Jim Lewis, “DEVOPS: A complete beginner’s guide to DevOps best practices”, ISBN- 

13:978-1673259148, ISBN-10: 1673259146, First Edition,2019 

 

 

CO-PO Mapping 

CO POs 

PO1 PO2 PO3 PO4 PO5 PO6 

1 2 1 2 2 2 2 

2 2 1 2 2 2 2 

3 3 1 3 2 2 2 

4 2 1 2 2 2 2 

5 2 1 2 2 2 2 

Avg 2.2 1 2.2 2 2 2 

 

 

MC4204 MOBILE APPLICATION DEVELOPMENT L  T  P C 

3  0  2  4 

COURSE  OBJECTIVES: 

 To understand the need and characteristics of mobile applications. 

 To design the right user interface for mobile applications. 

 To understand the design issues in the development of mobile applications. 

 To understand the development procedure for mobile applications. 

 To develop mobile applications using various tools and platforms. 

 

UNIT I INTRODUCTION 15 

Mobile Application Model – Infrastructure and Managing Resources – Mobile Device Profiles – 

Frameworks and Tools 

 

● Installation of necessary components and software 

UNIT II USER INTERFACE 15 

Generic UI Development - Multimodal and Multichannel UI –Gesture Based UI – Screen 

Elements and Layouts – Voice XML. 

 

Lab Component:  

i. Implement mobile applications using UI toolkits and frameworks. 

ii. Design an application that uses Layout Managers and event listeners. 

 

UNIT III APPLICATION DESIGN   15 

Memory Management – Design Patterns for Limited Memory – Workflow for Application 

development – Java API – Dynamic Linking – Plugins and rule of thumb for using DLLs – 

Multithreading in Java - Concurrency and Resource Management. 

 

Lab Component: 

i. Design a mobile application that is aware of the resource constraints of mobile devices. 

ii. Design an application that uses Dynamic Linking 



 

30 

 

 

UNIT IV MOBILE OS  15 

Mobile OS: Android, iOS – Android Application Architecture –  Understanding the anatomy of a 

mobile application - Android basic components –Intents and Services – Storing and Retrieving 

data – Packaging and Deployment – Security and Hacking. 

 

Lab Component: 

i. Develop an application that makes use of mobile database 

ii. Implement an android application that writes data into the SD card. 

 

UNIT V APPLICATION DEVELOPMENT 15 

Communication via the Web – Notification and Alarms – Graphics and Multimedia: Layer 

Animation, Event handling and Graphics services – Telephony – Location based services 

 

Lab Component:  

 

i. Develop a web based mobile application that accesses internet and location data. 

ii. Develop an android application using telephony to send SMS. 

 

TOTAL:75 PERIODS 

COURSE OUTCOMES: 

On completion of the course, the student will be able to  

   CO1: Understand the basics of mobile application development frameworks and tools. 

CO2: Develop a UI for mobile applications. 

CO3: Design mobile applications that manage memory dynamically. 

CO4: Build applications based on mobile OS like Android, iOs. 

CO5: Build location based services. 

 

SOFTWARE REQUIREMENTS 

1. JDK, ECLIPSE IDE / equivalent, ANDROID STUDIO 

 

REFERENCES 

1. Reto Meier, Ian Lake, “Professional Android”, 4th Edition, Wrox, 2018.  

2. Zigurd Mednieks, Laird Dornin, G. Blake Meike, Masumi Nakamura, “Programming 

Android”, O’Reilly, 2nd Edition, 2012. 

3. Alasdair Allan, “Learning iOS Programming”, O’Reilly, Third Edition, 2013. 

4. Bill Phillips, Chris Stewart, Brian Hardy, and Kristin Marsicano, Android Programming: The 

Big Nerd Ranch Guide, 4th edition, 2019. 

5. Christian Keur, Aaron Hillegass, iOS Programming: The Big Nerd Ranch Guide, 6th 

Edition, O’Reilly, 2016. 

6. Barry Burd, “Android Application Development All-In-One for Dummies”, 3rd Edition, 2021. 

 

 

CO-PO Mapping 

CO POs 

PO1 PO2 PO3 PO4 PO5 PO6 

1 2 1 2 2 2 2 



 

 

 

The Generic User Interface (Generic UI, GUI) framework allows you to create UI screens 

using Java and XML. XML is optional but it provides a declarative approach to the screen layout 

and reduces the amount of code which is required for building the user interface. 

 
The application screens consist of the following parts: 

• Descriptors – XML files for declarative definition of the screen layout and data components. 

• Controllers – Java classes for handling events generated by the screen and its UI controls and 

for programmatic manipulation with the screen components. 

 

The code of application screens interacts with visual component interfaces (VCL Interfaces). 

These interfaces are implemented using the Vaadin framework components. 

Visual Components Library (VCL) contains a large set of ready-to-use components. 

Data components provide a unified interface for binding visual components to entities and for 

working with entities in screen controllers. 

Infrastructure includes the main application window and other common client mechanisms. 

 

 Screens and Fragments 

A screen is a main unit of the generic UI. It contains visual components, data containers and non-

visual components. A screen can be displayed inside the main application window either in the 

tab or as a modal dialog. 

 

The main part of the screen is a Java class called controller. Layout of the screen is usually 

defined in an XML file called descriptor. 

 

In order to show a screen, the framework creates a new instance of the Window visual 

component, connects the window with the screen controller and loads the screen layout 

components as child components of the window. After that, the screen’s window is added to the 

main application window. 

 

A fragment is another UI building block which can be used as part of screens and other 

fragments. It is very similar to screen internally, but has a specific lifecycle and 

the Fragment visual component instead of Window at the root of the components tree. Fragments 

also have controllers and XML descriptors. 

 

UNIT II   USER INTERFACE                  

2.1 Generic  UI  Development  -  2.2 Multimodal  and  Multichannel  UI  –2.3 Gesture  

Based  UI  – 2.4 Screen Elements and 2.5 Layouts – 2.6 Voice XML.  
 

https://doc.cuba-platform.com/manual-latest/screen_descriptors.html
https://doc.cuba-platform.com/manual-latest/screen_controllers.html
https://doc.cuba-platform.com/manual-latest/gui_vcl.html
https://doc.cuba-platform.com/manual-latest/gui_data.html
https://doc.cuba-platform.com/manual-latest/gui_web.html
https://doc.cuba-platform.com/manual-latest/screen_controllers.html
https://doc.cuba-platform.com/manual-latest/screen_descriptors.html


 

Android UI Controls 

There are number of UI controls provided by Android that allow you to build the graphical user 

interface for your app. 

 

Sr.No. UI Control & Description 

1 TextView 

This control is used to display text to the user. 

2 EditText 

EditText is a predefined subclass of TextView that includes rich editing capabilities. 

3 AutoCompleteTextView 

The AutoCompleteTextView is a view that is similar to EditText, except that it shows a 

list of completion suggestions automatically while the user is typing. 

4 Button 

A push-button that can be pressed, or clicked, by the user to perform an action. 

5 ImageButton 

An ImageButton is an AbsoluteLayout which enables you to specify the exact location of 

its children. This shows a button with an image (instead of text) that can be pressed or 

clicked by the user. 

6 CheckBox 

An on/off switch that can be toggled by the user. You should use check box when 

presenting users with a group of selectable options that are not mutually exclusive. 

7 ToggleButton 

An on/off button with a light indicator. 

8 RadioButton 

The RadioButton has two states: either checked or unchecked. 

9 RadioGroup 

A RadioGroup is used to group together one or more RadioButtons. 

10 ProgressBar 

The ProgressBar view provides visual feedback about some ongoing tasks, such as when 

you are performing a task in the background. 

11 Spinner 

A drop-down list that allows users to select one value from a set. 

12 TimePicker 

The TimePicker view enables users to select a time of the day, in either 24-hour mode or 

AM/PM mode.  

https://www.tutorialspoint.com/android/android_textview_control.htm
https://www.tutorialspoint.com/android/android_edittext_control.htm
https://www.tutorialspoint.com/android/android_autocompletetextview_control.htm
https://www.tutorialspoint.com/android/android_button_control.htm
https://www.tutorialspoint.com/android/android_imagebutton_control.htm
https://www.tutorialspoint.com/android/android_checkbox_control.htm
https://www.tutorialspoint.com/android/android_togglebutton_control.htm
https://www.tutorialspoint.com/android/android_radiobutton_control.htm
https://www.tutorialspoint.com/android/android_radiogroup_control.htm
https://www.tutorialspoint.com/android/android_progressbar.htm
https://www.tutorialspoint.com/android/android_spinner_control.htm
https://www.tutorialspoint.com/android/android_timepicker_control.htm


 

13 DatePicker 

The DatePicker view enables users to select a date of the day. 

 

Create UI Controls 

Input controls are the interactive components in your app's user interface. Android provides a 

wide variety of controls you can use in your UI, such as buttons, text fields, seek bars, check 

box, zoom buttons, toggle buttons, and many more. 

 

To create a UI Control/View/Widget you will have to define a view/widget in the layout file and 

assign it a unique ID as follows − 

 

<?xml version="1.0" encoding="utf-8"?> 

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 

   android:layout_width="fill_parent"  

   android:layout_height="fill_parent" 

   android:orientation="vertical" > 

    

   <TextView android:id="@+id/text_id" 

      android:layout_width="wrap_content" 

      android:layout_height="wrap_content" 

      android:text="I am a TextView" /> 

</LinearLayout> 

 

Events are a useful way to collect data about a user's interaction with interactive components of 

Applications. 

 

There are following three concepts related to Android Event Management − 

• Event Listeners − an event listener is an interface in the View class that contains a 

single callback method. These methods will be called by the Android framework when 

the View to which the listener has been registered is triggered by user interaction with 

the item in the UI. 

 

• Event Listeners Registration − Event Registration is the process by which an Event 

Handler gets registered with an Event Listener so that the handler is called when the 

Event Listener fires the event. 

 

• Event Handlers − When an event happens and we have registered an event listener for 

the event, the event listener calls the Event Handlers, which is the method that actually 

handles the event. 

 

Event Listeners & Event Handlers 

Event Handler Event Listener & Description 

onClick() 

OnClickListener() 

This is called when the user either clicks or touches or focuses upon any 

widget like button, text, image etc. You will use onClick() event handler 

to handle such event. 

https://www.tutorialspoint.com/android/android_datepicker_control.htm


 

onLongClick() 

OnLongClickListener() 

This is called when the user either clicks or touches or focuses upon any 

widget like button, text, image etc. for one or more seconds. You will 

use onLongClick() event handler to handle such event. 

onFocusChange() 

OnFocusChangeListener() 

This is called when the widget looses its focus ie. user goes away from 

the view item. You will use onFocusChange() event handler to handle 

such event. 

onKey() 

OnFocusChangeListener() 

This is called when the user is focused on the item and presses or 

releases a hardware key on the device. You will use onKey() event 

handler to handle such event. 

onTouch() 

OnTouchListener() 

This is called when the user presses the key, releases the key, or any 

movement gesture on the screen. You will use onTouch() event handler 

to handle such event. 

onMenuItemClick() 

OnMenuItemClickListener() 

This is called when the user selects a menu item. You will use 

onMenuItemClick() event handler to handle such event. 

onCreateContextMenu() 

onCreateContextMenuItemListener() 

This is called when the context menu is being built(as the result of a 

sustained "long click) 

 

 
2.2 Multichannel and Multimodal UIs 

A multimodal interface for mobile devices requires the integration of several recognition technologies 

together with sophisticated user interface and distinct tools for input and output of data  

 

The “smart mobile” has become an essential and inseparable part of our lives. This powerful tool enables 

us to perform multi-tasks in different modalities of voice, text, gesture, etc. The user plays an important 

role in the mode of operation, so multimodal interaction provides the user with new complex multiple 

modalities of interfacing with a system, such as speech, touch, type and more. 

 

• Multimodality in mobile computing has become a very active field of research in the past few 

years.  

• Mobile devices will allow smooth and smart interaction with everyday life‘s objects, thanks to 

natural and multimodal interactions. 

• The multi-modal, multi-channel and multidevice notions are presented and are referenced by the 

name and partial acronym ―multi-DMC (Dynamic Multichannel) 

• A multi-DMC referential is explained, in order to understand what kind of notions have to be 

sustained in such systems.  

• To support at the same time different modalities including voice or gesture, different devices, like 

PC or smartphone and different channels such as web or telephone. 

• However, in recent years, numerous scientific researches focus on post-WIMP interfaces. 



 

"windows, icons, menus, pointer"(WIMP) denoting a style of interaction using these elements of 

the user interface. 

• In computing, a window is a graphical control element. It consists of a visual area containing 

some of the graphical user interface of the program it belongs to and is framed by a window 

decoration. It usually has a rectangular shape that can overlap with the area of other windows. It 

displays the output of and may allow input to one or more processes.  

•  It is no longer limited to a single way of interacting with a computer system, but considering the 

different solutions to offer user interfaces as natural as possible. 

•  With the introduction of many types of mobile devices, such as cellphones, Personal Digital 

Assistant (PDA), pocket PC, and the rise of their capabilities (Wifi, GPS, RFID, NFC(Near Field 

Communication)...) designing and deploying mobile interactive software that optimize the 

human-computer interaction has become a fundamental challenge. 

•  Modern terminals are natively equipped with many input and output resources needed for 

multimodal interactions, such as camera, vibration, accelerometer, stylus, etc. 

•  However, the main difference between multimedia and multimodal interaction lies in the 

semantic interpretation and the time management.  

• Multimodality in mobile computing appears as an important trend, but a very few applications 

allow a real synergic (working together) multimodality.  

• Multimodality tries to combine interaction means to enhance the ability of the user interface 

adaptation to its context of use, without requiring costly redesign and reimplementation. 

•  Blending multiple access channels provides new possibilities of interaction to users.  

• Users have the possibility to switch between interaction means or to multiple available modes of 

interaction in parallel.  

• In the context of ubiquitous and mobile computing, this situation of independent and collocated 

users performing unrelated tasks is however very likely to occur. 

•  Even if there is a risk of overlapping categories, design issues are often classified into 

management, technical and social issues.  

 

•  Management: mainly deals with registration and later identification of users and devices as they 

enter and leave the workspace environment.  

•  Technical: issue occurs with the control of specific device features and also the technical 

management of services offering the possibility to introduce (discover) or remove specific 

components from an interaction.  

• The design problems is then related to fusion (i.e. combining multiple input types) and fission 

(i.e. combining multiple output types) mechanisms, synchronization and rules management 

between heterogeneous devices.  

•  Social issues are more related to social rules and privacy matters. As we know, some devices are 

inherently unsuitable for supporting privacy, such as microphones, speakers and public displays. 

The ubiquitous role of the computer makes each day more unsuitable for the screen-keyboard 

mouse model posed on a corner of a desk. 

 

•  In fact, the large success and rise of the Internet networks have complemented computing 

communication due to the technical standards used and their adoption of languages such as 

HTML, WML, or VoiceXML.  

• An example of this incompatibility can be found in computers with different operating systems 

that process various types of media (texts, graphics, sounds, and video).  

• Though the information can be easily transmitted through the networks, the formats of the coded 

data are incompatible.  

• As a direct result the end-user bears additional cost and time lost when trying to obtain or utilize 

product and service based on their particular platform.  

• This creates the urgent need for easier access to information — whether at the office, home, or on 

the train, etc.  

https://en.wikipedia.org/wiki/Window_(computing)
https://en.wikipedia.org/wiki/Icon_(computing)
https://en.wikipedia.org/wiki/Menu_(computing)
https://en.wikipedia.org/wiki/Pointer_(user_interface)
https://en.wikipedia.org/wiki/List_of_graphical_user_interface_elements
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Graphical_widget
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Window_(computing)
https://en.wikipedia.org/wiki/Window_(computing)
https://en.wikipedia.org/wiki/Process_(computing)


 

• This need is felt all the more with the constant new arrival of soft/hardware materials, the success 

of the pocket computers and mobile telephones.  

• With the multiplicity of the means of connecting to Internet, it is necessary to conceive generic 

interfaces and mechanisms of transformation to obtain concrete interfaces for each platform. 

 

 

 
 

2.3 Gesture  Based  User Interface   

Gestural UI refers to using specific gestures, like scrolling, pinching, and tapping to operate an 

interface. It also refers to gesture recognition, including tipping, tilting, eye motion, and 

shaking. 

Tap and swipe are two common gestures that allow the user to perform primary actions on their 

mobile devices. The tap gesture is essentially a brief touch of the mobile screen surface with the 

fingertip. Common uses of this gesture in iOS and Android devices include: Select or submit. 

Gestures are important for application of any category to boost the app user interface and 

provide comfort and ease of use to the users.  

 

Gestures are always linked to animations in a mobile app. And these animations are essential to 

maintain an illusion of interactivity for the app users. So when they are paired with app 

gestures, they make the brain believe it’s interacting with the tangible objects. 

 

Uses of Gesture 

Gestural UI is also commonplace in the gaming, automotive, and medical industries.  

Popular consoles, such as Xbox, use cameras and sensors to track player movements and 

gestures for many of their interactive games. 

 

Hand gestures  

Hand gestures offer an inspiring field of research because they can facilitate 

communication and provide a natural means of interaction that can be used across a variety of 

applications. Previously, hand gesture recognition was achieved with wearable sensors attached 

directly to the hand with gloves. 

 
Mobile device provides GestureDetector class to receive motion events and tell us that these events 

correspond to gestures or not.  

 

 



 

Android provides special types of touch screen events such as pinch , double tap, scrolls , long presses 

and flinch. These are all known as gestures. 

 

Android provides GestureDetector class to receive motion events and tell us that these events correspond 

to gestures or not. To use it , you need to create an object of GestureDetector and then extend another 

class with GestureDetector.SimpleOnGestureListener to act as a listener and override some methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Handling Pinch Gesture 

Android provides ScaleGestureDetector class to handle gestures like pinch e.t.c. In order to use it, you 

need to instantiate an object of this class. Its syntax is as follow − 

ScaleGestureDetector SGD; 

SGD = new ScaleGestureDetector(this,new ScaleListener()); 

 

The first parameter is the context and the second parameter is the event listener. 

 To define the event listener and override a function OnTouchEvent to make it working.  

 

public boolean onTouchEvent(MotionEvent ev) { 

   SGD.onTouchEvent(ev); 

   return true; 

} 

 

private class ScaleListener extends ScaleGestureDetector.SimpleOnScaleGestureListener { 

   @Override 

   public boolean onScale(ScaleGestureDetector detector) { 

      float scale = detector.getScaleFactor(); 

      return true; 

   } 

} 

 

 

 

 

 

GestureDetector myG; 

myG = new GestureDetector(this,new Gesture()); 

    

class Gesture extends GestureDetector.SimpleOnGestureListener{ 

   public boolean onSingleTapUp(MotionEvent ev) { 

   } 

    

   public void onLongPress(MotionEvent ev) { 

   } 

    

   public boolean onScroll(MotionEvent e1, MotionEvent e2, float distanceX, 

   float distanceY) { 

   } 

    

   public boolean onFling(MotionEvent e1, MotionEvent e2, float velocityX, 

   float velocityY) { 

   } 

} 

 



 

There are other methods available that notify more about touch events. They are listed below − 

Sr.No Method & description 

1 
getEventTime() 

This method get the event time of the current event being processed.. 

2 
getFocusX() 

This method get the X coordinate of the current gesture's focal point. 

3 
getFocusY() 

This method get the Y coordinate of the current gesture's focal point. 

4 

getTimeDelta() 

This method return the time difference in milliseconds between the previous accepted scaling event and the current 
scaling event. 

5 
isInProgress() 

This method returns true if a scale gesture is in progress.. 

6 
onTouchEvent(MotionEvent event) 

This method accepts MotionEvents and dispatches events when appropriate. 

 

 

Example main activity file - src/MainActivity.java. 

public boolean onTouchEvent(MotionEvent ev) { 

      SGD.onTouchEvent(ev); 

      return true; 

   } 

 

   private class ScaleListener extends ScaleGestureDetector. 

      SimpleOnScaleGestureListener { 

       

      @Override 

      public boolean onScale(ScaleGestureDetector detector) { 

         scale *= detector.getScaleFactor(); 

         scale = Math.max(0.1f, Math.min(scale, 5.0f)); 

         matrix.setScale(scale, scale); 

         iv.setImageMatrix(matrix); 

         return true; 

      } 

   } 

 

 

 

 

 



 

 

 
2.4 Screen elements / User Interface  

 

The basic unit of mobile application is the activity. A UI is defined in an xml file. During compilation, 

each element in the XML is compiled into equivalent Android GUI class with attributes represented by 

methods. 

 

Units of Measurement 

When you are specifying the size of an element on an Android UI, you should remember the following 

units of measurement. 

SNo Unit & description 

1 dp 

Density-independent pixel. 1 dp is equivalent to one pixel on a 160 dpi screen. 

2 sp 

Scale-independent pixel. This is similar to dp and is recommended for specifying font sizes 

3 pt 

Point. A point is defined to be 1/72 of an inch, based on the physical screen size. 

4 px 

Pixel. Corresponds to actual pixels on the screen 

 

Screen Densities 

Sr.No Density & DPI 

1 Low density (ldpi) 

120 dpi 

2 Medium density (mdpi) 

160 dpi 

3 High density (hdpi) 

240 dpi 

4 Extra High density (xhdpi) 

320 dpi 

 

View and ViewGroups 

An activity contains Views and ViewGroups. A view is a widget that has an appearance on screen. 

Examples of views are buttons, labels, and text boxes. A view derives from the base class androidOne or 

more views can be grouped together into one ViewGroup.view.View. 

A ViewGroup (which is itself a special type of view) provides the layout in which you can order the 

appearance and sequence of views. A ViewGroup derives from the base class android.view.ViewGroup. 

 



 

 

The View objects are usually called "widgets" and can be one of many subclasses, such 

as Button or TextView. The ViewGroup objects are usually called "layouts" can be one of many types 

that provide a different layout structure, such as LinearLayout or ConstraintLayout . 

The View is a base class for all UI components in android it is used to create interactive UI components 

such as TextView, EditText, Checkbox, Radio Button, etc. and it is responsible for event handling and 

drawing. For example, the EditText class is used to accept the input from users in android apps, which is 

a subclass of View. 

The View is a base class for all UI components in android and  

 

ViewGroup 

The ViewGroup is a subclass of View and it will act as a base class for layouts and layouts parameters. 

The ViewGroup will provide an invisible containers to hold other Views or ViewGroups and to define 

the layout properties. 

  

For example, Linear Layout is the ViewGroup that contains a UI controls like button, textview, etc. and 

other layouts also. 

 

It can be defined a UI or input controls in two ways  

 

Declare UI Elements in XML 

The layout file must contain only one root element, which must be a View or ViewGroup object. Once we 

define the root element, then we can add additional layout objects or widgets as a child elements to build 

View hierarchy that defines our layout. 

<?xml version="1.0" encoding="utf-8"?> 

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 

    android:orientation="vertical" 

 

    android:layout_width="match_parent" 

    android:layout_height="match_parent"> 

    <TextView 

        android:id="@+id/fstTxt" 

        android:layout_width="wrap_content" 

        android:layout_height="wrap_content" 

        android:text="Enter Name" /> 

    <EditText 

        android:id="@+id/name" 

        android:layout_width="wrap_content" 

        android:layout_height="wrap_content" 

        android:ems="10"/> 

    <Button 

        android:id="@+id/getName" 

        android:layout_width="wrap_content" 

        android:layout_height="wrap_content" 

https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/widget/Button
https://developer.android.com/reference/android/widget/TextView
https://developer.android.com/reference/android/view/ViewGroup
https://developer.android.com/reference/android/widget/LinearLayout
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout
https://www.tutlane.com/tutorial/android/android-textview-with-examples
https://www.tutlane.com/tutorial/android/android-edittext-with-examples
https://www.tutlane.com/tutorial/android/android-checkbox-with-examples
https://www.tutlane.com/tutorial/android/android-radiobutton-with-examples
https://www.tutlane.com/tutorial/android/android-linearlayout-with-examples


 

        android:text="Get Name" /> 

</LinearLayout> 

 

Create UI elements at runtime 

public class MainActivity extends AppCompatActivity { 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        TextView textView1 = new TextView(this); 

        textView1.setText("Name:"); 

        EditText editText1 = new EditText(this); 

        editText1.setText("Enter Name"); 

        Button button1 = new Button(this); 

        button1.setText("Add Name"); 

        LinearLayout linearLayout = new LinearLayout(this); 

        linearLayout.addView(textView1); 

        linearLayout.addView(editText1); 

        linearLayout.addView(button1); 

        setContentView(linearLayout); 

    } 

} 

 

Types of UI Controls 

Different type of UI controls available in android to implement the user interface for our android 

applications. 

 Following are the commonly used UI or input controls in android applications. 

  

• TextView 

• EditText 

• AutoCompleteTextView 

• Button 

• ImageButton 

• ToggleButton 

• CheckBox 

• RadioButton 

• RadioGroup 

• ProgressBar 

• Spinner 

• TimePicker 

• DatePicker 

• SeekBar 

• AlertDialog 

• Switch 

• RatingBar 

 

TextView 

TextView is a user interface control that is used to display the text to the user. 

  

EditText 

EditText is a user interface control which is used to allow the user to enter or modify the text. 

  

 

 

 

https://www.tutlane.com/tutorial/android/android-textview-with-examples
https://www.tutlane.com/tutorial/android/android-edittext-with-examples
https://www.tutlane.com/tutorial/android/android-autocompletetextview-with-examples
https://www.tutlane.com/tutorial/android/android-button-with-examples
https://www.tutlane.com/tutorial/android/android-imagebutton-with-examples
https://www.tutlane.com/tutorial/android/android-toggle-button-with-examples
https://www.tutlane.com/tutorial/android/android-checkbox-with-examples
https://www.tutlane.com/tutorial/android/android-radiobutton-with-examples
https://www.tutlane.com/tutorial/android/android-radiogroup-with-examples
https://www.tutlane.com/tutorial/android/android-progressbar-with-examples
https://www.tutlane.com/tutorial/android/android-spinner-dropdown-list-with-examples
https://www.tutlane.com/tutorial/android/android-timepicker-with-examples
https://www.tutlane.com/tutorial/android/android-datepicker-with-examples
https://www.tutlane.com/tutorial/android/android-seekbar-with-examples
https://www.tutlane.com/tutorial/android/android-alertdialog-with-examples#divaldg
https://www.tutlane.com/tutorial/android/android-switch-on-off-button-with-examples
https://www.tutlane.com/tutorial/android/android-ratingbar-with-examples


 

AutoCompleteTextView 

AutoCompleteTextView is an editable text view which is used to show the list of suggestions based on 

the user typing text. The list of suggestions will be shown as a dropdown menu from which the user can 

choose an item to replace the content of the textbox. 

  

Android Button 

Button is a user interface control that is used to perform an action when the user clicks or tap on it. 

  

Image Button 

Image Button is a user interface control that is used to display a button with an image to perform an 

action when the user clicks or tap on it. 

Generally, the Image button in android looks similar as regular Button and perform the actions same as 

regular button but only difference is for image button we will add an image instead of text. 

  

Toggle Button 

Toggle Button is a user interface control that is used to display ON (Checked) or OFF (Unchecked) states 

as a button with a light indicator. 

 

CheckBox 

Checkbox is a two-states button that can be either checked or unchecked. 

  

Radio Button 

Radio Button is a two-states button that can be either checked or unchecked and it cannot be unchecked 

once it is checked. 

  

Radio Group 

Radio Group is used to group one or more radio buttons into separate groups based on our requirements. 

  

In case if we group radio buttons using the radio group, at a time only one item can be selected from the 

group of radio buttons. 

  

ProgressBar 

ProgressBar is a user interface control which is used to indicate the progress of an operation. 

  

Spinner 

Spinner is a drop-down list which allows a user to select one value from the list. 

  

TimePicker 

TimePicker is a widget for selecting the time of day, either in 24-hour or AM/PM mode. 

 

DatePicker 

DatePicker is a widget for selecting a date. 

  

 

 

 

 

 

 

 

 

 

 



 

2.5 Layouts 

A layout defines the structure for a user interface in your app, such as in an activity. All elements 

in the layout are built using a hierarchy of View and ViewGroup objects. A View usually draws 

something the user can see and interact with. Whereas a ViewGroup is an invisible container that 

defines the layout structure for View and other ViewGroup objects. 

Each View and ViewGroup has a set of common attributes.  

 
 

Types of  Layout 

❖ LinearLayout 

❖ AbsoluteLayout 

❖ TableLayout 

❖ RelativeLayout 

❖ FrameLayout 

❖ ScrollView 
 

Linear Layout 

Linear layout is further divided into horizontal and vertical layout. It means it can arrange views in a 

single column or in a single row. Here is the code of linear layout(vertical) that includes a text view. 

 

<?xml version=”1.0” encoding=”utf-8”?> 

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android” 

   android:layout_width=”fill_parent” 

   android:layout_height=”fill_parent” 

   android:orientation=”vertical” > 

    

   <TextView 

      android:layout_width=”fill_parent” 

      android:layout_height=”wrap_content” 

      android:text=”@string/hello” /> 

</LinearLayout> 

 

 

 

 

 

 

https://developer.android.com/guide/components/activities
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/ViewGroup
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/ViewGroup
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/ViewGroup


 

AbsoluteLayout 

The AbsoluteLayout enables you to specify the exact location of its children. It can be declared like this. 

<AbsoluteLayout 

   android:layout_width=”fill_parent” 

   android:layout_height=”fill_parent” 

   xmlns:android=”http://schemas.android.com/apk/res/android” > 

    

   <Button 

      android:layout_width=”188dp” 

      android:layout_height=”wrap_content” 

      android:text=”Button” 

      android:layout_x=”126px” 

      android:layout_y=”361px” /> 

</AbsoluteLayout> 

 

TableLayout 

The TableLayout groups views into rows and columns. You use the <TableRow> element to designate a 

row in the table. Each row can contain one or more views. Each view you place within a row forms a cell. 

The width of each column is determined by the largest width of each cell in that column. 

 

<TableLayout 

   xmlns:android=”http://schemas.android.com/apk/res/android” 

   android:layout_height=”fill_parent” 

   android:layout_width=”fill_parent” > 

    

   <TableRow> 

      <TextView 

         android:text=”User Name:” 

         android:width =”120dp” 

         /> 

       

      <EditText 

         android:id=”@+id/txtUserName” 

         android:width=”200dp” /> 

   </TableRow> 

    

</TableLayout> 

 

RelativeLayout 

The RelativeLayout enables you to specify how child views are positioned relative to each other.It can 

be declared like this. 

<RelativeLayout 

   android:id=”@+id/RLayout” 

   android:layout_width=”fill_parent” 

   android:layout_height=”fill_parent” 

   xmlns:android=”http://schemas.android.com/apk/res/android” > 

</RelativeLayout> 

 

Each view embedded within the RelativeLayout has attributes that enable it to align with another view. 

These attributes are as follows: 

 



 

 

When the screen orientation changes to landscape mode, the four buttons are aligned to the four  

edges of the screen, and the center button is centered in the middle of the screen with its width fully 

stretched. 

 

FrameLayout 

The FrameLayout is a placeholder on screen that you can use to display a single view. It can be 

declared like this. 

<?xml version=”1.0” encoding=”utf-8”?> 

<FrameLayout 

   android:layout_width=”wrap_content” 

   android:layout_height=”wrap_content” 

   android:layout_alignLeft=”@+id/lblComments” 

   android:layout_below=”@+id/lblComments” 

   android:layout_centerHorizontal=”true” > 

    

   <ImageView 

      android:src = “@drawable/droid” 

      android:layout_width=”wrap_content” 

      android:layout_height=”wrap_content” /> 

</FrameLayout> 

 

Scrollview 

A ScrollView is a special type of FrameLayout in that it enables users to scroll through a list of views that 

occupy more space than the physical display. The ScrollView can contain only one child view or  

ViewGroup, which normally is a LinearLayout. 

<?xmlversion=”1.0”encoding=”utf-8”?> 

<ScrollView android:layout_width=”fill_parent” 

android:layout_height=”fill_parent” 

xmlns:android=”http://schemas.android.com/apk/res/android” 

> 



 

<LinearLayout 

android:layout_width=”fill_parent” 

android:layout_height=”wrap_content” 

android:orientation=”vertical” 

> 

<Button 

android:id=”@+id/button1” 

android:layout_width=”fill_parent” 

android:layout_height=”wrap_content” 

android:text=”Button1” 

/> 

<Button 

android:id=”@+id/button2” 

android:layout_width=”fill_parent” 

android:layout_height=”wrap_content” 

android:text=”Button2” 

/> 

<Button 

android:id=”@+id/button3” 

android:layout_width=”fill_parent” 

android:layout_height=”wrap_content” 

android:text=”Button3” 

/> 

<EditText 

android:id=”@+id/txt” 

android:layout_width=”fill_parent” 

android:layout_height=”300px” 

/> 

<Button 

android:id=”@+id/button4” 

android:layout_width=”fill_parent” 

android:layout_height=”wrap_content” 

android:text=”Button4” 

/> 

<Button 

android:id=”@+id/button5” 

android:layout_width=”fill_parent” 

android:layout_height=”wrap_content” 

android:text=”Button5” 

/> 

</LinearLayout> 

</ScrollView> 

 

Resizing and Repositioning 

Apart from anchoring your views to the four edges of the screen, an easier way to customize the UI based 

on screen orientation is to create a separate res/layout folder containing the XML files for the UI of each 

orientation. To support landscape mode, you can create a new folder in the res folder and name  it as 

layout-land (representing landscape).  

 

Basically, the main.xml file contained within the layout folder defines the UI for the activity in portrait 

mode, whereas the main.xml file in the layout-land folder defines the UI in landscape mode. 

 

 



 

CREATING THE USER INTERFACE 

 

packagenet.learn2develop.UICode; 

importandroid.app.Activity; 

importandroid.os.Bundle; 

import android.view.ViewGroup.LayoutParams; 

import android.widget.Button; 

import android.widget.LinearLayout; 

import android.widget.TextView; 

 

public class MainActivity extends Activity{ 

/**Calledwhentheactivityisfirstcreated.*/ 

@Override 

public void onCreate(BundlesavedInstanceState){ 

super.onCreate(savedInstanceState); 

//setContentView(R.layout.main); 

//---param forviews-- 

       LayoutParams params = new LinearLayout.LayoutParams( 

                LayoutParams.FILL_PARENT, 

                LayoutParams.WRAP_CONTENT); 

        //---create a layout-- 

       LinearLayout layout = new LinearLayout(this); 

       layout.setOrientation(LinearLayout.VERTICAL); 

        //---create a textview-- 

       TextView tv = new TextView(this); 

       tv.setText(“This is a TextView”); 

       tv.setLayoutParams(params); 

        //---create a button-- 

       Button btn = new Button(this); 

       btn.setText(“This is a Button”); 

       btn.setLayoutParams(params); 

                 

       //---adds the textview-- 

       layout.addView(tv); 

     

    //---adds the button-- 

       layout.addView(btn); 

        //---create a layout param for the layout-- 

       LinearLayout.LayoutParams layoutParam = new LinearLayout.LayoutParams( 

                   LayoutParams.FILL_PARENT, 

                   LayoutParams.WRAP_CONTENT 

); 

        this.addContentView(layout, layoutParam); 

} 

} 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

3.1 Memory management   

Memory management is part of an operating system which allocates memory among competing 

processes, maximizing memory utilization and system throughput. 

It provides a convenient high level abstraction of low level hardware for programmers and 

compilers. 

Tasks of Memory Management 

❖ It keeps track of each memory location either it is allocated to some process or it is free 

❖ It checks how much memory should be allocated to processes 

❖ It decides which process will get memory at what time 

❖ It tracks whenever some memory gets unallocated and correspondingly it updates the 

status 

 

Major Memory Management Techniques 

Base and limit registers 

◼ Processes must be restricted so that they can only access memory locations that belong to 

that particular process 

◼ Each process has a base register and limit register 

 The base register holds the smallest valid memory address  

 The limit register specifies the size of the range  

 
◼ Every memory access from a user process is checked against these two registers. 

UNIT III  APPLICATION DESIGN                 

3.1 Memory  Management  –  3.2 Design  Patterns  for  Limited  Memory  – 3.3 Work  Flow  for 

Applicationdevelopment –3.4 Java API – 3.5 Dynamic Linking – 3.6 Plugins and rule of thumb for using 

DLLs –3.7 Concurrency and 3.8 Resource Management. 
 



 
◼ The OS kernel has access to all memory locations as it needs to manage the whole 

memory  

 

Virtual memory 

Virtual memory (VM) is the basic abstraction that OS provides for memory management. 

“Virtual” means “using a level of indirection” 

 All programs use virtual memory addresses 

 Virtual address is converted to a physical address 

 Physical address indicates the real physical location of data 

 Physical location can be memory or disk 

 
◼ The translation of virtual to physical addresses is handled by the memory-management 

unit (MMU). 

◼ MMU uses a relocation register whose value is added to every memory request at the 

hardware level 

 

Paging 

◼ Paging is a memory management technique that allows the process’s physical memory to 

be discontinuous 

◼ It eliminates the fragmentation problem by allocating memory in equal sized blocks 

known as pages 

◼ It is the predominant memory management technique now 

 

◼ Paging divides physical memory into a number of equal sized blocks called frames and 

divides a process’s logical memory space into equal sized blocks called pages 

◼ Any page from any process can be placed into any available frame 

◼ A page table is used to look up what frame a particular page is stored in at the moment 

 



 
 

Garbage collection 

The mechanism for reclaiming unused memory within a managed memory environment is 

known as garbage collection. 

 

Garbage collection has two goals:  

1. Find data objects in a program that cannot be accessed in the future  

2.  Reclaim the resources used by those objects. 

 

Android’s memory heap is a generational one, meaning that there are different buckets of 

allocations that it tracks, based on the expected life and size of an object being allocated. 

 

Dalvik garbage collection:  

o Each Android app runs in a Dalvik virtual machine and has its own Dalvik 

garbage collector 

o The garbage collector maintains a free list which contains all the free memory 

blocks 

o If a process requests a free block and the free list is empty, the garbage collector 

will be triggered to work: 

▪ Each block has a bit to indicate if it is in use 

▪ Mark the bits for blocks that are in use and cannot be collected. These 

mark bits are stored in a separate memory area 

▪ Sweep and collect all unmarked blocks and put them back to the free list  

 

Share memory 

• In order to fit everything it needs in RAM, Android tries to share RAM pages across 

processes.  

It can do so in the following ways: 

 

• Each app process is forked (create new process) from an existing process called Zygote. 

The Zygote process starts when the system boots and loads common framework code and 

resources (such as activity themes).  

 

• To start a new app process, the system forks the Zygote process then loads and runs the 

app's code in the new process.  

 

• This approach allows most of the RAM pages allocated for framework code and 

resources to be shared across all app processes. 



 

• Most static data is mmapped into a process. This technique allows data to be shared 

between processes, and also allows it to be paged out (To transfer memory contents to 

auxiliary storage) when needed.  

• Example static data include: Dalvik code (by placing it in a pre-linked .odex file for 

direct mmapping), app resources (by designing the resource table to be a structure that 

can be mmapped and by aligning the zip entries of the APK), and traditional project 

elements like native code in .so files. 

 

• APKs contain certain .odex files whose supposed function is to save space. Doing so 

speeds up the boot process, as it preloads part of an application.  

 

In many places, Android shares the same dynamic RAM across processes using explicitly 

allocated shared memory regions (either with ashmem or gralloc). 

 

Allocate and reclaim app memory 

 

• The Dalvik heap is constrained to a single virtual memory range for each app process.  

• This defines the logical heap size, which can grow as it needs to but only up to a limit 

that the system defines for each app. 

• The logical size of the heap is not the same as the amount of physical memory used by 

the heap. When inspecting your app's heap, Android computes a value called the 

Proportional Set Size (PSS), which accounts for both dirty and clean pages that are 

shared with other processes—but only in an amount that's proportional to how many apps 

share that RAM. 

•  This (PSS) total is what the system considers to be your physical memory footprint. For 

more information about PSS, see the Investigating Your RAM Usage guide. 

• Android can only shrink the logical heap size when there is unused space at the end of the 

heap.  

• However, the system can still reduce physical memory used by the heap.  

Switch apps 

• When users switch between apps, Android keeps apps that are not foreground—that is, 

not visible to the user or running a foreground service like music playback— in a cache.  

• For example, when a user first launches an app, a process is created for it; but when the 

user leaves the app, that process does not quit.  

• The system keeps the process cached. If the user later returns to the app, the system 

reuses the process, thereby making the app switching faster. 

• If your app has a cached process and it retains resources that it currently does not need, 

then your app—even while the user is not using it— affects the system's overall 

performance.  

• As the system runs low on resources like memory, it kills processes in the cache.  

• The system also accounts for processes that hold onto the most memory and can 

terminate them to free up RAM. 

 

 

 

 

 



Restrict app memory 

• To maintain a functional multi-tasking environment, Android sets a hard limit on the 

heap size for each app.  

• The exact heap size limit varies between devices based on how much RAM the device 

has available overall.  

• If your app has reached the heap capacity and tries to allocate more memory, it can 

receive an OutOfMemoryError. 

• In some cases, you might want to query the system to determine exactly how much heap 

space you have available on the current device—for example, to determine how much 

data is safe to keep in a cache.  

• You can query the system for this figure by calling getMemoryClass().  

• This method returns an integer indicating the number of megabytes available for your 

app's heap. 

iOS Memory Management 

iOS include a fully-integrated virtual memory system that is always on 

Like Android, iOS does not support swapping for the same reason 

 

The principles to free up memory 

❖ Read-only data which has a copy on the flash is simply removed from memory and 

reloaded from flash as needed  

❖ Modified data is never removed from memory by the OS 

❖ The system asks the running apps to free up memory voluntarily to make room for new 

data. 

❖ Apps that fail to free up sufficient memory will be terminated by the OS 

❖ iOS also uses the concept of paging 

❖ Besides, it divides the virtual address space of a process into a number of regions. Each 

region contains a known number of pages 

❖ The kernel associates a virtual memory (VM) object with each region and uses VM 

objects to track and manage the memory   

 

 

3.2 Design  Patterns  for  Limited  Memory   

A design pattern is just a convenient way of reusing object-oriented (OO) code between projects 

and programmers. 

 

1. Design patterns are recurring solutions to design problems you see over and over. 

2. Design patterns constitute a set of rules describing how to accomplish certain tasks in the 

realm of software development. 

3. Design patterns focus more on reuse of recurring architectural design themes, while 

frameworks focus on detailed design and implementation 

4. A pattern addresses a recurring design problem that arises in specific design situations and 

presents a solution to it. 

5. Patterns identify and specify abstractions that are above the level of single classes and 

instances, or of components. 

6. Design patterns are also about  interaction  between objects. One possible view of some of 

these patterns is to consider them as  communication patterns. 

 

 

 



The  design patterns divides into three types: 

• Creational patterns:  create objects for you, rather than your having to instantiate objects 

directly. Your program gains more flexibility in deciding which objects need to be created for a 

given case.   

• Structural patterns:  help you compose groups of objects into larger structures, such as complex 

user interfaces and accounting data.   

• Behavioral patterns: help you to define the communication between objects in your system and 

how the flow is controlled in a complex program. 

 
Singleton Pattern 

The singleton pattern is one of the simplest design patterns: it involves only one class which is 

responsible to instantiate itself, to make sure it creates not more than one instance; in the same time it 

provides a global point of access to that instance. In this case the same instance can be used 

from everywhere, being impossible to invoke directly the constructor each time. 

 

 

 
 



 
Structural Patterns 
Adapter Design Pattern 

•The adapter pattern is adapting between 

classes and objects. Like any adapter in the 

real world it is used to be an interface, a 

bridge between two objects. 

•It's used to identifying a simple way to 

realize relationships between entities. 

•The main use of this pattern is when a class 

that you need to use doesn't meet the 

requirements of an interface. 

 

 
Composite Design Pattern 

• Composite pattern is used where we need to treat a group of objects 

in similar way as a single object. Composite pattern composes 

objects in term of a tree structure to represent part as well as whole 

hierarchy  

• This pattern creates a class contains group of its own objects. This 

class provides ways to modify its group of same objects. 

 

 

 

 

 

 

 

 

Behavioral patterns 

Observer Design Pattern 

• Observer pattern is one of the behavioral design pattern. 

•  Observer design pattern is useful when you are interested in the state of an object and 

want to get notified whenever there is any change in observer pattern. 

• The object that watch on the state of another object are called Observer and the object 

that is being watched is called Subject  



 
 

Design Pattern use in Android 

Three most common Design Patterns use in Android 

1)MVC (Model View Controller) 

2)MVP (Model View Presenter) 

 

MVC (Model View Control) 

1. Data Model, which contains the computational 

parts of the program 

2. View, which presents the user interface 

3. Controller,  which interacts between the user and 

the view  

4. Each aspect of the problem is a separate object , 

and each has its own rules for managing its data.  

5. Communication between the user,  the graphical 

user interface 

( GUI), and the data should be carefully controlled  

 

• Controllers are the activities themselves which contain all the business       logic done in the 

application. 

• Models are our entities which describe the components of our apps. 

• Views can be done in XML layouts. 

 

MVP (Model View Presenter) 

• The MVP pattern allows separate the presentation layer from the logic. 

• Model-View-Presenter pattern is a perfect fit for android development. Since the Views role 

in this pattern are: 

Serving as a entry point 

Rendering components 

            Routing user events to the presenter 

 

The presenter 

The presenter is responsible to act as the middle 

man between view and model. It retrieves data 

from the model and returns it formatted to the 

view.  



The View 

The view, usually implemented by an Activity (it may be a Fragment, a View… depending on 

how the app is structured), will contain a reference to the presenter. 

The only thing that the view will do is calling a method from the presenter every time there is an 

interface action (a button click for example). 

The model 

In an application with a good layered architecture, this model would only be the gateway to the 

domain layer or business logic. 

 

 
Write the Difference B/W MVC & MVP  

• MVC & MVP UI Presentation Pattern focus on separation of view with Model Based on MVC 

(UI Presentation Pattern) 

 

•  Separation of responsibility among three components: 

 1.View - responsible for rendering UI elements  

2.Controller - responsible for responding to view actions  

3.Model - responsible for business behavior and state management  

 

       *   Separation of responsibility among four components:  

1.View - Responsible for rendering UI elements  

2.View Interface - Responsible for loose coupling between view and model 

(Loose coupling is an approach to interconnecting the components in a system or network so that 

those components, also called elements, depend on each other to the least extent practicable.) 

3.Presenter - Responsible for view and model interaction 

4.Model - Responsible for business behavior and state management 

 

• MVC MVP contains high degree of loose coupling 

•  Multiple views can share single controller Usually one view has one presenter (1-1 mapping).  

 

Multiple presenters would be associated with a complex view Identifies which view to update Presenter 

will update its associated view 

 
 
 

 

 

https://searchnetworking.techtarget.com/definition/network


What are the classes uses in Design pattern? 

 

The Following Android Classes uses Design Patterns 

1) View Holder uses Singleton Design Pattern 

(ViewHolder describes an item view and metadata about its place within the RecyclerView.) 

 2) Intent uses Factory Design Pattern 

 3) Adapter uses Adapter Design Pattern 

4) Broadcast Receiver uses Observer Design Pattern 

 5) View uses Composite Design Pattern  

6) Media Framework uses Façade Design Pattern 

 

 

3.3 WORK  FLOW  FOR APPLICATIONDEVELOPMENT 

 

Mobile Applicaion development process is divided into several phases, these phases include- 

 

1. The Requirement Analysis / Identification Phase 

In the first phase, ideas are collected and categorized. The main objective of this phase is to 

come out with a  new idea or improvements to the existing application. The ideas can come from 

the customer or from the developers. 

With this, they would like to know about your purpose of the app and the audience you wish to 

provide to your app.  

If no similar application exists on any mobile platform, then the idea with its core functionality 

should be documented. The other important task in this phase is to define the time required to 

develop the application. The initial requirement gathering should also be completed. The work 

done by the mobile application idea team should then be documented and forwarded to the 

design team. 

 

2. The Project Scope Finalisation 

This phase is about defining the actual project scope in detail. Here you as a business owner and 

your technology partner (Android app development company) stay in continuous coordination to 

finalise the detailed project scope. This project scope lists down the various functionalities of the 

app along with deciding the applications feature list. Based on the total feature list, the project 

scope is finalised and the final project scope decides the budget estimations and the time 

estimations for the development of your app. After the scope finalisation, you get a clear idea of 

the mobile app development cost. 

 

3. The Wireframe Development Phase 

This phase is the first phase where the work comes in progress and the project managers and 

developers design the wireframe of the app solution based on the project scope that was 

finalised. This wireframe decides the user journey. It includes all the basic functionalities that the 

user will get while he browses through the app, this will give a detailed idea of how the app will 

work and what would be the main functionalities of the app. 

 

4. The Design Phase 

In this phase, the idea from the mobile application team is developed into an initial design of the 

application. The feasibility of developing the application on all mobile platform is determined. 

Alternatively, the specific target mobile platform is identified. 

https://www.cisin.com/service/mobile-app-development.htm


 The application functionality is broken 

down into modules and into prototypes i.e., 

combination of modules which are to be 

released in the prototype fashion. The 

functional requirements are defined.  

The software architecture of the application 

is created. Then the prototypes and 

associated modules are defined. A very 

important part of the design phase is to 

create the storyboard for the user interface 

interaction: this storyboard describes the 

flow of the application. The design team’s 

work is documented and forwarded to the 

development team for coding. 

 

5. The Development Phase 

In this phase, the application is coded. Coding for different modules of the same prototype can 

proceed in parallel. The development process can be in two stages: Coding for Functional 

Requirement and Coding for UI requirements. The code is developed first for the core 

functionalities. Parallel development can be done for modules of the same prototype that are 

independent of each other. Subsequently, these modules can be integrated. In the second stage, 

user interface is designed so that it can be supported on as many mobile operating system 

platforms as possible; Finally, the documentation of the development phase is then forwarded to 

the prototyping phase. 

 

6. Prototyping Phase  

In this phase, the functional requirements of each prototype are analyzed; the prototypes are 

tested and sent to the client for feedback. After feedback is received from the client, the required 

changes are implemented through the development phase. When the second prototype is ready, it 

is integrated with the first prototype, tested and then sent to the client. The development, 

prototyping and testing phases are repeated until the final prototype is ready. The final prototype 

is sent to the client for a final feedback. 

The work done in this prototyping phase is documented and then forwarded to the testing phase. 
 

7. The Quality Testing Phase 

This phase involves the quality testing process, in this process the finally developed version is 

given to the dedicated QA (Quality Analysis) team and they test the entire application for its 

authenticity and its quality. Whether the app is developed along with the project scope and does 

it involve all the functionalities and features that are discussed in the project scope. 

The quality analysists check the application for the various bugs and give back to the 

development team to resolve the bugs if any Testing is one of the most important phases of any 

development lifecycle model.  

The testing of the prototype types is performed on an emulator/simulator followed by testing on 

the real device. The emulator/simulator is often provided in the SDK. 

The test cases are documented and forwarded to the client for feedback. 

 

 

 

 



8. Deployment Phase  

Deployment is the final phase of the development process. After the testing is completed and the 

final feedback is obtained from the client, the application is ready for the deployment. The 

application is uploaded to the appropriate application store/market for user consumption. Before 

the application is deployed, the following steps are to be checked.  Register as a developer on the 

respective 

❖ Application developer’s website by paying the annual fee, if necessary, for respective 

OS.   

❖ Check the rules and regulations of the application store for the deployment of an 

application. 

❖ Design the icon and wallpaper to be used on the application store.   

❖ Create the file format required on operating system platform. 

 

9. Maintenance / The Client Feedback Phase 

In this phase, the quality tested app is delivered to the client and he checks the app on his part for 

its functionality and if it is according to the project scope he finalised. With this, he gets 

feedback for the app across his team and based on this he shares his feedback report, which may 

include minor modifications, corrections according to the scope, and he may highlight some bugs 

which he thinks might be crucial in application’s performance. 

 

Based on this the app comes back to the Android app development company along with the 

feedback shared by the client. Now according to the client’s feedback, the final version of the 

app is prepared. 

 

10. The Final Delivery Phase 

After resolving all the feedbacks received from your side, the mobile application development 

company hands over the final deliverables (the final version of the app) to you. The app is 

delivered to you within the timeline estimates shared by you to the app development company 

and now the app is ready for the launch based on the launch schedule decided by you in the 

Google Play Store. 

 

11. The App Marketing Phase 

This phase is not included in the app solution development process but it comes just after the app 

launch and you as a business owner have to market your app on different marketing platforms 

like the web world, on your official company’s website, your social media channels, through 

paid marketing channels, and through in-app promotions as well. This will help you get your app 

to your actual customer base and boost its popularity. 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.cisin.com/service/mobile-app-development.htm
https://www.cisin.com/service/mobile-app-development.htm


3.4 JAVA API 

Mobile operating system using Java language as the simply for android apps. Most of android 

developer using java of any kind will put you in top standing for android apps coding. 

 

Java Key Features for Mobile 

Apps 

❖ Java portable code 

execute in all platforms 

❖ Java support OOPS 

concept 

❖ Easy APIs offer for tool 

for every conceivable 

task 

❖ Open Source Libraries 

❖ Huge Global 

Community with 

Android Support 

❖ Easy to learn, implement and execute 

 

The Android Gradle plugin provides built-in support for using certain Java 8 language features 

and third-party libraries that use them. 

What Are Java APIs?  

APIs are important software components bundled with the JDK. APIs in Java include classes, 

interfaces, and user Interfaces. They enable developers to integrate various applications and 

websites and offer real-time information. 

Need for Java APIs 
Java developers use APIs to: 

Streamline Operating Procedures 

Social media applications like Twitter, Facebook, LinkedIn, and Instagram provide users with 

multiple options on one screen. Java APIs make this functionality possible. 

Improve Business Techniques 

Introducing APIs to the public leads many companies to release private data to generate new 

ideas, fix existing bugs, and receive new ways to improve operations. The Twitter developer 

account is an example of an API that gives programmers private API keys to access Twitter data 

and develop applications.  

Create Powerful Applications 

Online banking has changed the industry forever, and APIs offer customers the ability to manage 

their finances digitally with complete simplicity. 

 

 

 



Types of Java APIs 

There are four types of APIs in Java: 

• Public 

• Private 

• Partner 

• Composite 

Public 

Public (or open) APIs are Java APIs that come with the JDK. They do not have strict restrictions 

about how developers use them. 

Private 

Private (or internal) APIs are developed by a specific organization and are accessible to only 

employees who work for that organization.  

Partner 

Partner APIs are considered to be third-party APIs and are developed by organizations for 

strategic business operations. 

Composite 

Composite APIs are microservices, and developers build them by combining several service 

APIs.  

 
Data and API Services 
Data and API services are another way to categorize Java APIs other than public, private, 

partner, and composite. APIs are also classified based on their data-manipulation capabilities and 

the variety of services they offer, including: 

❖ Internal API services 

❖ External API services 

❖ CRUD 

❖ User interface services 

 

Internal API Services 

Internal API services are developed to offer organizations services specific to that organization. 

These services include only complex data operations and internal processes. 

 

External API Services 

External APIs are open-source APIs that developers integrate into an existing application or 

website. 

 

CRUD 

CRUD APIs provide data manipulation operations over various data storage units such as 

software as a service (SaaS) and relational database management systems (RDBMS), using 

standard storage-unit connecting tools like Java Database Connectivity (JDBC).  

 

User Interface Services 

User interface service APIs are open-source APIs that allow developers to build user interfaces 

for mobile devices, computers, and other electronics. 



 
API Service Protocols 
The rules and protocols guide the functionality of the Java API. Different APIs have different 

service protocols. 

For a typical RESTful API, developers must follow these rules: 

Stateless 

A RESTful API follows client-server architecture so it must be stateless. 

Uniform Interface 

The entities in a RESTful API are the server and clients. Applications that run on a global scale 

need a uniform client and server interface through the Hypertext Transfer Protocol (HTTP). 

Uniform Resource Identifiers (URIs) allocate the required resources.  

 

Client-Server 

The client-server model used in the RESTful API should be fault-tolerant. Both the client and 

server are expected to operate independently. The changes made at the client end should not 

affect the server end and vice versa. 

 

Cache 

Including a cache memory allows the application to record intermediate responses and run faster 

in real-time. A RESTful API also includes the cache memory.   

 

Layered 

A RESTful API is built using layers. Layers in the API are loosely coupled, or independent, from 

each other. Each layer contributes to a different level of hierarchy and also supports 

encapsulation. 

The Most Commonly Used Java APIs 

API Java Media Frameworks 

RESTful API Java Persistence API 

Web API Java Speech API 

Facebook.4j Java 3D 

Twitter.4j Java USB for Windows 

JavaHelp Android API 

Java Advanced Imaging 

Association of the Standardization of 

Embedded Platforms 

Java Data Objects Java Naming and Directory Interface 

 

 



 
The Advantages of APIs 
Some of the main advantages of using Java APIs include: 

 

Extensive SQL Support 

APIs in Java enable a wide range of SQL support services in user applications through a 

component-based interface. 

 

Application 

APIs in Java provide effortless access to all of an application’s major software components and 

easily deliver services. 

 

Efficiency 

Java APIs are highly efficient because they enable rapid application deployment. Also, the data 

that the application generates is always available online.  

 

Automation 

APIs allow computers to automatically upload, download, update and delete data automatically 

without human interaction. 

Integration 

Java APIs can integrate into any application and website and provide a fluid user experience with 

dynamic data delivery.   

Scope 

Java APIs easily make websites, applications, and information available to a wide range of users 

and audiences. 

 

Customization 

Java APIs enable developers and businesses to build applications that personalize the user 

interface and data. 

 

Adaptability 

Java APIs are highly flexible and adaptable because they can easily accept feature updates and 

changes to frameworks and operating environments. 

 



 

 

3.5 DYNAMIC / DEEP LINKS 

Dynamic or Deep links are a type of connection meant to send users to an application directly 

rather than a store or a website. These links are under use to send users to a specific in-app 

location straight. 

It will let the users save their plenty of time and effort required to search a particular element or 

reach a specific page on an application. 

Deep linking can do this by specifying a custom URL scheme or an internal URL to open the 

application if it is installed already.  

Dynamic Links in Firebase 

Firebase Dynamic Links are a tool provided by Google’ new Firebase platform to allow 

marketers to create a single link that will work the way you want, on multiple platforms, and 

whether or not your app is installed.  

Dynamic links are smart URLs which allow us to send existing and potential users to any 

location within our Android and iOS app. 

 

Dynamic Links Features 

Here are some key features of Firebase Dynamic links that you must know: 

• Survive app install process 

Dynamic links are just like smart URLs that will help you to retarget your existing users to any of 

your preferred locations. These links can survive the process of application install which will let 

users see their desired content. More amazingly, these are free to use at any level and scale.  

• Add user to user sharing  

When a user is going to share content from your application, the final objective of this must be to 

convert his or her friends into active application users. The best way to achieve this is by 

presenting personalized content via deep linking through Firebase Dynamic Links. 

• Drive more installs  

You can add deep links to your promotional campaigns on every platform. It will let you enhance 

installs via effective social media, SMS, and email marketing campaigns.  

• Turn more users to mobile app  

Firebase Dynamic Links can let you help in migrating your desktop users to mobile applications. 

By this, you can give your users an easier way to send deep links on a mobile app.  

 

Key benefits of Dynamic Links 

There are the following benefits of Dynamic Links: 

1. It is helpful in the conversion of web users to native app users. 

2. It increases the conversion of user-to-user sharing. 

3. It drives more installs with email, social, and SMS marketing campaigns. 

4. It also helps to turn desktop users into mobile app users. 

1. Converting web users to the app user 

If a mobile web user installs our app by opening an app install link without a dynamic link, then 

they have to navigate again to where they were. With the help of dynamic links, we can make 

sure that after web users install our app, they can continue where they left off. 

2. User-to-user sharing 

Make it easy for our users to share our app's content with their friends. There is no need to worry 

about the platform, or either their friends already use our app or not. 

https://firebase.google.com/docs/dynamic-links
https://firebase.google.com/docs/dynamic-links


3. Email, social, and SMS campaigns 

Sending promotional offers using links which work on any platform. Current and future users 

can redeem our offer; either they use iOS, Android, or web browsers, or not and either they 

already install our app or not. 

4. Real-world app promotion 

We use Eddystone beacons and QR codes, which encode a Dynamic Link in our physical 

displays to promote our app at venues and events. 

5. Converting desktop users to app users 

Dynamic links are generated when web users bookmark a page or send themselves a link. If they 

open the link on a different device, they can get the best experience for the device. 

 

• You can direct your web users to a specific part of your application with Firebase 

Dynamic Links.  

• It can also help you to create a more effective, simple, and engaging social and email 

campaign in a more effective way.  

• Email marketing is still an essential marketing tactic, and more amazingly, Firebase 

Dynamic Links can help you run successful and personalize email marketing campaigns 

with ease.  

• Deep links via Firebase Dynamic links can also help you enable the user to share your 

application to increase your user base.  

• Firebase Dynamic links can let you use short URLs for affiliate marketing as well.  
 

Functioning of Dynamic Link 

The dynamic link is created either by forming a URL by adding Dynamic Link parameters to a 

domain-specific to our app or by using the Firebase console, iOS, using a REST API or Android 

Builder API. These parameters specify the links we want to open, depending on the user's 

platform and whether our app is installed. 

 

Many retailers will understand Firebase’s dynamic linking capability as deep linking, i.e. 

retailers will be able to link to specific content within the app or on the web. Utilising a single 

link, Firebase can detect whether the user has the app and therefore direct the user to this deep 

link in-app. In the instance the user does not have the app installed, the retailer, on set-up, will 

have the option to choose whether to direct the user to the specific content on the web or to the 

App/Google Play Store to download the app.  



 

3.7 CONCURRENCY IN MOBILE APPLICATION DEVELOPMENT 

A scalable application in a multicore device environment, the Android developer should be capable of 

creating concurrent lines of execution that combine and aggregate data from multiple resources. 

 

 

 

 



 

 

 

 



 

 

 

 

 

 



 

 

 

 



Concurrent package constructs 

Other Java concurrent constructs provided by java.util.concurrent, which are also available on Android 

SDK are as follows: 

 

Lock objects (java.util.concurrent): They implement locking behaviors with a higher level idiom. 

Executors: These are high-level APIs to launch and manage a group of thread executions (ThreadPool, 

and so on). 

Concurrent collections: These are the collections where the methods that change the collection are 

protected from synchronization issues. 

Synchronizers: These are high-level constructs that coordinate and control thread execution (Semaphore, 

Cyclic Barrier, and so on). 

Atomic variables (java.util.concurrent.atomic): These are classes that provide thread-safe operations on 

single variables. One example of it is AtomicInteger that could be used in our example to solve the 

correctness issue. 

 

Some Android-specific constructs use these classes as basic building blocks to implement their concurrent 

behavior, although they could be used by a developer to build custom concurrent constructs to solve a 

specific use case. 

 

Executor framework 

The Executor framework is another framework available on java.util.concurrent that provides an interface 

to submit Runnable tasks, decoupling the task submission from the way the task will run: 

 

public interface Executor { 

  void execute(Runnable command); 

} 

Each Executor, which implements the interface that we defined earlier, can manage the asynchronous 

resources, such as thread creation destruction and caching, and task queueing in a variety of ways to 

achieve the perfect behavior to a specific use case. 

 

The java.util.concurrent comes with a group of implementations available out of the box that cover most 

generic use cases, as follows: 

 

Executors.newCachedThreadPool(): This is a thread poll that could grow and reuse previously created 

threads 

Executors.newFixedThreadPool (nThreads): This is a thread pool with a fixed number of threads and a 

message queue for store work 

Executors.newSingleThreadPool(): This is similar to newFixedThreadPool, but with only one working 

thread 

To run a task on Executor, the developer has to invoke execute() by passing Runnable as an argument: 

 

public class MyRunnable implements Runnable { 

    public void run() { 

        Log.d("Generic", "Running From Thread " + 

              Thread.currentThread().getId());    

  // Your Long Running Computation Task 

    } 

} 

public void startWorking(){ 

    Executor executor = Executors.newFixedThreadPool(5); 

    for ( int i=0; i < 20; i++ ) { 

        executor.execute(new MyRunnable()); 

    } 

} 



Multithreading in Java using Android 

The most basic one, java.lang.Thread, is the class that is mostly used and is the construct that creates a 

new independent line of execution in a Java program: 

MyThread myThread = new MyThread(); 

myTread.start(); 

At this time, create an instance of our MyThread, and when start it in the second line, the system creates a 

thread inside the process and executes the run() method. 

Thread.currentThread(): This retrieves the current running instance of the thread 

Thread.sleep(time): This pauses the current thread from execution for the given period of time 

Thread.getName() and Thread.getId(): These get the name and TID, respectively so that they can be 

useful for debugging purposes 

Thread.isAlive(): This checks whether the thread is currently running or it has already finished its job 

Thread.join(): This blocks the current thread and waits until the accessed thread finishes its execution or 

dies 

Created the Runnable subclass so that it implements the run() method and can be passed and executed by 

a thread: 

 

public class MyRunnable implements Runnable { 

 

    public void run(){ 

        Log.d("Generic","Running in the Thread " + 

                        Thread.currentThread().getId()); 

 // Do your work here 

 ... 

    } 

} 

Now our Runnable subclass can be passed to Thread and is executed independently in the concurrent line 

of execution: 

 

Thread thread = new Thread(new MyRunnable()); 

thread.start(); 

 

3.8 RESOURCE MANAGEMENT IN MOBILE APPLICATION DEVELOPMENT 

In addition to coding the application, to build an excellent application, you need to focus on a variety of 

resources, such as you use a variety of static content, such as bitmaps, colors, layout definition, user 

interface strings, animation and so on. These resources are generally placed in the project's res / 

standalone subdirectory. 

res / directory contains all of the resources in various subdirectories. Here's a picture resource, two layout 

resources and a string resource file. The following table gives a detailed in the project res / directory 

support resources. 



 

Resources Resource Type 

anim / XML file that defines the animation property. They are saved in res / anim / folder, 

by type of access R.anim 

color / XML file that defines the color status list. They are saved in res / color / folder, by 

type of access R.color 

drawable / Image files, such as .png, .jpg, .gif, or XML file, is compiled as a bitmap, state list, 

shapes, animated images. They are saved in res / drawable / folder, by type of access 

R.drawable 

layout / Custom UI XML file layout. They are saved in res / layout / folder, by type of access 

R.layout 

menu / Custom application menu XML files, such as the Options menu, context menus, sub-

menus. They are saved in res / menu / folder, by type of access R.menu 

raw / Any files are saved in their original form. We need to R.raw.filename named resource 

ID, to open the raw file by calling Resource.openRawResource () 

values / XML files contain simple values (such as strings, integers, color, etc.).  

 

Alternative Resources 

Your application needs to provide resources to support an alternative configuration for a specific device. 

For example, you need to provide an alternative picture of resources for different screen resolutions, 

providing an alternative string resources for different languages. At runtime, Android detects the current 

device configuration, and load the appropriate resources for an application. 

To identify a set of alternative resources for specific configuration, following the steps of: 

Create a new directory res / down to <resource_name> _ <config_qualifier> are named. 

Saving alternative resources in response to this directory. 

Access to resources 

In application development, we need access to defined resources, either through code or through XML 

files. 

  

When the Android application is compiled to generate a class R, which contains the ID and all res / 

directory resources. You can use the class R, + by subclass resource name or directly use the resource ID 

to access resources. 

 

 

 



Examples 

Access res / drawable / myimage.png, and set it to the ImageView, you would use the following code: 

 

ImageView imageView = (ImageView) findViewById(R.id.myimageview); 

imageView.setImageResource(R.drawable.myimage); 

The first line of code in here to get R.id.myimageview defined myimageview of ImageView in the layout 

file. The second line with R.drawable.myimage to get the image in res / drawable in a subdirectory called 

myimage. 

 

Examples 

Consider an example in which res / values / strings.xml defined as follows: 

 

<?xml version="1.0" encoding="utf-8"?> 

<resources> 

    <string  name="hello">Hello, World!</string> 

</resources> 

 

Now you can use the ID of the object msg of TextView resource ID to set the text, as follows: 

 

TextView msgTextView = (TextView) findViewById(R.id.msg); 

msgTextView.setText(R.string.hello); 

 

Access in XML 

Consider the following XML resource file res / values / strings.xml, which contains a color resource and a 

string resource - 

 

<?xml version="1.0" encoding="utf-8"?> 

<EditText xmlns:android="http://schemas.android.com/apk/res/android" 

    android:layout_width="fill_parent" 

    android:layout_height="fill_parent" 

    android:textColor="@color/opaque_red" 

    android:text="@string/hello" /> 

Now, you can use these resources in the following layout file to set the text color and text content: 

 

<code>&lt;?xml version="1.0" encoding="utf-8"?&gt; 

&lt;EditText xmlns:android="http://schemas.android.com/apk/res/android" 

    android:layout_width="fill_parent" 

    android:layout_height="fill_parent" 

    android:textColor="@color/opaque_red" 

    android:text="@string/hello" /&gt; 

</code> 

 

 

 

 

 

 

 

 



 

 

 

 

Android operating system is a stack of software components which is roughly divided into five 

sections and four main layers as shown below in the architecture diagram. 

 
Linux kernel 

Linux Kernel is heart of the android architecture. It manages all the available drivers such as 

display drivers, camera drivers, Bluetooth drivers, audio drivers, memory drivers, etc. which 

are required during the runtime. 

The Linux Kernel will provide an abstraction layer between the device hardware and the other 

components of android architecture. It is responsible for management of memory, power, 

devices etc. 

The features of Linux kernel are: 

• Security: The Linux kernel handles the security between the application and the system. 

• Memory Management: It efficiently handles the memory management thereby providing 

the freedom to develop our apps. 

• Process Management: It manages the process well, allocates resources to processes 

whenever they need them. 

• Network Stack: It effectively handles the network communication. 

• Driver Model: It ensures that the application works properly on the device and hardware 

manufacturers responsible for building their drivers into the Linux build. 

 

 

 

UNIT IV  MOBILE OS                    

Mobile OS: Android, iOS – Android Application Architecture – Android basic components – Intents 

and Services – Storing and Retrieving data – Packaging and Deployment – Security and Hacking.  
 



Android Libraries 

This category encompasses those Java-based libraries that are specific to Android development. 

Examples of libraries in this category include the application framework libraries in addition to 

those that facilitate user interface building, graphics drawing and database access. A summary 

of some key core Android libraries available to the Android developer is as follows − 

• android.app − Provides access to the application model and is the cornerstone of all 

Android applications. 

• android.content − Facilitates content access, publishing and messaging between 

applications and application components. 

Platform libraries – 

The Platform Libraries includes various C/C++ core libraries and Java based libraries such as 

Media, Graphics, Surface Manager, OpenGL etc. to provide a support for android 

development. 

• Media library provides support to play and record an audio and video formats. 

• Surface manager responsible for managing access to the display subsystem. 

• SGL and OpenGL both cross-language, cross-platform application program interface 

(API) are used for 2D and 3D computer graphics. 

• SQLite provides database support. It is used to access data published by content providers 

and includes SQLite database management classes.and FreeType provides font support. 

• Web-Kit This open source web browser engine provides all the functionality to display 

web content and to simplify page loading. 

• widget − A rich collection of pre-built user interface components such as buttons, labels, 

list views, layout managers, radio buttons etc. 

• Text − Used to render and manipulate text on a device display. 

• View − The fundamental building blocks of application user interfaces. 

• SSL (Secure Sockets Layer) is security technology to establish an encrypted link between 

a web server and a web browser. 

 

Android Runtime 

Android Runtime environment is one of the most important part of Android. It contains 

components like core libraries and the Dalvik virtual machine(DVM). Mainly, it provides the 

base for the application framework and powers our application with the help of the core 

libraries. 

Like Java Virtual Machine (JVM), Dalvik Virtual Machine (DVM) is a register-based 

virtual machine and specially designed and optimized for android to ensure that a device can 

run multiple instances efficiently. It depends on the layer Linux kernel for threading and low-

level memory management.  

 

Android uses DVM to optimize battery life, memory and performance. The byte code generated 

by the Java compiler has to be converted to .dex file by DVM, as it has its own byte code. 

Also, multiple class files are created as one .dex file and the compressed .jar file is greater than 

the uncompressed .dex file. 

 

The Android runtime also provides a set of core libraries which enable Android application 

developers to write Android applications using standard Java programming language. 

 

 

 



Application Framework 

The Application Framework layer provides many higher-level services to applications in the 

form of Java classes. Application developers are allowed to make use of these services in their 

applications. 

 

The Android framework includes the following key services − 

• Activity Manager − Controls all aspects of the application lifecycle and activity stack. 

• Content Providers − Allows applications to publish and share data with other 

applications. 

• Resource Manager − Provides access to non-code embedded resources such as strings, 

color settings and user interface layouts. 

• Notifications Manager − Allows applications to display alerts and notifications to the 

user. 

• View System − An extensible set of views used to create application user interfaces. 

 

Applications 

You will find all the Android application at the top layer. The pre-installed applications like 

home, contacts, camera, gallery etc and third party applications downloaded from the play store 

like chat applications, games etc. will be installed on this layer only. 

 

It runs within the Android run time with the help of the classes and services provided by the 

application framework. 

 

iOS 

iOS is a mobile operating system developed and distributed by Apple Inc. It was originally 

released in 2007 for the iPhone, iPod Touch, and Apple TV. iOS is derived from Mac OS X, 

with which it shares the Darwin foundation. iOS is Apple's mobile version of the OS X operating 

system used in Apple computers. 

 

It is developed by objective-C and C language.Not opensource. 

 

Features of iOS 

The power of iOS can be felt with some of the following features provided as a part of the 

device. 

• Maps- web mapping service for Location information. 

• Siri - Siri is the voice assistant on Apple devices Google's Google Assistant. 

• Facebook and Twitter 

• Multi-Touch-  It's an entirely new interface based on a large multi-touch display and 

innovative new software that lets you control everything using only your fingers. 

• Accelerometer-  You access the raw accelerometer data using the classes of the Core 

Motion framework. 

• GPS -  GPS-enabled iOS device will also periodically send GPS locations, travel speed 

etc 

• High end processor -  

• Camera -  

• Safari - Safari browser is the best way to experience the Internet on all your Apple 

devices. It brings robust customisation options, powerful privacy protections and 

industry-leading battery life. 



• Powerful APIs -  

• Game center - Game Center is a service by Apple that allows users to play and 

challenge friends when playing online multiplayer social gaming network games.  

• In-App Purchase 

• Reminders 

• Wide Range of gestures 

 

  iOS Architecture 

 

The iOS is the operating system created by Apple Inc. 

for mobile devices. The iOS is used in many of the 

mobile devices for apple such as iPhone, iPod, iPad etc. 

 

The iOS architecture is layered. It contains an 

intermediate layer between the applications and the 

hardware so they do not communicate directly.  

The lower layers in iOS provide the basic services and 

the higher layers provide the user interface and 

sophisticated graphics. 

 

 Layers in iOS Architecture 
The different layers as shown in the above diagram are 

given as follows − 

Core OS 

All the iOS technologies are built on the low level 

features provided by the Core OS layer. These 

technologies include Core Bluetooth Framework, 

External Accessory Framework, Accelerate 

Framework, Security Services Framework, Local 

Authorization Framework etc. 

 
 

 

Core Services 

There are many frameworks available in the core services layer. Details about some of these are 

given as follows − 

Cloud kit Framework 

The data can be moved between the app the iCloud using the Cloudkit Framework. 

Core Foundation Framework 

This provides the data management and service features for the iOS apps. 

Core Data Framework 

The data model of the model view controller app is handled using the Core Data Framework. 

Address Book Framework 

The address book framework provides access to the contacts database of the user. 

Core Motion Framework 

All the motion based data on the device is accessed using core motion framework. 

Health kit Framework 

The health related information of the user can be handled by this new framework. 



Core Location Framework 

This framework provides the location and heading information to the various apps. 

Core Location is a framework that's included in the iOS SDK that can be used to 

determine location and heading with a device. Location is found using GPS or assisted GPS on 

the device. Assisted GPS helps retrieve your location quicker by using the cellular or Wi-Fi 

network to triangulate your location. 

Media 

The media layer enables all the graphics, audio and video technology of the system. The 

different frameworks are: 

UIKit Graphics 

This provides support for designing images and animating the view content. 

Core Graphics Framework 

This provides support for 2-D vector and image based rendering and is the native drawing engine 

for iOS apps. 

Core Animation 

The Core Animation technology optimizes the animation experience of the apps. 

Media Player Framework 

This framework provides support for playing playlists and enables the user to use their iTunes 

library. 

AV Kit 

This provides various easy to use interfaces for video presentation. 

Cocoa Touch 

The cocoa touch layer provides the following frameworks − 

Event Kit Framework 

This shows the standard system interfaces using view controllers for viewing and changing 

calendar related events. 

Game Kit Framework 

This provides support for users to share their game related data online using Game center. 

Map Kit Framework 

This provides a scrollable map which can be included into the app user interface. 

 

 

ANDROID - BASIC COMPONENTS 
 

Application components are the essential building blocks of an Android application.   

There are following four main components that can be used within an Android application. 

Sr.No Components & Description 

1 
Activities - They dictate the UI and handle the user interaction to the smart phone 

screen. 

2 Services - They handle background processing associated with an application. 

3 
Broadcast Receivers - They handle communication between Android OS and 

applications. 

4 Content Providers - They handle data and database management issues. 



 

Activities 

An Android activity represents a screen with which a user can interact. The Activity class is 

also used to respond to user input. An activity can transition to another activity as the user 

navigates between screens. 

An activity is running when it’s in the foreground of the screen. 

 For example, a contacts app that is having multiple activities like showing a list of contacts, add 

a new contact, and another activity to search for the contacts. All these activities in the contact 

app are independent of each other but will work together to provide a better user experience. 

This handles the user interactions with the smartphone display.  

 

An activity is implemented as a subclass of Activity class as follows − 

public class MainActivity extends Activity { 

} 

 

Services 

A service is a component that runs in the background to perform long-running operations. For 

example, a service might play music in the background while the user is in a different 

application, or it might fetch data over the network (download files) without blocking user 

interaction with an activity. 

 A service is implemented as follows − 

public class MyService extends Service { 

} 

 

Broadcast Receivers 

The broadcast receivers handle the communication between the applications and the android 

operating system. 

Android broadcasts system events when they occur, including things like the device running low 

battery power, a new incoming phone call, or the system getting booted. 

 

 

 

Broadcast Receivers simply respond to broadcast messages from other applications or from the 

system. For example, applications can also initiate broadcasts to let other applications know that 

some data has been downloaded to the device and is available for them to use, and will initiate 

appropriate action. 

If you insert headset into mobile, this ∩ headset symbol is displayed through this broadcast 

receiver. Likewise if you charge mobile, mobile charging is shown by this receiver. 

 

 

A broadcast receiver is implemented as a subclass of BroadcastReceiver class. 

 



public class MyReceiver  extends  BroadcastReceiver { 

   public void onReceive(context,intent){} 

} 

 

 

 

 

Content Providers 

You can’t access another app’s data by interrogating its database,  Instead, you use a content 

provider, which is an interface that allows apps to share data in a controlled way. It allows you to 

perform queries to read the data, insert new records, and update or delete existing records. 

A content provider component supplies data from one application to others on request. Such 

requests are handled by the methods of the ContentResolver class. The data may be stored in the 

file system, the database or somewhere else entirely. 

 

A content provider is implemented as a subclass of ContentProvider class. 

public class MyContentProvider extends  ContentProvider { 

   public void onCreate(){} 

} 

 
 

 



 

 

 

S.No Components & Description 

1 
Fragments 

Represents a portion of user interface in an Activity. 

2 
Views 

UI elements that are drawn on-screen including buttons, lists forms etc. 

3 
Layouts 

View hierarchies that control screen format and appearance of the views. 

4 
Intents 

Messages wiring components together. 

5 
Resources 

External elements, such as strings, constants and drawable pictures. 

6 
Manifest 

Configuration file for the application. 

 

5.Intends: 

It is a powerful inter-application message-passing framework. They are extensively used 

throughout Android. Intents can be used to start and stop Activities and Services, to broadcast 

messages system-wide or to an explicit Activity, Service or Broadcast Receiver or to request 

action be performed on a particular piece of data. 

6. Widgets 

These are the small visual application components that you can find on the home screen of the 

devices. They are a special variation of Broadcast Receivers that allow us to create dynamic, 

interactive application components for users to embed on their Home Screen. 

 

7. Notifications 

Notifications are the application alerts that are used to draw the user’s attention to some 

particular app event without stealing focus or interrupting the current activity of the user. Eg 

Wifi availability, facebook notifications etc. They are generally used to grab user’s attention 

when the application is not visible or active, particularly from within a Service or Broadcast 

Receiver. Examples: E-mail popups, Messenger popups, etc. 

 

 

 

 

Android Libraries 

A set of standard Java development  libraries (providing support for such general purpose 

tasks as string handling, networking and file manipulation), the Android development 

environment also includes the Android Libraries. 

https://www.geeksforgeeks.org/broadcast-receiver-in-android-with-example/


 

 

 

 

 
 

 

 

 

 

 

 

 



Android Activity Lifecycle 

In android, Activity represents a single screen with a user interface (UI) of an application and it 

will acts an entry point for users to interact with an app. 

  

Generally, the android apps will contain multiple screens and each screen of our application will 

be an extension of Activity class. By using activities, we can place all our android application UI 

components in a single screen. 

  

From the multiple activities in android app, one activity can be marked as a main activity and 

that is the first screen to appear when we launch the application. In android app each activity can 

start another activity to perform different actions based on our requirements. 

 

For example, a contacts app which is having multiple activities, in that the main activity screen 

will show a list of contacts and from the main activity screen we can launch other activities that 

provide screens to perform tasks like add a new contact and search for the contacts. All these 

activities in the contact app are loosely bound to other activities but will work together to provide 

a better user experience. 

  

Generally, in android there is a minimal 

dependency between the activities in an app. To 

use activities in application we need to register 

those activities information in our app’s manifest 

file (AndroidMainfest.xml) and need to manage 

activity life cycle properly. 

  

To use activities in our application we need to 

define an activities with required attributes in 

manifest file (AndroidMainfest.xml) like as 

shown below 

 

<?xml version="1.0" encoding="utf-8"?> 

<manifest …..> 

<application …..> 

<activity android:name=".MainActivity" > 

          …….     

 

          ……. 

 

</activity> 

 

     ……. 

 

</application> 

</manifest> 

 

 



The activity attribute android:name will represent the name of class and we can also add 

multiple attributes like icon, label, theme, permissions, etc. to an activity element based on our 

requirements. 

  

In android application, activities can be implemented as a subclass of Activity class like as 

shown below. 

 

public class MainActivity extends Activity { 

 

} 

 

This is how we can activities in android application based on our requirements. 

 

Generally, the activities in our android application will go through a different stages in their life 

cycle. In android, Activity class have 7 callback methods 

like onCreate(), onStart(), onPause(), onRestart(), onResume(), onStop() and onDestroy() to 

describe how the activity will behave at different stages. 

  

By using activity call-back methods we can define how our activity can behave when the user 

enter or leaves our application. 

 

Android Activity Lifecycle Callback Methods 

In android, an activity goes through a series of states during its lifetime. By using callback 

methods we can get the activity transitions between the states.  

  

Android system initiates its program within an Activity starting with a call 

on onCreate() callback method. There is a sequence of callback methods that start up an activity 

and a sequence of callback methods that tear down an activity. 

  

This section will give you detailed information about callback methods to handle activity 

transitions between states during the lifecycle. 

onCreate() 

onCreate() gets called when the activity is first created.  This is the first callback method.. 

During the activity creation, activity entered into a Created state. 

 

  

If we have an application start-up logic that needs to perform only once during the life cycle of 

an activity, then we can write that logic in onCreate() method. 

  

Following is the example of defining a onCreate() method in android activity. 

@Override 

protected void onCreate(Bundle savedInstanceState) { 

super.onCreate(savedInstanceState); 

setContentView(R.layout.activity_main); 

} 

 

Once onCreate() method execution is finished, the activity will enter into Started state and the 

system calls the onStart() method. 



onStart() 

The onStart() callback method will invoke when an activity entered into Started State by 

completing onCreate() method. The onStart() method will make an activity visible to the user 

and this method execution will finish very quickly. 

  

Following is the example of defining a onStart() method in android activity. 

 

// @Override is a Java annotation. It tells the compiler that the following method overrides a 

method of its superclass. For instance, say you implement a Person class.  

@Override 

protected void onStart() 

{ 

super.onStart() 

} 

 

After completion of onStart() method execution, the activity enters into Resumed state and 

system invoke the onResume() method. 

onResume() 

When an activity entered into Resumed state, the system invokes onResume() call back method. 

In this state activity start interacting with the user that means user can see the functionality and 

designing part of an application on the single screen. 

  

Mostly the core functionality of an app is implemented in onResume() method. 

  

The app will stay in this Resumed state until an another activity happens to take focus away 

from the app like getting a phone call or screen turned off, etc. 

  

In case if any interruption events happen in Resumed state, the activity will enter 

into Paused state and the system will invoke onPause() method. 

  

After an activity returned from Paused state to Resumed state, the system again will 

call onResume() method due to this we need to implement onResume() method to initialize the 

components that we release during onPause() method 

  

Following is the example of defining a onResume() method in android activity. 

@Override 

public void onResume() { 

super.onResume();  

if (mCamera == null) { 

initializeCamera(); 

    } 

} 

 

 

onPause() 

Whenever the user leaves an activity or the current activity is being Paused then the system 

invokes onPause() method. The onPause() method is used to pause operations like stop playing 



the music when the activity is in a paused state or pass an activity while switching from one app 

to another app because every time only one app can be focused. 

  

Following is the example of defining a onPause() method in android activity. 

 

@Override 

public void onPause()  

{ 

super.onPause(); 

if (mCamera != null) { 

mCamera.release(); 

mCamera = null; 

    } 

} 

 

After completion of onPause() method execution, the next method is 

either onStop() or onResume() depending on what happens after an activity entered into 

a Paused state. 

 

onStop() 

The system will invoke onStop() callback method when an activity no longer visible to the user, 

the activity will enter into Stopped state. This happens due to current activity entered 

into Resumed state or newly launched activity covers complete screen or it’s been destroyed. 

  

The onStop() method is useful to release all the app resources which are no longer needed to the 

user.  

  

Following is the example of defining a onStop() method in android activity. 

 

@Override 

protected void onStop() 

{ 

super.onStop(); 

} 

 

The next callback method which raised by the system is either onRestart(), in case if the activity 

coming back to interact with the user or onDestroy(), in case if the activity finished running. 

onRestart() 

The system will invoke onRestart() method when an activity restarting itself after stopping it. 

The onRestart() method will restore the state of activity from the time that is being stopped. 

  

The onRestart() callback method in android activity will always be followed 

by onStart() method. 

onDestroy() 

The system will invoke onDestroy() method before an activity is destroyed and this is the final 

callback method received by the android activity. 

  



The system will invoke this onDestory() callback method either the activity is finishing or 

system destroying the activity to save space. 

  

Following is the example of defining a onDestroy() method in android activity. 

  

@Override 

public void onDestroy() 

{ 

super.onDestroy(); 

} 

 

The onDestroy() method will release all the resources which are not released by previous 

callback onStop() method. 

 

 

INTENTS 

 

Intents are asynchronous messages which allow Android components to request functionality 

from other components of the Android system. 

For example an Activity can send an Intents to the Android system which starts another Activity. 

An Intent can also contain data. This data can be used by the receiving component. 

 

Intent is a messaging object for run-time binding between components in the same or different 

applications. The components are Activities, Services, Broadcast receivers. 

❖ Call a component from another component. 

❖ Possible to pass data between components. 

 

 
 

  

 
In android, Intent is a messaging object which is used to request an action from another app or same 
app through components such as activities, services, broadcast receivers, and content providers. 

  

Generally, in android, Intents will help us to maintain the communication between app 

components from the same application as well as with the components of other applications. 

 

https://www.tutlane.com/tutorial/android/android-application-components-activities-intents-views-layouts-services
https://www.tutlane.com/tutorial/android/android-application-components-activities-intents-views-layouts-services
https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-services-with-examples
https://www.tutlane.com/tutorial/android/android-broadcastreceivers-with-example
https://www.tutlane.com/tutorial/android/android-content-providers-with-examples
https://www.tutlane.com/tutorial/android/android-application-components-activities-intents-views-layouts-services
https://www.tutlane.com/tutorial/android/android-application-components-activities-intents-views-layouts-services


In android, Intents are the objects of android.content.Intent types and intents are mainly useful 

to perform the following things. 

 

Component Description 

Starting an Activity By sending an Intent object to startActivity() method we can start a new 

Activity or existing Activity to perform required things.  

Starting a Service By sending an Intent object to startService() method we can start a 

new Service or send required instructions to an existing Service. 

Delivering a Broadcast By sending an Intent object to sendBroadcast() method we can deliver 

our messages to other app broadcast receivers. 

 

Component Name 

 It defines the name of the component (.class file) to start and by using the component name 

android system will deliver intent to the specific app component defined by the component 

name. In case if we didn’t define component name then the android system will decide which 

component should receive intent based on other intent information such as action, data, etc. 

 

 

In android, we can specify the component name for intent by using a fully qualified class name 

of the target component and package name, for example, edu.annauniv.resultActivity. We can set 

the component name by using setComponent(), setClass(), setClassName() or by using 

the Intent constructor. 

 

Action 

 It defines the name of the action to be performed to start an activity. The following are some of 

the common actions to start an activity. 

 Action Description 

ACTION_VIEW We can use this action in intent with startActivity(), when we have information that  

activity can show to the user. 

ACTION_SEND We can use this action in intent with startActivity(), when we have some data that the  

user can share through another app such as an email app, social sharing app. 

We can specify the action name of intent by using setAction() or with an Intent constructor. 

 

 

 

Data 

 It specifies a type of data to an intent filter. When we create an intent, it’s important to specify 

the type of data (MIME type) in addition to its URI. By specifying a MIME type of data, it helps 

the android system to decide which is the best component to receive our intent. 

  

 

 

 

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-services-with-examples
https://www.tutlane.com/tutorial/android/android-services-with-examples


Category 

  

Generally, the android category is optional for intents and it specifies the additional information 

about the type of component that should handle an intent. 

  

We can specify a category for intent by using addCategory(). 

  

The above properties (Component Name, Action, Data, and Category) will represent the 

characteristics of an intent. By using these properties, the android system will easily decide 

which app component to start. 

 

 

 
 

Implicit Intent 

 

 
  

If you observe the above image Activity A creates an intent with the required action and sends it 

to an android system using the startActivity() method. The android system will search for an 

intent filter that matches the intent in all apps. Whenever the match found the system starts 

matching activity (Activity B) by invoking the onCreate() method. 

  

When an Intent is launched, Android checks out which activities might answer to the Intent … 

If at least one is found, then that activity is started! 

The Binding does not occur at compile time, nor at install time, but at run-time. 

 
Implicit Intents do not directly specify the Android components which should be called. 
For example the following tells the Android system to view a webpage. 

 
 
 or telling the Android system to open the camera: 

https://www.tutlane.com/tutorial/android/android-intents-implicit-explicit


 

 
 

Intent Components   

(Predefined Actions) 

 
 

Special actions 

 
 

1. Example of Implicit Intent that initiates a web search. 

public void doSearch(String query) { 

Intent intent =new Intent(Intent.ACTION_SEARCH); 

Intent.putExtra(SearchManager.QUERY,query); 

if (intent.resolveActivity(getPackageManager()) !=null) 

startActivity(intent) 

}  

 

2. Example of Implicit Intent that plays a music file. 

public void playMedia(Uri file) { 

Intent intent =new Intent(Intent.ACTION_VIEW); 

if (intent.resolveActivity(getPackageManager()) !=null) 

startActivity(intent) 

} 



 
Category: string describing the kind of component that should handle the intent. 

 
 

 
 

Explicit Intent: (Programmer decide) 

Explicit Intents explicitly defines the component which should be called by the Android system, 

by using the Java class as identifier.  The following shows an explicit Intent. 

 

 

 

Explicit Intents are typically used within one application as the classes in an application are 

controlled by the application developer. 

 

Specify the name of the Activity that will handle the intent. 

Intent intent=new Intent(); 

ComponentName component=new ComponentName(this,SecondActivity.class); 

intent.setComponent(component); 

startActivity(intent); 

 

Activities can return results (e.g. data) 

Sender side: invoke the startActivityForResult() 

 

 Intent i = new Intent(this, ActivityTwo.class); 



onActivityResult(int requestCode, int resultCode, Intent data) 

startActivityForResult(Intent intent, int requestCode); 

 

Intent intent = new Intent(this, SecondActivity.class); 

startActivityForResult(intent, CHOOSE_ACTIVITY_CODE); 

… 

 

public void onActivityResult(int requestCode, int resultCode, Intent data) { 

// Invoked when SecondActivity completes its operations … 

} 

 

Activities can return results (e.g. data) 

 Receiver side: invoke the setResult() 

 

void setResult(int resultCode, Intent data) 

 

Intent intent=new Intent(); 

setResult(RESULT_OK, intent); 

intent.putExtra(”result", resultValue); 

finish(); 

 

The result is delivered to the caller component only after invoking the finish() method. 

 

 

SERVICES 
A service is a component that runs in the background to perform long-running operations without 

needing to interact with the user and it works even if application is destroyed. A service can 

essentially take two states − 

Sr.No. State & Description 

1 Started 

A service is started when an application component, such as an activity, starts it by 

calling startService(). Once started, a service can run in the background indefinitely, even if 

the component that started it is destroyed. 

2 Bound 

A service is bound when an application component binds to it by calling bindService(). A 

bound service offers a client-server interface that allows components to interact with the 

service, send requests, get results, and even do so across processes with interprocess 

communication (IPC). 



 

A service has life cycle callback methods that you can 

implement to monitor changes in the service's state and you 

can perform work at the appropriate stage. The following 

diagram on the left shows the life cycle when the service is 

created with startService() and the diagram on the right shows 

the life cycle when the service is created with 

bindService(): (image courtesy : android.com ) 

 

onStartCommand() 

The system calls this method when another component, such 

as an activity, requests that the service be started, by 

calling startService(). If you implement this method, it is 

your responsibility to stop the service when its work is done, 

by calling stopSelf() or stopService() methods. 

onBind() 

The system calls this method when another component wants 

to bind with the service by calling bindService(). If you 

implement this method, you must provide an interface that 

clients use to communicate with the service, by returning 

an IBinder object.  

onUnbind() 

The system calls this method when all clients have disconnected from a particular interface 

published by the service. 

onRebind() 

The system calls this method when new clients have connected to the service, after it had 

previously been notified that all had disconnected in its onUnbind(Intent). 

onCreate() 

The system calls this method when the service is first created 

using onStartCommand() or onBind(). This call is required to perform one-time set-up. 

onDestroy() 

The system calls this method when the service is no longer used and is being destroyed. Your 

service should implement this to clean up any resources such as threads, registered listeners, 

receivers, etc. 

 

 

 

 

 

 

 

 



package com.AndroidTut; 

 

import android.app.Service; 

import android.os.IBinder; 

import android.content.Intent; 

import android.os.Bundle; 

 

public class HelloService extends Service { 

    

   /** indicates how to behave if the service is killed */ 

   int mStartMode; 

    

   /** interface for clients that bind */ 

   IBinder mBinder;      

    

   /** indicates whether onRebind should be used */ 

   boolean mAllowRebind; 

 

   /** Called when the service is being created. */ 

   @Override 

   public void onCreate() { 

      

   } 

 

   /** The service is starting, due to a call to startService() */ 

   @Override 

   public int onStartCommand(Intent intent, int flags, int startId) { 

      return mStartMode; 

   } 

 

   /** A client is binding to the service with bindService() */ 

   @Override 

   public IBinder onBind(Intent intent) { 

      return mBinder; 

   } 

 

   /** Called when all clients have unbound with unbindService() */ 

   @Override 

   public boolean onUnbind(Intent intent) { 

      return mAllowRebind; 

   } 

 

   /** Called when a client is binding to the service with bindService()*/ 

   @Override 

   public void onRebind(Intent intent) { 

 

   } 

 



   /** Called when The service is no longer used and is being destroyed */ 

   @Override 

   public void onDestroy() { 

 

   } 

} 

 

MainActivity.java 

 

package com.example.AndroidTut.myapplication; 

 

import android.content.Intent; 

import android.support.v7.app.AppCompatActivity; 

import android.os.Bundle; 

 

import android.os.Bundle; 

import android.app.Activity; 

import android.util.Log; 

import android.view.View; 

 

public class MainActivity extends Activity { 

   String msg = "Android : "; 

 

   /** Called when the activity is first created. */ 

   @Override 

   public void onCreate(Bundle savedInstanceState) { 

      super.onCreate(savedInstanceState); 

      setContentView(R.layout.activity_main); 

      Log.d(msg, "The onCreate() event"); 

   } 

 

   public void startService(View view) { 

      startService(new Intent(getBaseContext(), MyService.class)); 

   } 

 

   // Method to stop the service 

   public void stopService(View view) { 

      stopService(new Intent(getBaseContext(), MyService.class)); 

   } 

} 

Following is the content of MyService.java. This file can have implementation of one or more 

methods associated with Service based on requirements. For now we are going to implement 

only two methods onStartCommand() and onDestroy() − 

 

package com.example.AndroidTut.myapplication; 

 

import android.app.Service; 

import android.content.Intent; 



import android.os.IBinder; 

import android.support.annotation.Nullable; 

import android.widget.Toast; 

 

public class MyService extends Service { 

   @Nullable 

   @Override 

   public IBinder onBind(Intent intent) { 

      return null; 

   } 

  

   @Override 

   public int onStartCommand(Intent intent, int flags, int startId) { 

      // Let it continue running until it is stopped. 

      Toast.makeText(this, "Service Started", Toast.LENGTH_LONG).show(); 

      return START_STICKY; 

   } 

 

   @Override 

   public void onDestroy() { 

      super.onDestroy(); 

      Toast.makeText(this, "Service Destroyed", Toast.LENGTH_LONG).show(); 

   } 

} 

 

DATA STORAGE IN ANDROID     

1.  Shared Preferences:- 

Android shared preference is used to store and retrieve primitive information. In android, string, 

integer, long, number etc. are considered as primitive data type. 

 

Android Shared preferences are used to store data in key and value pair so that we can retrieve 

the value on the basis of key. 

 

It is widely used to get information from user such as in settings. 

Typical usage of SharedPreferences is for saving application such as username and password, 

auto login flag, remember-user flag etc. 

 

The shared preferences information is stored in an XML file on the device Lightweight usage, 

such as saving application settings. 

 

 

using getpreferences() 

You used the SharedPreferences object by supplying it with a name, like this: 

 

prefs=getSharedPreferences(prefName,MODE_PRIVATE); 

SharedPreferences.Editoreditor=prefs.edit(); 

 

The information saved inside the SharedPreferences object is visible to all the activities (page) 



within the same application. (axisbank app) 

 

The MODE_PRIVATE constant indicates that the shared preference file can only be opened by 

the application that created it. 

 

The Editor class allows you to save key/value pairs to the preferences file by exposing methods 

such as the following: 

❖ putString() 

❖ putBoolean() 

❖ putLong() 

❖ putInt() 

❖ putFloat() 
 

When you are done saving the values, call the commit() method to save the changes: 

editor.putFloat(FONT_SIZE_KEY,editText.getTextSize()); 

editor.putString(TEXT_VALUE_KEY,editText.getText().toString()); 

//---savesthevalues--editor.commit(); 

Commit – stores as permanently. 

When the activity is loaded, you first obtain the SharedPreferences object and then retrieve all 

the values saved earlier: 

//---loadtheSharedPreferencesobject— 

SharedPreferences  prefs=getSharedPreferences(prefName,MODE_PRIVATE); 

 

 

//---settheTextViewfontsize to the previously saved values – 

floatfontSize=prefs.getFloat(FONT_SIZE_KEY,12); 

editText.setText(prefs.getString(TEXT_VALUE_KEY,

“”)); 

The shared preferences file is saved as an XML file in the 

data/<package_name>/shared_prefs  folder. 

 

using getpreferences() 
prefs.xml 

<?xml version="1.0" encoding="utf-8"?>   

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">   

    <PreferenceCategory   

        android:summary="Username and password information"   

        android:title="Login information" >   

        <EditTextPreference   

            android:key="username"   

            android:summary="Please enter your login username"   

            android:title="Username" />   

        <EditTextPreference   

            android:key="password"   

            android:summary="Enter your password"   

            android:title="Password" />   

    </PreferenceCategory>   

   

    <PreferenceCategory   



        android:summary="Username and password information"   

        android:title="Settings" >   

        <CheckBoxPreference   

            android:key="checkBox"   

            android:summary="On/Off"   

            android:title="Keep me logged in" />   

   

        <ListPreference   

            android:entries="@array/listOptions"   

            android:entryValues="@array/listValues"   

            android:key="listpref"   

            android:summary="List preference example"   

            android:title="List preference" />   

    </PreferenceCategory>   

</PreferenceScreen>   

 

SharedPreferences can be associated with the entire application, or to a specific activity. 

Use the getSharedPrefernces() method to get access to the preferences. 

If the preferences XML file exist, it is opened, otherwise it is created. 

 

To Control access permission to the file: 

MODE_PRIVATE: private only to the application 

MODE_WORLD_READABLE: all application can read XML file 

MODE_WORLD_WRITABLE: all application can write XML file 

 

To retrieve shared preferences data: 

String   username = prefsEditor.getString(“username”.” ”); 

String   password = prefsEditor.getString(“password”.” ”); 

 

2. Internal Storage:-  

We are able to save or read data from the device internal memory. Android can save files 

directly to the device internal storage. FileInputStream and FileOutputStream classes are used 

to read and write data into the file.  These files are private to the application and will be 

removed if you uninstall the application. 

 

We can create a file using openFileOutput with parameter as file name and the operating mode. 

 

Similarly, we can open the file using openFileOutput() passing the parameter as the filename 

with extension. 

❖ Files are used to store large amount of data 

❖ Use I/O interfaces provided by java.io.* libraries to read/write files. 

❖ Only local files can be accessed. 

 

File Operation(Read) 

Use context.openFileInput(string name) to open a private input file stream related to a program. 

Throw FileNotFoundException when file does not exist. 

Syntax:    fileinputStream.in=this.openfileinput(“xyz.txt”) 

 



File Operation (Write) 

Use context.openFileOutput(string name,int mode) to open a private output file stream related to 

a program. The file will be created if it does not exist. 

Output stream can be opened in append mode, which means new data will be appended to end of 

the file. 

 

String mystring=“Hello World” 

 

Syntax:- 

FileOutputStream  outfile = this.openFileOutput(“myfile.txt”,MODE_APPEND) 

 //Open and Write in”myfile.txt”,using append mode. 

Outfile.write(mystring.getBytes()); 

Outfile.close();//close output stream 

 

Activity class 
Let's write the code to write and read data from the internal storage. 

File: MainActivity.java 

 

package example.javatpoint.com.internalstorage;   

   

import java.io.BufferedReader;   

import java.io.FileNotFoundException;   

import java.io.FileOutputStream;   

import java.io.IOException;   

import java.io.InputStreamReader;   

   

public class MainActivity extends AppCompatActivity {   

    EditText  editTextFileName,editTextData;   

    Button saveButton,readButton;   

    @Override   

    protected void onCreate(Bundle savedInstanceState) {   

        super.onCreate(savedInstanceState);   

        setContentView(R.layout.activity_main);   

   

        editTextFileName=findViewById(R.id.editText1);   

        editTextData=findViewById(R.id.editText2);   

        saveButton=findViewById(R.id.button1);   

        readButton=findViewById(R.id.button2);   

   

      //Performing Action on Write Button   

        saveButton.setOnClickListener(new View.OnClickListener(){   

              @Override   

            public void onClick(View arg0) {   

                String filename=editTextFileName.getText().toString();   

                String data=editTextData.getText().toString();   

   

                FileOutputStream fos;   

                try {   

                    fos = openFileOutput(filename, Context.MODE_PRIVATE);   



                    //default mode is PRIVATE, can be APPEND etc.   

                    fos.write(data.getBytes());   

                    fos.close();   

   

                    Toast.makeText(getApplicationContext(),filename + " saved",   

                            Toast.LENGTH_LONG).show();   

     

                } catch (FileNotFoundException e) {e.printStackTrace();}   

                catch (IOException e) {e.printStackTrace();}   

              }   

          });   

   

        //Performing Action on Read Button   

        readButton.setOnClickListener(new View.OnClickListener(){   

   

            @Override   

            public void onClick(View arg0) {   

                String filename=editTextFileName.getText().toString();   

                StringBuffer stringBuffer = new StringBuffer();   

                try {   

                    BufferedReader inputReader = new BufferedReader(new InputStreamReader(   

                            openFileInput(filename)));   

                    String inputString;   

                    //Reading data line by line and storing it into the stringbuffer   

                    while ((inputString = inputReader.readLine()) != null) {   

                        stringBuffer.append(inputString + "\n");   

                    }   

   

                } catch (IOException e) {   

                    e.printStackTrace();   

                }   

                //Displaying data on the toast   

            

Toast.makeText(getApplicationContext(),stringBuffer.toString(),Toast.LENGTH_LONG).show(

);   

   

            }   

   

        });   

    }   

}   

 

3. External Storage:- 

Store public data on the shared external storage. (SD Card) 

Every Android-compatible device supports a shared “external storage” so that you can save files. 

The Removable storage media has larger capacity, as well as the capability to share the files 

easily with other users.  



File saved to the external storage are world readable and can be modified by the user and transfer 

files on computer. 

These files are private to the application and will be removed when the application is uninstalled. 

Must check whether external storage is available first by calling getExternalStorageState() 

 

//Performing action on save button   

saveBtn.setOnClickListener(newView.OnClickListener(){ 

public void onClick(View v){ 

String str=textBox.getText().toString(); 

 

 

try 

{ 

//---SD Card Storage--- 

File sdCard = Environment.getExternalStorageDirectory(); 

File directory = new File (sdCard.getAbsolutePath() + “/MyFiles”); 

directory.mkdirs(); 

File file = new File(directory, “textfile.txt”); 

FileOutputStream fOut = new FileOutputStream(file); 

OutputStreamWriter  osw=new OutputStreamWriter(fOut); 

//---write the string to the file--- 

osw.write(str); 

osw.flush(); 

osw.close(); 

 

//---display file saved message--- 

Toast.makeText(getBaseContext(), “Filesavedsuccessfully!”, 

Toast.LENGTH_SHORT).show(); 

//---clears the Edit Text--- 

textBox.setText(“”); 

} 

 

catch(IOExceptionioe) 

{ 

ioe.printStackTrace(); 

} 

} 

}); 

 

To load the file from the external storage, modify the onClick() method for the Load 

button: 
 

loadBtn.setOnClickListener(newView.OnClickListener(){ 

public void onClick(View v){ 

try 

{ 

//---SD Storage--File 

sdCard = Environment.getExternalStorageDirectory(); 



File directory = new File (sdCard.getAbsolutePath() + “/MyFiles”); 

File file = new File(directory, “textfile.txt”); 

FileInputStream fIn = new FileInputStream(file); 

InputStreamReader isr = new InputStreamReader(fIn); 

char[]inputBuffer=newchar[READ_BLOCK_SIZE]; 

Strings=“”; 

intcharRead; 

 

 

while((charRead=isr.read(inputBuffer))>0) 

{ 

//---convertthecharstoaString--StringreadString= String.copyValueOf(inputBuffer,0,charRead); 

s+=readString; 

inputBuffer=newchar[READ_BLOCK_SIZE]; 

} 

textBox.setText(s); 

Toast.makeText(getBaseContext(), “Fileloadedsuccessfully!”, 

Toast.LENGTH_SHORT).show(); 

} 

catch(IOExceptionioe){ 

ioe.printStackTrace(); 

} 

} 

}); 

 

SQLite Databases:-Store structured data in a private database. 

android.database.sqlite Contains the SQLite database management classes that an application 

would use to manage its own private database. 

android.database.sqlite.SQLiteDatabase Contains the methods for: creating, opening, closing, 

inserting, updating, deleting and quering an SQLite database. 

 

android.database.sqlite – Classes 

 

SQLiteCloseable - An object created from a SQLiteDatabase that can be closed.  

SQLiteCursor - A Cursor implementation that exposes results from a query on a 

SQLiteDatabase.  

SQLiteDatabase - Exposes methods to manage a SQLite database.  

SQLiteOpenHelper - A helper class to manage database creation and version management.  

SQLiteProgram -  A base class for compiled SQLite programs.  

SQLiteQuery - A SQLite program that represents a query that reads the resulting rows into a 

CursorWindow.  

SQLiteQueryBuilder - a convenience class that helps build SQL queries to be sent to 

SQLiteDatabase objects.  

SQLiteStatement - A pre-compiled statement against a SQLiteDatabase that can be reused. 

Open Or CreateDatabase 

This method will open an existing database or create one in the application data area 

import android.database.sqlite.SQLiteDatabase; 

    SQLiteDatabase  myDatabase; 



     myDatabase = openOrCreateDatabase ("my_sqlite_database.db" ,       

                               

SQLiteDatabase.CREATE_IF_NECESSARY , null); 

 

 

Creating Tables 

Create a static string containing the SQLite 

CREATE statement, use the execSQL( ) method to 

execute it. 

String  createAuthor = "CREAT TABLE   authors ( 

                                          id  INTEGER PRIMARY KEY AUTOINCREMENT, fname  TEXT, 

lname  TEXT); 

myDatabase.execSQL(createAuthor); 

 

insert( ) 

long  insert(String table, String nullColumnHack, ContentValues values) 

 

import  android.content.ContentValues; 

ContentValues  values = new  ContentValues( ); 

values.put("firstname" , "J.K."); 

values.put("lastname" , "Rowling"); 

long newAuthorID =  myDatabase.insert("tbl_authors" , "" , values); 

int  delete(String table, String whereClause, String[] whereArgs) 

public void deleteBook(Integer  bookId)  { 

     myDatabase.delete("tbl_books" , "id=?" , 

           new String[ ]   { bookId.toString( )  } ) ; 

 } 

 

update() 

int  update(String table, ContentValues values, String whereClause, String[ ] whereArgs) 

public void updateBookTitle(Integer bookId, String newTitle) { 

   ContentValues  values = new ContentValues(); 

      values.put("title" , newTitle); 

 

Network Connection:-Store data on the web with your own network server. 

 

 

 

 

 

 

 

 

 

 

 

 

 



ANDROID PACKAGES 

 

A package is a namespace that combines a set of relevant classes and interfaces. Conceptually 

one can consider packages as being similar to various folders on your computer. 

  

A namespace is a declarative region that provides a scope to the identifiers (the names of types, 

functions, variables, etc) inside it. Namespaces are used to organize code into logical groups and 

to prevent name collisions that can occur especially when your code base includes multiple 

libraries 

 

Android application package.  Android Package (APK) is the package file format used by 

the Android operating system for distribution and installation of mobile apps and middleware.  

 

A package is basically the directory (folder) in which the source code resides. Normally, this is a 

directory structure that uniquely distinguishes the android application; such as com. example. 

app. Then the developer can build packages within the application package that divides the code;  

 

Package Structure in Android Studio 

 

In Android Studio, the modern day Android App package structure has changed a little bit, but 

the change is very subtle. 

 

Here is a list of folders created, when you create an Android App project in Android Studio and 

see it in Project View Mode: 

 

NOTE: The packages which are written in bold font are important packages. 

 



 
 

 

src folder 

The src folder holds two most important folders on any Android project, 

namely, androidTest and main. 

 

The androidTest package is created to hold Test cases for testing the application code and 

running. 

While the main folder, has 2 folders and 1 file. They are: 

• java directory 

This folder contains .java (JAVA) files. Here, you can create interface(s), activity(s), 

fragment(s) or adapter(s) for your application. This folder contains java code only. You 

can create separate packages for each of these and create classes inside them to give your 

application project a well defined structure. 

 

• AndroidManifest.xml 

This file is a mandatory file for any android application. In this file we provide 

information about all the application's Activities, Services, Broadcast Receivers etc and 

all the permissions like Internet, Contacts, Camera etc that our application will require 

when it is installed on any device. Just keep in mind that this file is the heart of any 

Android Application. 

 

• res directory 



This folder contains all the resources like icons, images etc related to our application 

project and it contains the following sub-folders: 

o drawable 

This folder contains xml, png, jpg and jpeg files. In this folder you can store 

images which are used in your app and other .xml files which are used for many 

purposes like creating button background, or shadow effect etc. 

o layout 

This folder contain only the layout .xml files for different screens and parts of 

your application. 

o values 

This folder contains default files 

like strings.xml, dimens.xml, colors.xml, styles.xml. 

▪ In strings.xml, you can specify all the string constants like title of screen 

or any other tag which are constantly used in your app. 

▪ In dimens.xml, you can create different .xml files to define dimensions as 

per resolution of screen and dimension of it and give any dimensions for 

padding, height, width, margin in this file. 

▪ In color.xml you can mention the list of colors using their hashcodes, used 

in your application. If this is not created by default, you can create this 

yourself. 

▪ In styles.xml you can define different readymade styles to use them 

directly anywhere in your Android App. 

 

 

Build Folder 

This folder contain R.java file, which is an auto generated file. This file indexes all the resources 

of the android application project like layout xml, strings xml etc and it is auto generated. 

 

In build folder, you will have application's debug and release .apk files, created when you build 

your project. 

 

libs folder 

If you want to use any external library, all you have to do is copy-paste the .jar file into 

the libs folder and then you can directly use it in you .java code files. 

 

gradle folder 

In this folder there are files related to gradle which can be modified to alter the project building 

process. For example: If you wish to run all the available test cases before building the .apk file, 

you can do so by mentioning it in the gradle file. 

 

To Import Module 

1. Go to File > New > Import Module... 

2. Select the source directory of the Module you want to import and click Finish. 

3. Open Project Structure and open Module Settings for your project. 

4. Open the Dependencies tab. 

5. Click the (+) icon and select Module Dependency. Select the module and click Ok. 

6. Open your build.gradle file and check that the module is now listed under 

dependencies.(implementation project(path: ':ViewPagerIndicator') 



 

Steps to import Module in Android Studio 3.4 and higher (See attached image). 

1. Go to File > New > Import Module... 

2. Select the source directory of the Module you want to import and click Finish. 

3. Open Project Structure Dialog (You can open the PSD by selecting File > Project Structure) 

and from the left panel click on Dependencies. ( PSD file represent image file types that are 

created with the most commonly used professional image editing program) 

4. Select the module from the Module(Middle) section In which you want to add module 

dependency. 

5. Click the (+) icon from the Declared Dependencies section and click Module 

Dependency. 

6. Select the module and click Ok. 

7. Open your build.gradle file and check that the module is now listed under 

dependencies.(implementation project(path: ':ViewPagerIndicator') 

 

 

To Create/Add new Package inside src folder in Android Studio: 

 

The following are the steps to add new Package name inside src folder: 

Step 1: Open Android Studio and Navigate to any view(Android or Project) 

Step 2: In Android View you will have two folders: app and Gradle Scripts 

Step 3: Open App folder then open Java folder. Right click on Java folder and select New > 

Package. 

 
 

Step 4: Choose directory destination which main\java and click OK. 

 

 
 

Step 5:  Give a name to new Package(For example: samplePackage). Click Ok. 



 
 

 

SECURITY AND HACKING.  

 

Norton Mobile Security and Antivirus is a free app for Android that protects your device from 

malware, viruses, spyware, etc. The app provides you the privacy against websites that trap your 

information, malicious apps, and from common viruses, spyware, fraudulent robocalls, and 

malware. 

 

Android device keeps lots of private information, and they may be unsafe for a cyber attack. 

Norton Mobile Security actively 

protects your personal information 

and Android device against online 

scammers and mobile attackers. The 

app comes with various features such 

as Wi-Fi security, app advisor, web 

protection, and device security. 

 

Features of Norton Mobile 

Security and Antivirus 

 

Wi-Fi Security 

Wi-Fi Security helps to protect your 

device and keep safe when you 

connect to an open Wi-Fi network. The app alerts you if your connected Wi-Fi is insecure or 

unknown people on the same network surveillance your online activity. 

App Advisor 

App advisor of Norton Security automatically analysis the apps for high privacy risks, 

ransomware, high battery usage, data usage, malware, or invasive behavior before you download 

anything from the web. 

 

Web Protection 

Web protection helps you to protect and detect malicious and fraud websites and links from 

navigation while using your favorite apps, browser, text messages, MMS, email, social 

networking sites, and QR codes. 

 

Device Security 

Device security lets you know when your operating system becomes unsafe and weak so that you 

can take appropriate protection for your device against cybercriminals that can control your 

device and steal your personal information. 

https://www.javatpoint.com/android-tutorial
https://www.javatpoint.com/wifi-full-form
https://www.javatpoint.com/mms-full-form


 

Android Antivirus 

Norton Security scans Android virus and helps to remove apps, file, and folder that contains a 

virus and slow down or harm your device. It is proactive antivirus protection. 

 

Surveillance App Protection 

Surveillance App Protection feature protects your online privacy and security. This app lets you 

know if any app is sharing your contacts, device's location, messages, and photos without your 

permission. 

 

Spam and Fraud Call Alerts 

Spam and Fraud Call Alerts feature helps you to identify the unknown robocall numbers that 

makes you to give your personal information. You can block such calls. 

 

Call Blocking 

Call blocking feature provides facility to automatically block calls from any phone numbers or 

unknown or unnamed numbers only in smartphones. 

 

Safe Search 

The safe search feature correctly detects unsafe websites from your search result before visiting 

a website. 

 

 

Norton 360 Deluxe 

Norton 360 Deluxe is a complete antivirus software that protects your internet connection with a 

Secure VPN and your devices against viruses, malware, ransomware, and other online threats. 

Norton 360 Deluxe covered up to 4 devices PCs, Mac, smartphones, and tablets. 

 

Norton 360 Deluxe antivirus provides the following features: 

o Online Threat Protection 

o Secure VPN 

o 50 GB PC Cloud Backup 

o Password Manager 

o Parental Control 

o SafeCam for PC 

o Smart Firewall for PC or Firewall for Mac 

o 100% Virus Protection Promise 

 

 

 

 

 

 

https://www.javatpoint.com/website
https://www.javatpoint.com/vpn-full-form


 
 

NOTIFICATIONS IN ANDROID  

 

NOTIFIATIONS 

A notification is a message that Android displays outside your app's UI to provide the user with 

reminders, communication from other people(Whatsapp or Mail message), or other timely 

information (Update software information) from your app. Users can tap the notification to open 

your app or take an action directly from the notification. 

Notification should at least have small icon, content title and content text information. 

 

To define at least one action that needs to be performed when user clicks notification text 

To handle the action events from notifications, you need to create activity class for each action. 

 

Notification message is shown on the top of the screen, to alert users that events have occurred 

that may require attention. 

 

The NotificationManager class is responsible for handling the Notifications- Its capability are 

1. Create new status bar icons  (Our own coding to create status bar) 

2. Display additional information in the extended status bar window 

3. Flash the lights/LEDs 

4. Vibrate the phone 

5. Sound audible alerts (ringtones, Media Store audio) 

 

Android notifications are displayed as icons in notification area. Users can view details of 

notification by opening notification drawer. 

Notification feature allows apps to notify event or latest information to users when app is open or 

closed. 

 

Notification Manager 

A notification is a message you can display to the user outside 

of your application's normal UI. When you tell the system to 

issue a notification, it first appears as an icon in the notification 

area.  

 To see the details of the notification, the user opens the 

notification drawer. Both the notification area and the 

notification drawer are system-controlled areas that the user can 

view at any time 

 

Android Toast class provides a handy way to show users alerts 

but problem is that these alerts are not persistent (permenant) which means alert flashes on the 

screen for a few seconds and then disappears. 

 

Toast Notification 

A toast notification is a message that pops up on the surface of the 

window.  

It only fills the amount of space required for the message and the user's 

current activity remains visible and interactive.  

UNIT V  APPLICATION DEVELOPMENT               

Communication  via  the Web –  Notification  and Alarms  –  Graphics  and  Multimedia:  Layer  

Animation, Event handling and Graphics services – Telephony – Location based services  



The notification automatically fades in and out, and does not accept interaction events. 

Because a toast can be created from a background Service, it appears even if the application isn't 

visible or Opened. 

 

 

For example, when user creates an event using calendar application it will notify the user as 

“Event Created” after the create action is completed.   

Toast notification is best suited for one way information to the user where we don’t expect any 

response. Toast message does not stop or disturb the current activity, just the message is shown 

in parallel. 

 

Example for Android Toast Notification 

Toast notification can be created from an Activity or Service. Toast is the class to be used as 

below. 

Context appContext = getApplicationContext(); 

Toast mailMessage = Toast.makeText(appContext, “Email Received.”, Toast. LENGTH_LONG); 

mailMessage.setGravity(Gravity.TOP, 0, 0); //optional 

mailMessage.show(); 

 

duration – can be either LENGTH_SHORT or LENGTH_LONG 

setGravity – is used to position the message in screen. By default it shows at bottom centered. 

First parameter is Gravity a constant identifying location in container broadly like  

TOP | BOTTOM | LEFT … , second and third parameters are x, y-offset. 

 

Status Bar Notification 

A status bar notification adds an icon to the system's status bar 

and an expanded message (notification detail) in the 

"Notifications" window. 

Status notification is used to display rich notification 

information especially from a (background) Service where user 

can interact. It will be shown as an icon with an alert in the 

status bar.  

When the user pulls down the status bar, the list of notification 

will be in the notification window. 

You can also configure the notification to alert the user with a 

sound, a vibration, and flashing lights on the device. 

 

For example when a SMS message is received a message icon is shown in the status bar. On pull 

down, the list of unread messages will be shown in the notification window. 

 

• Create a simple notification with an icon alert. Alert can be a ticker text message or 

sound or vibration or flashlight. 

• Associate notification message with details shown on message expansion to 

activity/intent. Notification message can be a list and it is identified using a unique 

identifier. Existing messages can be updated too. 

• Register the notification message with notification manager. NotificationManager is a 

system service that manages all the notifications. 

 
 



 

Notification Alerts 

Sound: 

notification.defaults |= Notification.DEFAULT_SOUND; 

notification.sound = Uri.parse("file:///sdcard/notification/robo_dance.mp3”) 

 

Vibration: 

notification.defaults |= Notification.DEFAULT_VIBRATE; 

//use the above default or set custom valuse as below 

long[] vibrate = {0,200,100,200}; 

notification.vibrate = vibrate; 

 

Flash Light: 

notification.defaults |= Notification.DEFAULT_LIGHTS; 

//use the above default or set custom valuse as below 

notification.ledARGB = 0xffff0000;//red color 

notification.flags |= Notification.FLAG_SHOW_LIGHTS; 

 

Dialog Notification 

Dialog notification is not an exact type of notification. Dialog is 

common in window based UIs. A small panel that appears on top of an 

active window and user will not be able to do any other activity other 

than acting on the dialog.  

From an android Activity a dialog will be launched and the Activity 

loses focus. User should give input and work on the dialog. Once the 

user action is completed the dialog is closed. Dialog has many uses and 

one among them is notification to user. 

 

 For all these purposes dialog notification is used. There are many types of dialogs available such 

as, 

• AlertDialog 

• ProgressDialog 

• DatePickerDialog 

• TimePickerDialog 

 

Pending Intent  (Software downloading updation using wifi) 

By giving a PendingIntent to another application, we are granting it the right to perform the 

operation . 

This is used in setting the notification 

Intent intent = new Intent(this, MyActivity.class); 

PendingIntent launchIntent = PendingIntent.getActivity(context, 0, intent, 0); 

setLatestEventInfo(context,expandedTitle,expandedText,launchIntent); 

 

 

 

 

 

 



Create and Send Notifications-1 

Create Notification Builder  

As a first step is to create a notification builder using NotificationCompat.Builder.build().  

You will use Notification Builder to set various Notification properties like its small and large 

icons, title, priority etc.  

 

NotificationCompat.Builder  mBuilder = new NotificationCompat.Builder(this) 

 

Create and Send Notifications-2 

Once you have Builder object, you can set its Notification properties using Builder object as per 

your requirement. But this is mandatory to set at least following  

− – A small icon, set by setSmallIcon()  

– A title, set by setContentTitle()  

– Detail text, set by setContentText()  

mBuilder.setSmallIcon(R.drawable.notification_icon);  

mBuilder.setContentTitle("Notification Alert, Click Me!");  

mBuilder.setContentText("Hi, This is Android Notification Detail!") 

 

Create and Send Notifications-3 

Intent resultIntent = new Intent(this, ResultActivity.class); 

• TaskStackBuilder stackBuilder = TaskStackBuilder.create(this); 

• stackBuilder.addParentStack(ResultActivity.class); 

• // Adds the Intent that starts the Activity to the top of the stack 

• stackBuilder.addNextIntent(resultIntent); 

 

 

The NotificationCompat.Builder Class 

Notification build() 

– Combine all of the options that have been set and return a new Notification object. 

• NotificationCompat.Builder setAutoCancel (boolean autoCancel) 

– Setting this flag will make it so the notification is automatically canceled when the user clicks 

it in the panel. 

• NotificationCompat.Builder setContent (RemoteViews views) 

– Supply a custom RemoteViews to use instead of the standard one. 

• NotificationCompat.Builder setContentInfo (CharSequence info) 

– Set the large text at the right-hand side of the notification. 

• NotificationCompat.Builder setContentIntent (PendingIntent intent) 

– Supply a PendingIntent to send when the notification is clicked 

 

 

 

 

 

 

 

 
 



ANDROID ALARMMANAGER 

Android AlarmManager allows you to access system alarm. 

 

By the help of Android AlarmManager in android, you can schedule your application to run at 

a specific time in the future. It works whether your phone is running or not. 

The Android AlarmManager holds a CPU wake lock that provides guarantee not to sleep the 

phone until broadcast (Notificattion) is handled. 

 

To create a simple alarm clock app in Android you will need to follow these steps. 

1. Capture the alarm time using a TimePicker 

2. Schedule an alarm using Alarm Manager.  

3. Start the Alarm Service using a Broadcast Receiver 

4. Use a Notification, Media Player and Vibrator to activate the alarm 

5. Managing Dismissal and Snoozing of an Alarm 

6. Cancelling an Alarm using the Alarm Manager and a Pending Intent 

7. Handle Rescheduling Alarm Service 

8. Handle Enabling and Disabling of Alarms 

 

Features of the Simple Alarm Clock Android App 

The simple alarm clock Android app the following steps to be done. 

1. Ability to set a once off alarm 

2. Ability to set a recurring alarm on set days of the week 

3. Ability to disable and re-enable an alarm 

4. Ability to play a looped audio track for the alarm that is active 

5. Ability to play a vibration effect for the alarm that is active 

6. Ability to show a notification for the alarm this is active 

7. Ability to dismiss an alarm 

8. Ability to snooze (Ringing Postpone next small interval) an alarm 

 

Structure of the Simple Alarm Clock Android App  
In addition to fragments and activities the simple alarm 

clock Android app we will be building will contain a 

BroadcastReceiver and Service. 

The BroadcastReceiver will be used to trigger 

(execute/fire)the alarm to start after the alarm manager 

generates a broadcast once the system time hits the 

scheduled alarm time. 

The BroadcastReceiver will start a Service that will be 

used for the alarm. This Service will display a 

notification and will play an audio track for the alarm 

sound on loop and produce a vibration effect until the 

alarm is dismissed or snoozed. 

The app will be structured using the Model View 

ViewModel (MVVM) software design pattern.  

Step 1: Capturing the Alarm Time using a TimePicker  

Capturing the time for the alarm to go off using a TimePicker widget. 

 

 

https://developer.android.com/reference/android/widget/TimePicker


 

Creating a fragment called “CreateAlarmFragment” which will be used for capturing all the 

details needed for the alarm such as: 

• The time of day of the alarm 

• A title for the alarm which will be shown in the notification when the alarm is playing 

• Whether it is a recurring alarm or a once off alarm, and if it is a recurring alarm which days of 

the week the alarm will be active 

 

This class provides access to the system alarm services. These allow 

you to schedule your application to be run at some point in the 

future.   

 

When an alarm goes off, the Intent that had been registered for it is 

broadcast by the system, automatically starting the target application 

if it is not already running. Registered alarms are retained while the 

device is asleep (and can optionally wake the device up if they go off 

during that time), but will be cleared if it is turned off and rebooted. 

 

The Alarm Manager holds a CPU wake lock as long as the alarm 

receiver's onReceive() method is executing. This guarantees that the 

phone will not sleep until you have finished handling the broadcast. 

Once onReceive() returns, the Alarm Manager releases this wake 

lock.  

 

Nested classes 

class AlarmManager.AlarmClockInfo 

An immutable description of a scheduled "alarm clock" event.  

interface AlarmManager.OnAlarmListener 

 

Direct-notification alarms: the requester must be running 

continuously from the time the alarm is set to the time it is delivered, 

or delivery will fail.   
String ACTION_NEXT_ALARM_CLOCK_CHANGED 

Broadcast Action: Sent after the value returned 

by getNextAlarmClock() has changed. 

String ACTION_SCHEDULE_EXACT_ALARM_PERMISSION_STATE

_CHANGED 

Broadcast Action: An app is granted 

the Manifest.permission.SCHEDULE_EXACT_ALARM permission

. 

long INTERVAL_DAY 

Available inexact recurrence interval recognized 

by setInexactRepeating(int, long, long, 

android.app.PendingIntent) when running on Android prior to API 

19. 

 

void 

 

cancel(AlarmManager.OnAlarmListener listener) 

https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/app/AlarmManager.AlarmClockInfo
https://developer.android.com/reference/android/app/AlarmManager.OnAlarmListener
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/app/AlarmManager#ACTION_NEXT_ALARM_CLOCK_CHANGED
https://developer.android.com/reference/android/app/AlarmManager#getNextAlarmClock()
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/app/AlarmManager#ACTION_SCHEDULE_EXACT_ALARM_PERMISSION_STATE_CHANGED
https://developer.android.com/reference/android/app/AlarmManager#ACTION_SCHEDULE_EXACT_ALARM_PERMISSION_STATE_CHANGED
https://developer.android.com/reference/android/Manifest.permission#SCHEDULE_EXACT_ALARM
https://developer.android.com/reference/android/app/AlarmManager#INTERVAL_DAY
https://developer.android.com/reference/android/app/AlarmManager#setInexactRepeating(int,%20long,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/app/AlarmManager#setInexactRepeating(int,%20long,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/app/AlarmManager#cancel(android.app.AlarmManager.OnAlarmListener)
https://developer.android.com/reference/android/app/AlarmManager.OnAlarmListener


Remove any alarm scheduled to be delivered to the 

given OnAlarmListener. 

 
 
AlarmManager.AlarmCloc

kInfo 

getNextAlarmClock() 

 

 

Gets information about the next alarm clock currently scheduled. 

 

void setTime(long millis)Set the system wall clock time. 

void setTimeZone(String timeZone) Sets the system's persistent default time 

zone. 

 

ACTION_NEXT_ALARM_CLOCK_CHANGED 

public static final String ACTION_NEXT_ALARM_CLOCK_CHANGED 

 

package example.javatut.com.alarmmanager;   

   

import android.app.AlarmManager;   

import android.app.PendingIntent;   

import android.content.Intent;   

import android.support.v7.app.AppCompatActivity;   

import android.os.Bundle;   

import android.view.View;   

import android.widget.Button;   

import android.widget.EditText;   

import android.widget.Toast;   

public class MainActivity extends AppCompatActivity {   

    Button start;   

    @Override   

    protected void onCreate(Bundle savedInstanceState) {   

        super.onCreate(savedInstanceState);   

        setContentView(R.layout.activity_main);   

        start= findViewById(R.id.button);   

   

        start.setOnClickListener(new View.OnClickListener() {   

            @Override   

            public void onClick(View view) {   

                startAlert();   

            }   

        });   

    }   

 

public void startAlert(){   

        EditText text = findViewById(R.id.time);   

        int i = Integer.parseInt(text.getText().toString());   

        Intent intent = new Intent(this, MyBroadcastReceiver.class);   

        PendingIntent pendingIntent = PendingIntent.getBroadcast(   

                this.getApplicationContext(), 234324243, intent, 0);   

        AlarmManager  alarmManager = (AlarmManager) getSystemService(ALARM_SERVICE);   

https://developer.android.com/reference/android/app/AlarmManager.OnAlarmListener
https://developer.android.com/reference/android/app/AlarmManager.AlarmClockInfo
https://developer.android.com/reference/android/app/AlarmManager.AlarmClockInfo
https://developer.android.com/reference/android/app/AlarmManager#getNextAlarmClock()
https://developer.android.com/reference/android/app/AlarmManager#setTime(long)
https://developer.android.com/reference/android/app/AlarmManager#setTimeZone(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/java/lang/String


        alarmManager.set(AlarmManager.RTC_WAKEUP, System.currentTimeMillis()   

                + (i * 1000), pendingIntent);   

        Toast.makeText(this, "Alarm set in " + i + " seconds",Toast.LENGTH_LONG).show();   

    }   

}   

 

Let's create BroadcastReceiver class that starts alarm. 

 

File: MyBroadcastReceiver.java 

package example.javatpoint.com.alarmmanager;   

   

import android.content.BroadcastReceiver;   

import android.content.Context;   

import android.content.Intent;   

import android.media.MediaPlayer;   

import android.widget.Toast;   

   

public class MyBroadcastReceiver extends BroadcastReceiver {   

    MediaPlayer mp;   

    @Override   

    public void onReceive(Context context, Intent intent) {   

        mp=MediaPlayer.create(context, R.raw.alarm);   

        mp.start();   

        Toast.makeText(context, "Wakeup ", Toast.LENGTH_LONG).show();   

    }   

}   

 

 

Graphics and animations for a rather static application should be implemented much differently 

than graphics and animations for an interactive game.  

 

Graphics – are visual images or designs on some surface, such as a wall, canvas, screen, paper, 

or stone to inform. 

 

Scalar Vector graphics are (such as .svg), Raster graphics formats (such bmp, png, jpeg…). 

 

Canvas and Drawables 

Android provides a set of View widgets that provide general functionality for a wide array of 

user interfaces. You can also extend these widgets to modify the way they look or behave. In 

addition, you can do your own custom 2D rendering using the various drawing methods . 

 

The android.graphics.Canvas can be used to draw graphics in android. It provides methods to 

draw oval, rectangle, picture, text, line etc. 

 



The android.graphics.Paint class is used with canvas to draw objects on canvas. It holds the 

information of color and style. 

 

Android provides a huge set of 2D-drawing APIs that allow you to create graphics. 

Android has got visually appealing graphics and mind blowing animations. 

The Android framework provides a rich set of powerful APIS for applying animation to UI 

elements and graphics as well as drawing custom 2D and 3D graphics. 

 

In this example, going to display 2D graphics in android. 

File: activity_main.xml 

 

<RelativeLayout xmlns:androclass="http://schemas.android.com/apk/res/android"   

    xmlns:tools="http://schemas.android.com/tools"   

    android:layout_width="match_parent"   

    android:layout_height="match_parent"   

    android:paddingBottom="@dimen/activity_vertical_margin"   

    android:paddingLeft="@dimen/activity_horizontal_margin"   

    android:paddingRight="@dimen/activity_horizontal_margin"   

    android:paddingTop="@dimen/activity_vertical_margin"   

    tools:context=".MainActivity" >   

   

    <TextView   

        android:layout_width="wrap_content"   

        android:layout_height="wrap_content"   

        android:text="@string/hello_world" />   

   

</RelativeLayout>   

 

  



 

MainActivity.java 

package com.example.simplegraphics;   

   

import android.os.Bundle;   

import android.app.Activity;   

import android.view.Menu;   

import android.content.Context;   

import android.graphics.Canvas;   

import android.graphics.Color;   

import android.graphics.Paint;   

import android.view.View;   

   

public class MainActivity extends Activity {   

   

    DemoView demoview;   

    /** Called when the activity is first created. */   

    @Override   

    public void onCreate(Bundle savedInstanceState) {   

        super.onCreate(savedInstanceState);   

        demoview = new DemoView(this);   

        setContentView(demoview);   

    }   

   

    private class DemoView extends View{   

        public DemoView(Context context){   



            super(context);   

        }   

   

        @Override protected void onDraw(Canvas canvas) {   

            super.onDraw(canvas);   

   

            // custom drawing code here   

            Paint paint = new Paint();   

            paint.setStyle(Paint.Style.FILL);   

   

            // make the entire canvas white   

            paint.setColor(Color.WHITE);   

            canvas.drawPaint(paint);   

               

            // draw blue circle with anti aliasing turned off   

            paint.setAntiAlias(false);   

            paint.setColor(Color.BLUE);   

            canvas.drawCircle(20, 20, 15, paint);   

   

            // draw green circle with anti aliasing turned on   

            paint.setAntiAlias(true);   

            paint.setColor(Color.GREEN);   

            canvas.drawCircle(60, 20, 15, paint);   

   

            // draw red rectangle with anti aliasing turned off   

            paint.setAntiAlias(false);   



            paint.setColor(Color.RED);   

            canvas.drawRect(100, 5, 200, 30, paint);   

                            

            // draw the rotated text   

            canvas.rotate(-45);   

                       

            paint.setStyle(Paint.Style.FILL);   

            canvas.drawText("Graphics Rotation", 40, 180, paint);   

               

            //undo the rotate   

            canvas.restore();   

        }   

    }   

    @Override   

    public boolean onCreateOptionsMenu(Menu menu) {   

        // Inflate the menu; this adds items to the action bar if it is present.   

        getMenuInflater().inflate(R.menu.main, menu);   

        return true;   

    }   

 



 

 

 

 

Canvas 

Android graphics provides low level graphics tools such as canvases, color, filters, points and 

rectangles which handle drawing to the screen directly. 

The Android framework provides a set of 2D-DRAWING APIs which allows user to provide 

own custom graphics onto a canvas or to modify existing views to customize their look and feel. 

 

There are two ways to draw 2D graphics, 

1. Draw your animation into a View object from your layout. 

2. Draw your animation directly to a Canvas. 

 

Some of the important methods of Canvas Class are as follows 

i) drawText() 

ii) drawRoundRect() 

iii) drawCircle() 

iv) drawRect() 

v) drawBitmap() 

vi) drawARGB() 



 

You can use these methods in onDraw() method to create your own custom user interface. 

 

Drawing an animation with a View is the best option to draw simple graphics that do not need to 

change dynamically and are not a part of a performance-intensive game. It is used when user 

wants to display a static graphic or predefined animation. 

 

Drawing an animation with a Canvas is better option when your application needs to re-draw 

itself regularly. For example video games should be drawing to the Canvas on its own. 

 

MyView.java 

public class MyView extends View 

{ 

      public MyView(Context context) 

      { 

           super(context); 

           // TODO Auto-generated constructor stub 

       } 

       @Override 

       protected void onDraw(Canvas canvas) 

       { 

             // TODO Auto-generated method stub 

             super.onDraw(canvas); 

             int radius; 

             radius = 50; 

             Paint paint = newPaint(); 

             paint.setStyle(Paint.Style.FILL); 



             paint.setColor(Color.parseColor("#CD5C5C")); 

             canvas.drawCircle(150,200, radius, paint); 

             canvas.drawRoundRect(newRectF(20,20,100,100), 20, 20, paint); 

             canvas.rotate(-45); 

             canvas.drawText("TutorialRide", 40, 180, paint); 

             canvas.restore(); 

        } 

} 

 

MainActivity.java 

To pass the object of subclass that extends from View class in setContentView() method as given 

below. In our case the name of the subclass is MyView. 

 

Public class MainActivity extends Activity 

{ 

      @Override 

      protected void onCreate(Bundle savedInstanceState) 

      { 

           super.onCreate(savedInstanceState); 

           setContentView(new MyView(this)); 

      } 

      @Override 

      public boolean onCreateOptionsMenu(Menu menu) 

      { 

            // Inflate the menu; this adds items to the action bar if it is present. 

            getMenuInflater().inflate(R.menu.main, menu); 



            return true; 

      } 

} 

 

ANIMATION 

An animation is, is to think of it as a series of images being drawn one after another on the screen. 

 

Tween Animation 

Tween Animation takes some parameters such as start value , end value, size , time duration , 

rotation angle e.t.c and perform the required animation on that object. 

Animation animation = AnimationUtils.loadAnimation(getApplicationContext(),  

   R.anim.myanimation); 

Sr.No Method & Description 

1 
start() 

This method starts the animation. 

2 
setDuration(long duration) 

This method sets the duration of an animation. 

3 

getDuration() 

This method gets the duration which is set by above 

method 

4 
end() 

This method ends the animation. 

5 
cancel() 

This method cancels the animation. 

 

 

 



To apply this animation to an object , we will just call the startAnimation() method of the 

object. Its syntax is – 

ImageView image1 = (ImageView)findViewById(R.id.imageView1); 

image.startAnimation(animation); 

Steps Description 

1 You will use Android studio IDE to create an Android application and 

name it as My Application under a package 

com.example.sairam.myapplication. 

2 Modify src/MainActivity.java file to add animation code 

3 Modify layout XML file res/layout/activity_main.xml add any GUI 

component if required. 

4 Create a new folder under res directory and call it anim. Confirm it by 

visiting res/anim 

5 Right click on anim and click on new and select Android XML file You 

have to create different files that are listed below. 

6 Create files 

myanimation.xml,clockwise.xml,fade.xml,move.xml,blink.xml,slide.xml 

and add the XML code. 

7 No need to change default string constants. Android studio takes care of 

default constants at values/string.xml. 

8 Run the application and choose a running android device and install the 

application on it and verify the results. 

 

package com.example.sairamkrishna.myapplication; 

import android.app.Activity; 

import android.os.Bundle; 

import android.view.View; 

import android.view.animation.Animation; 

import android.view.animation.AnimationUtils; 

import android.widget.ImageView; 

import android.widget.Toast; 

 



public class MainActivity extends Activity { 

   @Override 

   protected void onCreate(Bundle savedInstanceState) { 

      super.onCreate(savedInstanceState); 

      setContentView(R.layout.activity_main); 

   } 

       

public void clockwise(View view){ 

      ImageView image = (ImageView)findViewById(R.id.imageView); 

      Animation animation = AnimationUtils.loadAnimation(getApplicationContext(),  

         R.anim.myanimation); 

      image.startAnimation(animation); 

   } 

    

   public void zoom(View view){ 

      ImageView image = (ImageView)findViewById(R.id.imageView); 

      Animation animation1 = AnimationUtils.loadAnimation(getApplicationContext(),  

         R.anim.clockwise); 

      image.startAnimation(animation1); 

   } 

    

   public void fade(View view){ 

      ImageView image = (ImageView)findViewById(R.id.imageView); 

      Animation animation1 =  

         AnimationUtils.loadAnimation(getApplicationContext(),  

            R.anim.fade); 

      image.startAnimation(animation1); 

   } 

    

   public void blink(View view){ 

      ImageView image = (ImageView)findViewById(R.id.imageView); 

      Animation animation1 =  

         AnimationUtils.loadAnimation(getApplicationContext(),  

            R.anim.blink); 

      image.startAnimation(animation1); 

   } 

    

   public void move(View view){ 

      ImageView image = (ImageView)findViewById(R.id.imageView); 

      Animation animation1 =  

         AnimationUtils.loadAnimation(getApplicationContext(), R.anim.move); 

      image.startAnimation(animation1); 

   } 

    

   public void slide(View view){ 

      ImageView image = (ImageView)findViewById(R.id.imageView); 

      Animation animation1 =  

         AnimationUtils.loadAnimation(getApplicationContext(), R.anim.slide); 



      image.startAnimation(animation1); 

   } 

} 

 

Following are the three animation systems used in Android applications: 

1. Property Animation 

2. View Animation 

3. Drawable Animation 

 

1. Property Animation 

Property animation is the preferred method of animation in Android. 

This animation is the robust framework which lets you animate any properties of any objects, 

view or non-view objects. 

The android.animation provides classes which handle property animation. 

 

2. View Animation 

View Animation is also called as Tween Animation. 

The android.view.animation provides classes which handle view animation. 

This animation can be used to animate the content of a view. 

It is limited to simple transformation such as moving, re-sizing and rotation, but not its 

background color. 

 

3. Drawable Animation 

Drawable animation is implemented using the AnimationDrawable class. 

This animation works by displaying a running sequence of 'Drawable' resources that is images, 

frame by frame inside a view object. 

 

 

 



EVENT HANDLING 

An Event is a response to an user’s interaction with input controls, such as press of a button or touch of 

the screen. Android framework places each occurring Event in a queue based on FIFO (first-in first-out) 

logic. 

 

When an Event triggers, the Event Listener that is involved with the View object should be registered. 

Then, the registered Event Listener should implement a corresponding callback method (Event Handler) 

in order to handle the Event. 

 

There are following three concepts related to Android Event Management − 

• Event Listeners − An event listener is an interface in the View class that contains a single 

callback method. These methods will be called by the Android framework when the View to 

which the listener has been registered is triggered by user interaction with the item in the 

UI.(Using mouse click or Keyboard, mouseover on text or button, change text, press which 

button-customer care which button is pressed) and google search. 

• Event Listeners Registration − Event Registration is the process by which an Event Handler 

gets registered with an Event Listener so that the handler is called when the Event Listener fires 

the event. Key_change( ), button_click( ), mouseover( ) 

• Event Handlers − When an event happens and we have registered an event listener for the 

event, the event listener calls the Event Handlers, which is the method that actually handles the 

event.  (Which event should be fired) 

 

There are many more event listeners available as a part of View class like OnHoverListener, 

OnDragListener etc which may be needed for your application.  

 

Event Listeners Registration 

Event Registration is the process by which an Event Handler gets registered with an Event Listener so 

that the handler is called when the Event Listener fires the event. 

 

There are different ways to register an Event Listener. 

 

• Implement the Event Listener interface into the Activity class.   (mainActivity.java) 

• Use an anonymous inner Event Listener class.   (General activity) 

• Use a separate Event Listener class.                   

• Declare it into the layout XML file. 

 

Some of the most common Event Handlers with the respective Event Listeners are as follows: 

 

 
The following are the call-back methods included in the event listener interface. 

 Method Description 

onClick() The system calls this method when a user clicks a View 

component. 



 Method Description 

onLongClick() This method is called when the user touches and holds 

the item or focuses on the item using navigation-keys or 

trackball and presses and holds "enter" key or presses 

and holds down on the trackball (for one second). 

onFocusChange() This method is called when the user navigates onto or 

away from the item. 

onKey() This method is called when the user is focused on the 

item and presses or releases a hardware key on the 

device. 

onTouch() This method is called when the user performs a touch 

event, including a press, a release, or any movement 

gesture on the screen. 

onCreateContextMenu() This method is called when a Context Menu is being 

built. 

 

Following is the example of registering a Button onClick event listener in android application. 

@Override 

protected void onCreate(Bundle savedInstanceState) { 

    …. 

    Button button = (Button)findViewById(R.id.btnShow); 

    // Register onClick listener with the below implementation 

    button.setOnClickListener(btnListener); 

…. 

} 

 

// Anonymous implementation of OnClickListener 

private View.OnClickListener btnListener = new View.OnClickListener() { 

    public void onClick(View v) { 

        // do something when the button is clicked 

    } 

}; 

 

Android Event Handlers 

In android, Event Handlers are useful to define several callback methods when we are building custom 

components from view. 

  

Following are the some of commonly used callback methods for event handling in android applications. 

  

Method Description 

onKeyDown() This method is called when a new key event occurs. 

onKeyUp() This method is called when a key up event occurs. 

onTrackballEvent() This method is called when a trackball motion event occurs. 

onTouchEvent() This method is called when a touch screen motion event occurs. 

onFocusChanged() This method is called when the view gains or loses focus. 

https://www.tutlane.com/tutorial/android/android-button-with-examples


 

 

Touch Mode 

Users can interact with their devices by using hardware keys or buttons or touching the screen. Touching 

the screen puts the device into touch mode. The user can then interact with it by touching the on-screen 

virtual buttons(Virtual Keyboard), images, etc 

 

Focus 

A view or widget is usually highlighted or displays a flashing cursor when it’s in focus. This indicates 

that it’s ready to accept input from the user. 

 

• isFocusable() − it returns true or false 

• isFocusableInTouchMode() − checks to see if the view is focusable in touch mode. (A view 

may be focusable when using a hardware key but not when the device is in touch mode) 

android:foucsUp="@=id/button_l" 

 

onTouchEvent() 

public boolean onTouchEvent(motionEvent event){ 

   switch(event.getAction()){ 

      case TOUCH_DOWN: 

      Toast.makeText(this,"you have clicked down Touch button",Toast.LENTH_LONG).show(); 

      break(); 

    

      case TOUCH_UP: 

      Toast.makeText(this,"you have clicked up touch button",Toast.LENTH_LONG).show(); 

      break; 

    

      case TOUCH_MOVE: 

      Toast.makeText(this,"you have clicked move touch button"Toast.LENTH_LONG).show(); 

      break; 

   } 

   return super.onTouchEvent(event) ; 

} 

 

 

Create a new android application using android studio and give names as InputEventsExample. 

Now open an activity_main.xml file from \res\layout path and write the code like as shown below 

 

activity_main.xml 

<?xml version="1.0" encoding="utf-8"?> 

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 

    android:layout_width="match_parent" 

    android:layout_height="match_parent" 

    android:orientation="vertical" > 

    <Button 

        android:id="@+id/btnClick" 

        android:layout_width="wrap_content" 

        android:layout_height="wrap_content" 

        android:text="Click Event" 

        android:layout_marginTop="200dp" android:layout_marginLeft="130dp"/> 

    <TextView 

        android:id="@+id/txtResult" 

        android:layout_width="wrap_content" 



        android:layout_height="wrap_content" 

        android:layout_marginLeft="100dp" 

        android:textColor="#86AD33" 

        android:textSize="20dp" 

        android:textStyle="bold" 

        android:layout_marginTop="12dp"/> 

</LinearLayout> 

 

Once we are done with the creation of layout with required controls, need to load the XML layout 

resource from our activity onCreate() callback method, for that open main activity file MainActivity.java 

from \java\com.tutlane.inputeventsexample path and write the code like as shown below. 

 

MainActivity.java 

package com.tutlane.inputeventsexample; 

import android.support.v7.app.AppCompatActivity; 

import android.os.Bundle; 

import android.view.View; 

import android.widget.Button; 

import android.widget.TextView; 

 

public class MainActivity extends AppCompatActivity { 

    Button btn; 

    TextView tView; 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

        btn = (Button)findViewById(R.id.btnClick); 

        tView = (TextView)findViewById(R.id.txtResult); 

        btn.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View v) { 

                tView.setText("You Clicked On Button"); 

            } 

        }); 

    } 

} 

 

 

 

AdapterView Event Listeners 

AdapterView descendants have a few more key event listeners having to do with their items: 

• setOnItemClickListener - Callback when an item contained is clicked 

• setOnItemLongClickListener - Callback when an item contained is clicked and held 

• setOnItemSelectedListener - Callback when an item is selected 

@Override 

    public void onItemClick(AdapterView<?> parent, View view, int position, long id) { 

       // Do something here 

       // The position is the index of the item pressed 

       // If the third item in a list was pressed, position is `2` 

    } 

 



EditText Common Listeners 

In addition to the listeners described above, there are a few other common listeners for input 

fields in particular. 

• addTextChangedListener - Fires each time the text in the field is being changed 

• setOnEditorActionListener - Fires when an "action" button on the soft keyboard is 

pressed 

 
 
ANDROID TELEPHONYMANAGER 

Android Telephony framework provides us the functionalities of the mobile. It gives us information 

about functionalities like calls, SMS, MMS, network, data services, IMEI number, and so on. 

SMS - Short Message Service 

MMS – Multimedia Message Service 

 

The android.telephony.TelephonyManager class provides information about the telephony services 

such as subscriber id, sim serial number, phone network type etc. Moreover, you can determine the phone 

state etc. 

 

Android Telephony architecture works in 4 layers that are : 

1. Communication Processor 

2. Radio Interface Layer (RIL) 

3. Framework Services 

4. Applications 

 

Let us try to understand them briefly one by one : 

1. Communication Processor 

It is an input/output processor to distribute and collect data from a number of remote terminals. It is a 

specialized processor designed to communicate with the data communication network. 

2. Radio Interface Layer 

It is a bridge between the hardware and Android phone framework services. Rather we say, it is a protocol 

stack for Telephone. It has two main components that are: 

• RIL Daemon– It starts when the android system starts. It reads the system properties to find a library 

that is to be used for Vendor RIL. 

• Vendor RIL– It is also known as RIL Driver. It can be understood as a library that is specific to each 

modem. 

3. Framework Services 

The telephony Framework starts and initializes along with the system. All the queries by Application API 

are directed to RIL using these services. 

4. Application 

These are the Application UI related to telephony such as Dialer, SMS, MMS, Call tracker, etc. These 

applications start with the android system boot up. These are tied with framework services of telephony. 

Android Telephony Framework consists of two types of packages that are: 

1. Internal Telephony Packages: This is generally the used for default telephony app.apk. 

2. Open Technology Packages: This is for third-party apps. 

These are 4 layers of Android Telephony. 



 

Implementation of Android Telephony 

We will now implement it in Android Studio using the following steps: 

1. At first, create a new project and name it. 

2. Now, open the layout file, and define the following: 

 

MainActivity.java 

package com.DataFlair.androidtelephony; 

 

import android.app.Activity; 

import android.content.Context; 

import android.os.Bundle; 

import android.telephony.TelephonyManager; 

import android.widget.TextView; 

 

public class MainActivity extends Activity { 

package com.DataFlair.androidtelephony; 

 

import android.app.Activity; 

import android.content.Context; 

import android.os.Bundle; 

import android.telephony.TelephonyManager; 

import android.widget.TextView; 

 

public class MainActivity extends Activity { 

   TextView tv; 

 

   @Override 

   protected void onCreate(Bundle savedInstanceState) { 

       super.onCreate(savedInstanceState); 

       setContentView(R.layout.activity_main); 

 

       tv = findViewById(R.id.textView); 

 

 

       //instance of TelephonyManager 

       TelephonyManager tele_man = (TelephonyManager) 

getSystemService(Context.TELEPHONY_SERVICE); 

 

       String nwcountryISO =        tele_man.getNetworkCountryIso(); 

       String SIMCountryISO = tele_man.getSimCountryIso(); 

 

       String PhoneType = ""; // it'll hold the type of phone i.e CDMA / GSM/ None 

       int phoneType = tele_man.getPhoneType(); 

 

       switch (phoneType) { 

           case (TelephonyManager.PHONE_TYPE_CDMA): 

               PhoneType = "CDMA"; 

               break; 

           case (TelephonyManager.PHONE_TYPE_GSM): 

               PhoneType = "GSM"; 

               break; 

           case (TelephonyManager.PHONE_TYPE_NONE): 

https://data-flair.training/blogs/installing-android-studio/


               PhoneType = "NONE"; 

               break; 

       } 

 

       // true or false for roaming or not 

       boolean checkRoaming = tele_man.isNetworkRoaming(); 

 

       String data = "Your Mobile Details are enlisted below: \n"; 

       data += "\n Network Country ISO is - " + nwcountryISO; 

       data += "\n SIM Country ISO is - " + SIMCountryISO; 

       data += "\n Network type is - " + PhoneType; 

       data += "\n Roaming on is - " + checkRoaming; 

       //Now we'll display the information 

       tv.setText(data); 

   } 

} 

 

 

Android TelephonyManager Example 

 

Let's see the simple example of TelephonyManager that prints information of the telephony services. 

 

activity_main.xml 

<RelativeLayout xmlns:androclass="http://schemas.android.com/apk/res/android"   

    xmlns:tools="http://schemas.android.com/tools"   

    android:layout_width="match_parent"   

    android:layout_height="match_parent"   

    android:paddingBottom="@dimen/activity_vertical_margin"   

    android:paddingLeft="@dimen/activity_horizontal_margin"   

    android:paddingRight="@dimen/activity_horizontal_margin"   

    android:paddingTop="@dimen/activity_vertical_margin"   

    tools:context=".MainActivity" >   

   

    <TextView   

        android:id="@+id/textView1"   

        android:layout_width="wrap_content"   

        android:layout_height="wrap_content"   

        android:layout_alignParentLeft="true"   

        android:layout_alignParentTop="true"   

        android:layout_marginLeft="38dp"   

        android:layout_marginTop="30dp"   

        android:text="Phone Details:" />   

   

</RelativeLayout>   

File: MainActivity.java 

package com.javatpoint.telephonymanager;   

   

import android.os.Bundle;   

import android.app.Activity;   

import android.content.Context;   

import android.telephony.TelephonyManager;   

import android.view.Menu;   

import android.widget.TextView;   



   

public class MainActivity extends Activity {   

   TextView textView1;   

    @Override   

    protected void onCreate(Bundle savedInstanceState) {   

        super.onCreate(savedInstanceState);   

        setContentView(R.layout.activity_main);   

           

        textView1=(TextView)findViewById(R.id.textView1);   

          

        //Get the instance of TelephonyManager   

        TelephonyManager  tm=(TelephonyManager)getSystemService(Context.TELEPHONY_SERVICE);   

          

        //Calling the methods of TelephonyManager the returns the information   

        String IMEINumber=tm.getDeviceId();   

        String subscriberID=tm.getDeviceId();   

        String SIMSerialNumber=tm.getSimSerialNumber();   

        String networkCountryISO=tm.getNetworkCountryIso();   

        String SIMCountryISO=tm.getSimCountryIso();   

        String softwareVersion=tm.getDeviceSoftwareVersion();   

        String voiceMailNumber=tm.getVoiceMailNumber();   

           

        //Get the phone type   

        String strphoneType="";   

           

        int phoneType=tm.getPhoneType();   

   

        switch (phoneType)    

        {   

                case (TelephonyManager.PHONE_TYPE_CDMA):   

                           strphoneType="CDMA";   

                               break;   

                case (TelephonyManager.PHONE_TYPE_GSM):    

                           strphoneType="GSM";                 

                               break;   

                case (TelephonyManager.PHONE_TYPE_NONE):   

                            strphoneType="NONE";                 

                                break;   

         }   

           

        //getting information if phone is in roaming   

        boolean isRoaming=tm.isNetworkRoaming();   

           

        String info="Phone Details:\n";   

        info+="\n IMEI Number:"+IMEINumber;   

        info+="\n SubscriberID:"+subscriberID;   

        info+="\n Sim Serial Number:"+SIMSerialNumber;   

        info+="\n Network Country ISO:"+networkCountryISO;   

        info+="\n SIM Country ISO:"+SIMCountryISO;   

        info+="\n Software Version:"+softwareVersion;   

        info+="\n Voice Mail Number:"+voiceMailNumber;   

        info+="\n Phone Network Type:"+strphoneType;   

        info+="\n In Roaming? :"+isRoaming;   



           

        textView1.setText(info);//displaying the information in the textView   

    }   

        

}   

 

Interfaces 

TelephonyCallback.ActiveDataSubscriptionIdListener  Interface for active data subscription ID 

listener.  

TelephonyCallback.CallDisconnectCauseListener  Interface for call disconnect cause listener.  

TelephonyCallback.CallForwardingIndicatorListener  Interface for call-forwarding indicator 

listener.  

TelephonyCallback.CallStateListener Interface for call state listener.  

TelephonyCallback.CarrierNetworkListener Interface for carrier network listener.  

TelephonyCallback.CellInfoListener Interface for cell info listener.  

TelephonyCallback.CellLocationListener Interface for device cell location listener.  

TelephonyCallback.DataActivationStateListener  Interface for SIM data activation state 

listener.  

TelephonyCallback.DataActivityListener  Interface for data activity state listener.  

TelephonyCallback.DataConnectionStateListener  Interface for data connection state listener.  

TelephonyCallback.DisplayInfoListener Interface for display info listener.  

TelephonyCallback.EmergencyNumberListListener  Interface for the current emergency number 

list listener.  

TelephonyCallback.ImsCallDisconnectCauseListener Interface for IMS call disconnect cause 

listener.  

TelephonyCallback.MessageWaitingIndicatorListener  Interface for message waiting indicator 

listener.  

TelephonyCallback.SignalStrengthsListener Interface for network signal strengths 

listener.  

TelephonyCallback.UserMobileDataStateListener  Interface for user mobile data state listener.  

 

https://developer.android.com/reference/android/telephony/TelephonyCallback.ActiveDataSubscriptionIdListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.CallDisconnectCauseListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.CallForwardingIndicatorListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.CallStateListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.CarrierNetworkListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.CellInfoListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.CellLocationListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.DataActivationStateListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.DataActivityListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.DataConnectionStateListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.DisplayInfoListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.EmergencyNumberListListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.ImsCallDisconnectCauseListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.MessageWaitingIndicatorListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.SignalStrengthsListener
https://developer.android.com/reference/android/telephony/TelephonyCallback.UserMobileDataStateListener


 

Classes 

    

AccessNetworkConstants Contains access network related constants.  

AvailableNetworkInfo Defines available network information which includes  

corresponding subscription id, network plans. 

TelephonyManager#updateAvailableNetworks  

BarringInfo Provides the barring configuration for a particular service type.  

CarrierConfigManager Provides access to telephony configuration values that are carrier-

specific.  

CarrierConfigManager.Gps GPS configs.  

CellIdentity CellIdentity represents the identity of a unique cell.  

CellIdentityCdma CellIdentity is to represent a unique CDMA cell  

CellIdentityGsm CellIdentity to represent a unique GSM cell  

CellSignalStrengthCdma Signal strength related information.  

CellSignalStrengthGsm GSM signal strength related information.  

CellSignalStrengthLte LTE signal strength related information.  

CellSignalStrengthNr 5G NR signal strength related information.  

DataFailCause DataFailCause collects data connection failure causes code from 

different sources.  

DisconnectCause Describes the cause of a disconnected call.  

NetworkScanRequest Defines a request to peform a network scan.  

PhoneNumberUtils Various utilities for dealing with phone number strings.  

PreciseDataConnectionState  Contains precise data connection state.  

RadioAccessSpecifier Describes a particular radio access network to be scanned.  

ServiceState Contains phone state and service related information.  

SignalStrength Contains phone signal strength related information.  

https://developer.android.com/reference/android/telephony/AccessNetworkConstants
https://developer.android.com/reference/android/telephony/AvailableNetworkInfo
https://developer.android.com/reference/android/telephony/TelephonyManager#updateAvailableNetworks(java.util.List%3Candroid.telephony.AvailableNetworkInfo%3E,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Cjava.lang.Integer%3E)
https://developer.android.com/reference/android/telephony/BarringInfo
https://developer.android.com/reference/android/telephony/CarrierConfigManager
https://developer.android.com/reference/android/telephony/CarrierConfigManager.Gps
https://developer.android.com/reference/android/telephony/CellIdentity
https://developer.android.com/reference/android/telephony/CellIdentityCdma
https://developer.android.com/reference/android/telephony/CellIdentityGsm
https://developer.android.com/reference/android/telephony/CellSignalStrengthCdma
https://developer.android.com/reference/android/telephony/CellSignalStrengthGsm
https://developer.android.com/reference/android/telephony/CellSignalStrengthLte
https://developer.android.com/reference/android/telephony/CellSignalStrengthNr
https://developer.android.com/reference/android/telephony/DataFailCause
https://developer.android.com/reference/android/telephony/DisconnectCause
https://developer.android.com/reference/android/telephony/NetworkScanRequest
https://developer.android.com/reference/android/telephony/PhoneNumberUtils
https://developer.android.com/reference/android/telephony/PreciseDataConnectionState
https://developer.android.com/reference/android/telephony/RadioAccessSpecifier
https://developer.android.com/reference/android/telephony/ServiceState
https://developer.android.com/reference/android/telephony/SignalStrength


SignalStrengthUpdateReque

st.Builder 

Builder class to create SignalStrengthUpdateRequest object.  

SignalThresholdInfo Defines the threshold value of the signal strength.  

SignalThresholdInfo.Builder Builder class to create SignalThresholdInfo objects.  

SmsManager Manages SMS operations such as sending data, text, and pdu SMS 

messages.  

SmsManager.FinancialSmsC

allback 

callback for providing asynchronous sms messages for financial app.  

SmsMessage A Short Message Service message.  

SubscriptionInfo A Parcelable class for Subscription Information.  

SubscriptionManager SubscriptionManager is the application interface to 

SubscriptionController and provides information about the current 

Telephony Subscriptions.  

SubscriptionManager.OnOp

portunisticSubscriptionsCha

ngedListener 

A listener class for monitoring changes to SubscriptionInfo records of 

opportunistic subscriptions.  

SubscriptionManager.OnSub

scriptionsChangedListener 

A listener class for monitoring changes to SubscriptionInfo records.  

SubscriptionPlan Description of a billing relationship plan between a carrier and a specific 

subscriber.  

SubscriptionPlan.Builder Builder for a SubscriptionPlan.  

TelephonyCallback A callback class for monitoring changes in specific telephony states on 

the device, including service state, signal strength, message waiting 

indicator (voicemail), and others.  

TelephonyDisplayInfo TelephonyDisplayInfo contains telephony-related information used for 

display purposes only.  

TelephonyManager Provides access to information about the telephony services on the 

device.  

TelephonyManager.CellInfo

Callback 

Callback for providing asynchronous CellInfo on request  

https://developer.android.com/reference/android/telephony/SignalStrengthUpdateRequest.Builder
https://developer.android.com/reference/android/telephony/SignalStrengthUpdateRequest.Builder
https://developer.android.com/reference/android/telephony/SignalStrengthUpdateRequest
https://developer.android.com/reference/android/telephony/SignalThresholdInfo
https://developer.android.com/reference/android/telephony/SignalThresholdInfo.Builder
https://developer.android.com/reference/android/telephony/SignalThresholdInfo
https://developer.android.com/reference/android/telephony/SmsManager
https://developer.android.com/reference/android/telephony/SmsManager.FinancialSmsCallback
https://developer.android.com/reference/android/telephony/SmsManager.FinancialSmsCallback
https://developer.android.com/reference/android/telephony/SmsMessage
https://developer.android.com/reference/android/telephony/SubscriptionInfo
https://developer.android.com/reference/android/telephony/SubscriptionManager
https://developer.android.com/reference/android/telephony/SubscriptionManager.OnOpportunisticSubscriptionsChangedListener
https://developer.android.com/reference/android/telephony/SubscriptionManager.OnOpportunisticSubscriptionsChangedListener
https://developer.android.com/reference/android/telephony/SubscriptionManager.OnOpportunisticSubscriptionsChangedListener
https://developer.android.com/reference/android/telephony/SubscriptionInfo
https://developer.android.com/reference/android/telephony/SubscriptionInfo
https://developer.android.com/reference/android/telephony/SubscriptionManager.OnSubscriptionsChangedListener
https://developer.android.com/reference/android/telephony/SubscriptionManager.OnSubscriptionsChangedListener
https://developer.android.com/reference/android/telephony/SubscriptionInfo
https://developer.android.com/reference/android/telephony/SubscriptionPlan
https://developer.android.com/reference/android/telephony/SubscriptionPlan.Builder
https://developer.android.com/reference/android/telephony/SubscriptionPlan
https://developer.android.com/reference/android/telephony/TelephonyCallback
https://developer.android.com/reference/android/telephony/TelephonyDisplayInfo
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/reference/android/telephony/TelephonyManager.CellInfoCallback
https://developer.android.com/reference/android/telephony/TelephonyManager.CellInfoCallback
https://developer.android.com/reference/android/telephony/CellInfo


TelephonyManager.UssdRes

ponseCallback 

Used to notify callers 

of TelephonyManager#sendUssdRequest(String, UssdResponseCallback

, Handler) when the network either successfully executes a USSD 

request, or if there was a failure while executing the request.  

TelephonyScanManager Manages the radio access network scan requests and callbacks.  

TelephonyScanManager.Net

workScanCallback 

The caller 

of TelephonyManager.requestNetworkScan(android.telephony.Network

ScanRequest, java.util.concurrent.Executor, android.telephony.Telephon

yScanManager.NetworkScanCallback) should implement and provide 

this callback so that the scan results or errors can be returned.  

VisualVoicemailService This service is implemented by dialer apps that wishes to handle OMTP 

or similar visual voicemails.  

VisualVoicemailService.Vis

ualVoicemailTask 

Represents a visual voicemail event which needs to be handled.  

Exceptions 

TelephonyManager.CallCompo

serException 

Exception that may be supplied to the callback 

in TelephonyManager.uploadCallComposerPicture(InputStream, String, 

Executor, OutcomeReceiver) if something goes awry.  

TelephonyManager.ModemErr

orException 

Exception that is supplied to the callback 

in TelephonyManager.getNetworkSlicingConfiguration(Executor, Outco

meReceiver) if the modem returned a failure.  

TelephonyManager.NetworkSli

cingException 

Exception that may be supplied to the callback 

in TelephonyManager.getNetworkSlicingConfiguration(Executor, Outco

meReceiver) if something goes awry.  

TelephonyManager.TimeoutEx

ception 

Exception that is supplied to the callback 

in TelephonyManager.getNetworkSlicingConfiguration(Executor, Outco

meReceiver) if the system timed out waiting for a response from the 

Radio.  

 

 

https://developer.android.com/reference/android/telephony/TelephonyManager.UssdResponseCallback
https://developer.android.com/reference/android/telephony/TelephonyManager.UssdResponseCallback
https://developer.android.com/reference/android/telephony/TelephonyManager#sendUssdRequest(java.lang.String,%20android.telephony.TelephonyManager.UssdResponseCallback,%20android.os.Handler)
https://developer.android.com/reference/android/telephony/TelephonyManager#sendUssdRequest(java.lang.String,%20android.telephony.TelephonyManager.UssdResponseCallback,%20android.os.Handler)
https://developer.android.com/reference/android/telephony/TelephonyManager#sendUssdRequest(java.lang.String,%20android.telephony.TelephonyManager.UssdResponseCallback,%20android.os.Handler)
https://developer.android.com/reference/android/telephony/TelephonyManager#sendUssdRequest(java.lang.String,%20android.telephony.TelephonyManager.UssdResponseCallback,%20android.os.Handler)
https://developer.android.com/reference/android/telephony/TelephonyScanManager
https://developer.android.com/reference/android/telephony/TelephonyScanManager.NetworkScanCallback
https://developer.android.com/reference/android/telephony/TelephonyScanManager.NetworkScanCallback
https://developer.android.com/reference/android/telephony/TelephonyManager#requestNetworkScan(android.telephony.NetworkScanRequest,%20java.util.concurrent.Executor,%20android.telephony.TelephonyScanManager.NetworkScanCallback)
https://developer.android.com/reference/android/telephony/TelephonyManager#requestNetworkScan(android.telephony.NetworkScanRequest,%20java.util.concurrent.Executor,%20android.telephony.TelephonyScanManager.NetworkScanCallback)
https://developer.android.com/reference/android/telephony/TelephonyManager#requestNetworkScan(android.telephony.NetworkScanRequest,%20java.util.concurrent.Executor,%20android.telephony.TelephonyScanManager.NetworkScanCallback)
https://developer.android.com/reference/android/telephony/TelephonyManager#requestNetworkScan(android.telephony.NetworkScanRequest,%20java.util.concurrent.Executor,%20android.telephony.TelephonyScanManager.NetworkScanCallback)
https://developer.android.com/reference/android/telephony/TelephonyManager#requestNetworkScan(android.telephony.NetworkScanRequest,%20java.util.concurrent.Executor,%20android.telephony.TelephonyScanManager.NetworkScanCallback)
https://developer.android.com/reference/android/telephony/VisualVoicemailService
https://developer.android.com/reference/android/telephony/VisualVoicemailService.VisualVoicemailTask
https://developer.android.com/reference/android/telephony/VisualVoicemailService.VisualVoicemailTask
https://developer.android.com/reference/android/telephony/TelephonyManager.CallComposerException
https://developer.android.com/reference/android/telephony/TelephonyManager.CallComposerException
https://developer.android.com/reference/android/telephony/TelephonyManager#uploadCallComposerPicture(java.io.InputStream,%20java.lang.String,%20java.util.concurrent.Executor,%20android.os.OutcomeReceiver%3Candroid.os.ParcelUuid,%20android.telephony.TelephonyManager.CallComposerException%3E)
https://developer.android.com/reference/android/telephony/TelephonyManager#uploadCallComposerPicture(java.io.InputStream,%20java.lang.String,%20java.util.concurrent.Executor,%20android.os.OutcomeReceiver%3Candroid.os.ParcelUuid,%20android.telephony.TelephonyManager.CallComposerException%3E)
https://developer.android.com/reference/android/telephony/TelephonyManager.ModemErrorException
https://developer.android.com/reference/android/telephony/TelephonyManager.ModemErrorException
https://developer.android.com/reference/android/telephony/TelephonyManager#getNetworkSlicingConfiguration(java.util.concurrent.Executor,%20android.os.OutcomeReceiver%3Candroid.telephony.data.NetworkSlicingConfig,%20android.telephony.TelephonyManager.NetworkSlicingException%3E)
https://developer.android.com/reference/android/telephony/TelephonyManager#getNetworkSlicingConfiguration(java.util.concurrent.Executor,%20android.os.OutcomeReceiver%3Candroid.telephony.data.NetworkSlicingConfig,%20android.telephony.TelephonyManager.NetworkSlicingException%3E)
https://developer.android.com/reference/android/telephony/TelephonyManager.NetworkSlicingException
https://developer.android.com/reference/android/telephony/TelephonyManager.NetworkSlicingException
https://developer.android.com/reference/android/telephony/TelephonyManager#getNetworkSlicingConfiguration(java.util.concurrent.Executor,%20android.os.OutcomeReceiver%3Candroid.telephony.data.NetworkSlicingConfig,%20android.telephony.TelephonyManager.NetworkSlicingException%3E)
https://developer.android.com/reference/android/telephony/TelephonyManager#getNetworkSlicingConfiguration(java.util.concurrent.Executor,%20android.os.OutcomeReceiver%3Candroid.telephony.data.NetworkSlicingConfig,%20android.telephony.TelephonyManager.NetworkSlicingException%3E)
https://developer.android.com/reference/android/telephony/TelephonyManager.TimeoutException
https://developer.android.com/reference/android/telephony/TelephonyManager.TimeoutException
https://developer.android.com/reference/android/telephony/TelephonyManager#getNetworkSlicingConfiguration(java.util.concurrent.Executor,%20android.os.OutcomeReceiver%3Candroid.telephony.data.NetworkSlicingConfig,%20android.telephony.TelephonyManager.NetworkSlicingException%3E)
https://developer.android.com/reference/android/telephony/TelephonyManager#getNetworkSlicingConfiguration(java.util.concurrent.Executor,%20android.os.OutcomeReceiver%3Candroid.telephony.data.NetworkSlicingConfig,%20android.telephony.TelephonyManager.NetworkSlicingException%3E)


MC4204   MOBILE APPLICATION DEVELOPMENT 

UNIT I INTRODUCTION  

Mobile Application Model – Infrastructure and Managing Resources – 

Mobile Device Profiles – Frameworks and Tools  

 

Mobile application development 

Mobile application development is the process of creating software 

applications that run on a mobile device, and a typical mobile application 

utilizes a network connection to work with remote computing resources. 

 

Mobile Application Model 

Types of Mobile Apps by Technology 

There are three basic types of mobile apps if we categorize them by 
the technology used to code them: 

 Native apps are created for one specific platform or operating 
system. 

 Web apps are responsive versions of websites that can work on 
any mobile device or OS because they’re delivered using a mobile 
browser. 

 Hybrid apps are combinations of both native and web apps, but 
wrapped within a native app, giving it the ability to have its own 
icon or be downloaded from an app store. 

01. Native Apps 

Native apps are built specifically for a mobile device’s operating 
system (OS). Thus, you can have native Android mobile apps or 
native iOS apps, not to mention all the other platforms and devices. 
Because they’re built for just one platform, you cannot mix and match 



– say, use a Blackberry app on an Android phone or use an iOS app 
on a Windows phone. 

Technology Used: Native apps are coded using a variety of 
programming languages. Some examples include: Java, Kotlin, 
Python, Swift, Objective-C, C++, and React. 

02. Web Apps 

Web apps behave similarly to native apps but are accessed via a web 
browser on your mobile device. They’re not standalone apps in the 
sense of having to download and install code into your device. They’re 
actually responsive websites that adapt its user interface to the device 
the user is on. In fact, when you come across the option to “install” a 
web app, it often simply bookmarks the website URL on your device. 

One kind of web app is the progressive web app (PWA), which is 
basically a native app running inside a browser. For a deeper 
discussion on PWAs 
 
Technology Used: Web apps are designed using HTML5, CSS, 
JavaScript, Ruby, and similar programming languages used for web 
work. 

03. Hybrid Apps 

And then there are the hybrid apps. These are web apps that look and 
feel like native apps. They might have a home screen app icon, 
responsive design, fast performance, even be able to function offline, 
but they’re really web apps made to look native. 

Technology Used: Hybrid apps use a mixture of web technologies 
and native APIs. They’re developed using: Ionic, Objective C, Swift, 
HTML5, and others. 
 



 

23 

 

 Listening to short talks and lectures and completing listening comprehension exercises 

 Listening to TED Talks 

 

2. Speaking: 

 Giving one minute talks 

 Participating in small Group Discussions 

 Making Presentations 

 

3. Reading: 

 Reading Comprehension  

 Reading subject specific material 

 Technical Vocabulary 

 

4. Writing:  

 Formal vs Informal Writing 

 Paragraph Writing 

 Essay Writing 

 Email Writing 

 

REFERENCES / MANUALS / SOFTWARE: Open Sources / websites  

TOTAL: 30 PERIODS  

COURSE OUTCOMES: 

On completion of the course, the students will be able to: 

 Listen and comprehend lectures in English 

 Articulate well and give presentations clearly 

 Participate in Group Discussions successfully 

 Communicate effectively in formal and informal writing  

 Write proficient essays and emails 

 

CO-PO Mapping 

CO POs 

PO1 PO2 PO3 PO4 PO5 PO6 

1 1 2 2 1 1 1 

2 1 3 2 1 1 1 

3 1 2 3 1 1 1 

4 1 3 2 1 1 1 

5 1 3 2 1 1 1 

Avg 1 2.6 2.2 1 1 1 

 

 

MC4201   FULL STACK WEB DEVELOPMENT L  T  P C 

3  0  0  3 

COURSE OBJECTIVES: 

 To understand the fundamentals of web programming and client side scripting. 

 To learn server side development using NodeJS. 



 

24 

 

 To understand API development with Express Framework. 

 To understand and architect databases using NoSQL and SQL databases. 

 To learn the advanced client side scripting and ReactJS framework 

UNIT I INTRODUCTION TO CSS and JAVASCRIPT  9 

Introduction to Web: Server - Client - Communication Protocol (HTTP) – Structure of HTML 

Documents – Basic Markup tags – Working with Text and Images with CSS– CSS Selectors – CSS 

Flexbox - JavaScript: Data Types and Variables  - Functions - Events – AJAX: GET and POST 

UNIT II SERVER SIDE PROGRAMMING WITH NODE JS 9 

Introduction to Web Servers – Javascript in the Desktop with NodeJS – NPM – Serving files with the 

http module – Introduction to the Express framework – Server-side rendering with Templating 

Engines – Static Files - async/await  - Fetching JSON from Express 

 

UNIT III ADVANCED NODE JS AND DATABASE 9 

Introduction to NoSQL databases – MongoDB system overview - Basic querying with MongoDB 

shell – Request body parsing in Express – NodeJS MongoDB connection – Adding and retrieving 

data to MongoDB from NodeJS – Handling SQL databases from NodeJS – Handling Cookies in 

NodeJS – Handling User Authentication with NodeJS 

 

UNIT IV ADVANCED CLIENT SIDE PROGRAMMING 
9 

 

React JS: ReactDOM - JSX - Components - Properties – Fetch API - State and Lifecycle - -JS 

Localstorage - Events - Lifting State Up - Composition and Inheritance 

 

UNIT V APP IMPLEMENTATION IN CLOUD  9 

Cloud providers Overview – Virtual Private Cloud – Scaling (Horizontal and Vertical) – Virtual 

Machines, Ethernet and Switches – Docker Container – Kubernetes 

 

TOTAL: 45 PERIODS 

SUGGESTED ACTIVITIES: 

1. Build an online MCQ quiz app. The questions and options should be fetched based on the 

chosen topic from a NodeJS server. The questions can be stored in a JSON file in the 

backend. Once the user has answered the questions, the frontend must send the chosen 

options to the backend and the backend must identify the right answers and send the score 

back to the front end. The frontend must display the score in a separate neatly designed page. 

2. Build a blog website where you can add blog posts through a simple admin panel and the 

users can view the blog posts. The contents of the blog posts can be stored in either 

MongoDB or MySQL database. The home page should contain the titles of the blog post and 

the full post can be viewed by clicking the title. Frontend can be built either using React or 

through template engines served by the NodeJS server.  

3. Take any ecommerce or social media website/app. Analyze what the API endpoints would 

have been used for and how the frontend interacts with the backend. The networks tab in the 

browser’s developer tools can be used if required.   

4. Architect an entire database structure for an E-Commerce application for MongoDB. Discuss 

how the database would have been structured if you were using a SQL database.  

5. Build a simple calculator app with React. The user should be able to add numbers and 

operations to the app by clicking on buttons, just like you would do in a mobile phone. The 

moment the operation and the two operations are defined, the answer should be displayed  

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  1  

M.A.M COLLEGE OF ENGINEERING 

MASTER OF COMPUTER APPLICATION 

MC4201 - FULL STACK WEB DEVELOPMENT  

UNIT I INTRODUCTION TO CSS and JAVASCRIPT 

 Introduction to Web: Server - Client - Communication Protocol (HTTP) – Structure of HTML 
Documents – Basic Markup tags – Working with Text and Images with CSS– CSS Selectors – CSS 
Flexbox - JavaScript: Data Types and Variables  - Functions - Events – AJAX: GET and POST  

UNIT II SERVER SIDE PROGRAMMING WITH NODE JS 

 Introduction to Web Servers – Javascript in the Desktop with NodeJS – NPM – Serving files with 
the http module – Introduction to the Express framework – Server-side rendering with Templating 
Engines – Static Files - async/await  - Fetching JSON from Express   

UNIT III ADVANCED NODE JS AND DATABASE 

 Introduction to NoSQL databases – MongoDB system overview - Basic querying with MongoDB 
shell – Request body parsing in Express – NodeJS MongoDB connection – Adding and retrieving 
data to MongoDB from NodeJS – Handling SQL databases from NodeJS – Handling Cookies in 
NodeJS – Handling User Authentication with NodeJS   

UNIT IV ADVANCED CLIENT SIDE PROGRAMMING 

React JS: ReactDOM - JSX - Components - Properties – Fetch API - State and Lifecycle - -JS 
Localstorage - Events - Lifting State Up - Composition and Inheritance   

UNIT V APP IMPLEMENTATION IN CLOUD 

 Cloud providers Overview – Virtual Private Cloud – Scaling (Horizontal and Vertical) – Virtual 
Machines, Ethernet and Switches – Docker Container – Kubernetes   

 

 

 

 

 

 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  2  

 CSS 

UNIT I 

INTRODUCTION TO CSS and JAVASCRIPT 
Introduction to CSS 

CSS stands for Cascading Style Sheets. CSS describes how HTML elements are to 

be displayed on screen, paper, or in other media. CSS saves a lot of work. It can control the 

layout of multiple web pages all at once. External stylesheets are stored in CSS files. 

Cascading Style Sheets, fondly referred to as CSS, is a simply designed language 

intended to simplify the process of making web pages presentable. CSS allows you to apply 

styles to web pages. 

More importantly, CSS enables you to do this independent of the HTML that makes 

up each web page. It describes how a webpage should look: it prescribes colors, fonts, 

spacing, and much more. 

while html uses tags, css uses rulesets. 

WHY CSS? 

 CSS saves time: write CSS once and reuse the same sheet in multiple HTML pages. 

 Easy Maintenance: To make a global change simply change the style, and all 

elements in all the webpages will be updated automatically. 

 Search Engines: CSS is considered a clean coding technique, which means search 

engines won’t have to struggle to “read” its content. 

 Superior styles to HTML: CSS has a much wider array of attributes than HTML, so 

you can give a far better look to your HTML page in comparison to HTML attributes. 

 Offline Browsing: CSS can store web applications locally with the help of an offline 

cache. Using this we can view offline websites. 

CSS Syntax: 

A CSS comprises style rules that are interpreted by the browser and then 

applied to the corresponding elements in your document. 

A style rule set consists of a selector and declaration block. 

Selector -- h1 

Declaration -- {color:blue;font size:12px;} 

 The selector points to the HTML element you want to style. 

 The declaration block contains one or more declarations separated by semicolons. 

 Each declaration includes a CSS property name and a value, separated by a colon. For 

Example: 

–; color is property and blue is value. 

–; font-size is property and 12px is value. 

A CSS declaration always ends with a semicolon, and declaration blocks are surrounded by curly braces. 

Example : 

In the following example all p elements will be center-aligned, with a blue text color: 

p { 

color: blue; 

text-align: center; 

} 

 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  3  

CSS Versions 

1. CSS1 

2. CSS2 

3. CSS3 

4. CSS4 

Version 4 comes with:- 

 CSS-Pro 

 CSS-Mobile 

Supported Browser: 

 Google Chrome 

 Microsoft Edge 

 Firefox 

 Opera 

 Safari 

What is JavaScript introduction? 

JavaScript is a lightweight, cross-platform, and interpreted compiled 

programming language which is also known as the scripting language for 

webpages. It is well-known for the development of web pages, many non-browser 

environments also use it. 

 CSS is a styling language used to style HTML pages so that they can be used to 

attract users. 

 JavaScript is a programming language that changes the appearance of web pages, and 

it is dynamic. 

 CSS is static and is related to the colour, position, size and style of the web pages, and 

the appearance is made beautiful. 

Introduction to Web 

Web consists of billions of clients and server connected through wires and wireless 

networks. The web clients make requests to web server. The web server receives the request, 

finds the resources and return the response to the client. When a server answers a request, it 

usually sends some type of content to the client. 

The client uses web browser to send request to the server. The server often sends 

response to the browser with a set of instructions written in HTML(HyperText Markup 

Language). All browsers know how to display HTML page to the client. 

 

 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  4  

Web Application 

A website is a collection of static files(webpages) such as HTML pages, images, 

graphics etc.   A Web   application is   a   web   site   with    dynamic    functionality    on    

the server. Google, Facebook, Twitter are examples of web applications. 

Server - Client - Communication Protocol (HTTP) 

The Hypertext Transfer Protocol (HTTP) is application-level protocol for 

collaborative, distributed, hypermedia information systems. It is the data communication 

protocol used to establish communication between client and server. 

HTTP is TCP/IP based communication protocol, which is used to deliver the data like 

image files, query results, HTML files etc on the World Wide Web (WWW) with the default 

port is TCP 80. It provides the standardized way for computers to communicate with each 

other. 

 

The Basic Characteristics of HTTP (Hyper Text Transfer Protocol): 

o It is the protocol that allows web servers and browsers to exchange data over the web. 

o It is a request response protocol. 

o It uses the reliable TCP connections by default on TCP port 80. 

o It is stateless means each request is considered as the new request. In other 

words, server doesn't recognize the user by default. 

The Basic Features of HTTP (Hyper Text Transfer Protocol): 

There are three fundamental features that make the HTTP a simple and powerful 

protocol used for communication: 

o HTTP is media independent: It specifies that any type of media content can be sent 

by HTTP as long as both the server and the client can handle the data content. 

o HTTP is connectionless: It is a connectionless approach in which HTTP client i.e., a 

browser initiates the HTTP request and after the request is sent the client disconnects 

from server and waits for the response. 

o HTTP is stateless: The client and server are aware of each other during a current 

request only. Afterwards, both of them forget each other. Due to the stateless nature 

of protocol, neither the client nor the server can retain the information about different 

request across the web pages. 

 

 

 

 

 

 

 

 

 

 

 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  5  

The Basic Architecture of HTTP (Hyper Text Transfer Protocol): 

The below diagram represents the basic architecture of web application and depicts where 

HTTP stands: 

 

HTTP is request/response protocol which is based on client/server based architecture. In this 

protocol, web browser, search engines, etc. behave as HTTP clients and the Web server like 

Servlet behaves as a server 

Clients and servers communicate by exchanging individual messages (as opposed to 

a stream of data). The messages sent by the client, usually a Web browser, are called 

requests and the messages sent by the server as an answer are called responses. 

A request is made by an entity called a user-agent, which is typically a web 

browser however can be a bot or scraper. The server answer with a response. In 

between can be any number of proxies or caches that can act as gateways. 

HTTP is stateless, which means inherently data isn’t saved. HTTP cookies allow use 

of stateful sessions. This might be used for example with an e-commerce website as you click 

from page to page. 

HTTP Request 

Requests consists of the following elements: 

 An HTTP method, usually a verb like GET, POST or a noun 

like OPTIONS or HEAD that defines the operation the client wants to perform. 

Typically, a client wants to fetch a resource (using GET) or post the value of an 

HTML form (using POST), though more operations may be needed in other cases. 

 The path of the resource to fetch; the URL of the resource stripped from elements that 

are obvious from the context, for example without the protocol (http://), the domain 

(here, developer.mozilla.org), or the TCP port (here, 80). 

 The version of the HTTP protocol. 

 Optional headers that convey additional information for the servers. 

 Or a body, for some methods like POST, similar to those in responses, which 

contain the resource sent. 

HTTP Response 

Responses consist of the following elements: 

 The version of the HTTP protocol they follow. 

 A status code, indicating if the request was successful, or not, and why. 

 A status message, a non-authoritative short description of the status code. 

 HTTP headers, like those for requests. 

 Optionally, a body containing the fetched resource. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  6  

Structure of HTML Documents 

INTRODUCTION 

HTML is a language of the web. It’s used to design the web pages or we can say 

structure the page layouts of a website. HTML stands for HYPERTEXT MARKUP 

LANGUAGE, as its full form suggests it’s not any programming language, a markup 

language. 

So, while the execution of HTML code we can’t face any such error. In real HTML 

code wasn’t compiled or interpreted because HTML code was rendered by the browser. 

which is similar to the compilation of a program. Html content is parched through the 

browser to display the content of HTML. 

HTML DOCUMENTS STRUCTURE 

Html used predefined tags and attributes to tell the browser how to display content, 

means in which format, style, font size, and images to display. Html is a case insensitive 

language. Case insensitive means there is no difference in upper case and lower case ( 

capital and small letters) both treated as the same, for r example ‘D’ and ‘d’ both are the 

same here. 

There are generally two types of tags in HTML: 

1. Paired Tags: These tags come in pairs. That is they have both opening(< >) and 

closing(</ >) tags. 

2. Empty Tags: These tags do not require to be closed. 

Below is an example of a (<b>) tag in HTML, which tells the browser to bold the text inside 

it. 

<b> I MCA </b> 

OUTPUT: 

I MCA 

 

Tags and attributes: Tags are individuals of html structure, we have to open and close 

any tag with a forward slash like this <h1> </h1>. There are some variations with the tag 

some of them are self-closing tag which isn’t required to close and some are empty tag 

where we can add any attributes in it. 

Attributes are additional properties of html tags that define the property of any 

html tags. i.e. width, height, controls, loops, input, and autoplay. These attributes also help 

us to store information in meta tags by using name, content, and type attributes. Html 

documents structured mentioned below: 

Structure of an HTML Document 

An HTML Document is mainly divided into two parts: 

 HEAD: This contains the information about the HTML document. For Example, the 

Title of the page, version of HTML, Meta Data, etc. 

 BODY: This contains everything you want to display on the Web Page. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  7  

Let us now have a look at the basic structure of HTML. That is the code that is a must for 

every webpage to have: 

 

<!DOCTYPE html>: This tag is used to tells the HTML version. This currently tells 

that the version is HTML 5.0 

<html> </html> : <html> is a root element of html. It’s a biggest and main element 

in complete html language, all the tags , elements and attributes enclosed in it or we can 

say wrap init , which is used to structure a web page. <html> tag is parent tag of <head> 

and <body> tag , other tags enclosed within <head > and <body>. 

In <html > tag we use “lang” attributes to define languages of html page such as 

<html lang=”en”> here en represents English language. some of them are : es = Spanish , 

zh-Hans = Chinese, fr= french and el= Greek etc. 

<head>: Head tag contains metadata, title, page CSS etc. Data stored in the 

<head> tag is not displayed to the user, it is just written for reference purposes and as a 

watermark of the owner. 

Note: for better understanding refer above code of html. 

<tittle> = to store website name or content to be displayed. 

<link> = To add/ link css( cascading style sheet) file. 

<meta> = 1. to store data about website, organisation , creator/ owner 

2. for responsive website via attributes 

3. to tell compatibility of html with browser 

<script> = to add javascript file. 

<body>: A body tag is used to enclose all the data which a web page has from texts to links. 

All the content that you see rendered in the browser is contained within this element. 

Following tags and elements used in the body. 1 . 

<h1> ,<h2> ,<h3> to <h6> 

2.   <p> 

3. <div> and <span> 

4. <b>, <i> and<u> 

5. <li>,<ul>and<ol>. 

6. <img> , <audio> , <video> and<iframe> 

7. <table> <th> , <thead>and<tr>. 

8. <form> 

9. <label> and <input> 

HTML is the foundation of web pages, and is used for webpage development by structuring 

websites and web apps. 

 

 

 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  8  

Basic Markup tags 

1. Heading Tags 

Any document starts with a heading. You can use different sizes for your headings. 

HTML also has six levels of headings, which use the elements <h1>, <h2>, 

<h3>, <h4>, <h5>, and <h6>. While displaying any heading, browser adds one line before 

and one line after that heading. 

Example 

<!DOCTYPE html> 

<html> 

<head> 

<title>Heading Example</title> 

</head> 

<body> 

<h1>This is heading 1</h1> 

<h2>This is heading 2</h2> 

<h3>This is heading 3</h3> 

<h4>This is heading 4</h4> 

<h5>This is heading 5</h5> 

<h6>This is heading 6</h6> 

</body> 

</html> 

This will produce the following result − 

 

2. Paragraph Tag 

The <p> tag offers a way to structure your text into different paragraphs. Each 

paragraph of text should go in between an opening <p> and a closing </p> tag as shown 

below in the example − 

Example 

<!DOCTYPE html> 

<html> 

<head> 

<title>Paragraph Example</title> 

</head> 

<body> 

<p>Here is a first paragraph of text.</p> 

<p>Here is a second paragraph of text.</p> 

<p>Here is a third paragraph of text.</p> 

</body> 

</html> 

 

 

 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  9  

This will produce the following result − 

 

3. Line Break Tag 

Whenever you use the <br /> element, anything following it starts from the next line. 

This tag is an example of an empty element, where you do not need opening and closing 

tags, as there is nothing to go in between them. 

The <br /> tag has a space between the characters br and the forward slash. If you 

omit this space, older browsers will have trouble rendering the line break, while if you miss 

the forward slash character and just use <br> it is not valid in XHTML. 

Example 

<!DOCTYPE html> 

<html> 

<head> 

<title>Line Break Example</title> 

</head> 

<body> 

<p>Hello<br /> 

You delivered your assignment ontime.<br /> 

Thanks<br /> 

Mahnaz</p> 

</body> 

</html> 

This will produce the following result − 

 

4. Centering Content 

You can use <center> tag to put any content in the center of the page or any table 

cell. 

Example 

<!DOCTYPE html> 

<html> 

<head> 

<title>Centring Content Example</title> 

</head> 

<body> 

<p>This text is not in the center.</p> 

<center> 

<p>This text is in the center.</p> 

</center> 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  10  

</body> 

</html> 

 

5. Horizontal Lines 

Horizontal lines are used to   visually   break-up   sections   of   a   document. The 

<hr> tag creates a line from the current position in the document to the right margin and 

breaks the line accordingly. 

Example 

<!DOCTYPE html> 

<html> 

<head> 

<title>Horizontal Line Example</title> 

</head> 

<body> 

<p>This is paragraph one and should be on top</p> 

<hr /> 

<p>This is paragraph two and should be at bottom</p> 

</body> 

</html> 

This will produce the following result − 

Again <hr /> tag is an example of the empty element, where you do not need opening and closing tags, 

as there is nothing to go in between them. 

The <hr /> element has a space between the characters hr and the forward slash. If 

you omit this space, older browsers will have trouble rendering the horizontal line, while if 

you miss the forward slash character and just use <hr> it is not valid in XHTML 

6. Preserve Formatting 

Sometimes, you want your text to follow the exact format of how it is written in the 

HTML document. In these cases, you can use the preformatted tag <pre>. 

Any text between the opening <pre> tag and the closing </pre> tag will preserve the 

formatting of the source document. 

Example 

<!DOCTYPE html> 

<html> 

<head> 

<title>Preserve Formatting Example</title> 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  11  

</head> 

<body> 

<pre> 

function testFunction( strText ){ 

alert (strText) 

} 

</pre> 

</body> 

</html> 

 
Working with Text and Images with CSS 

1. CSS Text 

CSS has a lot of properties for formatting text. 

Text Color 

The color property is used to set the color of the text. The color is specified by: 

 a color name - like "red" 

 a HEX value - like "#ff0000" 

 an RGB value - like "rgb(255,0,0)" 

Look at CSS Color Values for a complete list of possible color values. 

The default text color for a page is defined in the body selector. 

 

Text Color and Background Color 

In this example, we define both the background-color property and the color property: 

 

 
 

 

 

https://www.w3schools.com/cssref/css_colors_legal.asp


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  12  

CSS Text Alignment 

CSS Text Alignment and Text Direction 

properties: 

 text-align 

 text-align-last 

 direction 

 unicode-bidi 

 vertical-align 

Text Alignment 

 The text-align property is used to set the horizontal alignment of a text. 

 A text can be left or right aligned, centered, or justified. 

 The following example shows center aligned, and left and right aligned text 

(left alignment is default if text direction is left-to-right, and right alignment is 

default if text direction is right-to-left): 

When the text-align property is set to "justify", each line is stretched so that every line has equal width, 

and the left and right margins are straight (like in magazines and newspapers): 

 

Text Align Last 

 

The text-align-last property specifies how to align the last line of a text. 

 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  13  

Text Direction 

The direction and unicode-bidi properties can be used to change the text direction of an element: 

 

Vertical Alignment 

The vertical-align property sets the vertical alignment of an element. 

EXAMPLE: 

Set the vertical alignment of an image in a text:  

img.a { 

vertical-align: baseline; 

} 

img.b { 

vertical-align: text-top; 

} 

img.c { 

vertical-align: text-bottom; 

} 

img.d { 

vertical-align: sub; 

} 

img.e { 

vertical-align: super; 

} 

The CSS Text Alignment/Direction Properties 

 

Property Description 

direction Specifies the text direction/writing direction 

text-align Specifies the horizontal alignment of text 

text-align-last Specifies how to align the last line of a text 

unicode-bidi Used together with the direction property to set 

or return whether the text should be overridden 

to support multiple languages in the same 

document 

vertical-align Sets the vertical alignment of an element 

https://www.w3schools.com/cssref/pr_text_direction.asp
https://www.w3schools.com/cssref/pr_text_text-align.asp
https://www.w3schools.com/cssref/css3_pr_text-align-last.asp
https://www.w3schools.com/cssref/pr_text_unicode-bidi.asp
https://www.w3schools.com/cssref/pr_text_direction.asp
https://www.w3schools.com/cssref/pr_pos_vertical-align.asp


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  14  

2. CSS Text Decoration 

CSS Text Decoration 

properties: 

 text-decoration-line 

 text-decoration-color 

 text-decoration-style 

 text-decoration-thickness 

 text-decoration 

 

Add a Decoration Line to Text 

The text-decoration-line property is used to add a decoration line to text. 

 

Specify a Color for the Decoration Line 

 

The text-decoration-color property is used to set the color of the decoration line. 

 

 Example  

h1 { 

text-decoration-line: overline; 

text-decoration-color: red; 

} 

h2 { 

text-decoration-line: line-through; 

text-decoration-color: blue; 

} 

h3 { 

text-decoration-line: underline; 

text-decoration-color: green; 

} 

p { 

text-decoration-line: overline underline; 

text-decoration-color: purple; 

 

} 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  15  

All CSS text-decoration Properties 

 

Property Description 

text-decoration Sets all the text-decoration properties in one 

declaration 

text-decoration-color Specifies the color of the text-decoration 

text-decoration-line Specifies the kind of text decoration to be used 

(underline, overline, etc.) 

text-decoration-style Specifies the style of the text decoration (solid, 

dotted, etc.) 

text-decoration-thickness Specifies the thickness of the text decoration line 

3. CSS Text Transformation 

 Text Transformation 

 The text-transform property is used to specify uppercase and lowercase letters in a 

text. 

 It can be used to turn everything into uppercase or lowercase letters, or 

capitalize the first letter of each word: 

 

4. CSS Text Spacing 

CSS Text Indentation, Letter Spacing, Line Height, Word Spacing, and White Space 

properties: 

 text-indent 

 letter-spacing 

 line-height 

 word-spacing 

 white-space 

https://www.w3schools.com/cssref/pr_text_text-decoration.asp
https://www.w3schools.com/cssref/css3_pr_text-decoration-color.asp
https://www.w3schools.com/cssref/css3_pr_text-decoration-line.asp
https://www.w3schools.com/cssref/css3_pr_text-decoration-style.asp
https://www.w3schools.com/cssref/pr_text_text-decoration-thickness.asp


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  16  

Text Indentation 

The text-indent property is used to specify the indentation of the first line of a text: 

Letter Spacing 

The letter-spacing property is used to specify the space between the characters in a text. 

Line Height 

The line-height property is used to specify the space between lines: 

Word Spacing 

The word-spacing property is used to specify the space between the words in a text. 

The following example demonstrates how to increase or decrease the space between words: 

             
White Space 

The white-space property specifies how white-space inside an element is handled. This 

example demonstrates how to disable text wrapping inside an element: 

 
 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  17  

The CSS Text Spacing Properties 

 

Property Description 

letter-spacing Specifies the space between characters in a text 

line-height Specifies the line height 

text-indent Specifies the indentation of the first line in a text- 

block 

white-space Specifies how to handle white-space inside an 

element 

word-spacing Specifies the space between words in a text 

5. CSS Text Shadow 

Text Shadow 

The text-shadow property adds shadow to text. 

In its simplest use, you only specify the horizontal shadow (2px) and the vertical 

shadow (2px): 

 

 Example  

h1 { 

text-shadow: 2px 2px; 

} 

Next, add a color (red) to the shadow: 

 

 Example  

h1 { 

text-shadow: 2px 2px red; 

} 

 

Then, add a blur effect (5px) to the shadow: 

 

 

 Example  

h1 { 

text-shadow: 2px 2px 5px red; 

} 

 

 

 

 

 

 

 

 

https://www.w3schools.com/cssref/pr_text_letter-spacing.asp
https://www.w3schools.com/cssref/pr_dim_line-height.asp
https://www.w3schools.com/cssref/pr_text_text-indent.asp
https://www.w3schools.com/cssref/pr_text_white-space.asp
https://www.w3schools.com/cssref/pr_text_word-spacing.asp


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  18  

IMAGES WITH CSS 

1.Thumbnail Images 

 

Use the border property to create thumbnail images. Thumbnail 

Image: 

Example 

img { 

border: 1px solid #ddd; 

border-radius: 4px; 

padding: 5px; 

width: 150px; 

} 

 

<img src="paris.jpg" alt="Paris"> 

 
 

Thumbnail Image as Link: 

 

 Example  

img { 

border: 1px solid #ddd; 

border-radius: 4px; 

padding: 5px; 

width: 150px; 

} 

img:hover { 

box-shadow: 0 0 2px 1px rgba(0, 140, 186, 0.5); 

} 

<a href="paris.jpg"> 

<img src="paris.jpg" alt="Paris"> 

</a> 

 

1. Responsive Images: 

The responsive image is used to adjust the image automatically to the specified box. 

Example: This example illustrates the use of the Styling image property for creating 

responsive images. 

<!DOCTYPE html> 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  19  

<html> 

<head> 

<style> 

img { 

max-width: 100%; 

height: auto; 

} 

</style> 

</head> 

<body> 

<img src= 

"https://sparc.org.in/courses/university/it_courses/mca/ mca-course-in-gtb- nagar-

sparc-academy " 

alt="Responsive-image" 

width="1000" 

height="300"> 

</body> 

</html> 

Output: 

 

 

 

 

 

 

 

2. Transparent Image: 

The opacity property is used to set the image transparent. The opacity value  lies between 0.0 

to 1.0. 

Example: This example illustrates the use of the Styling image property for creating 

transparent images. 

<!DOCTYPE html> 

<html> 

<head> 

<title>style image</title> 

<style> 

img { 

opacity: 0.5; 

} 

</style> 

</head> 

<body> 

<img src= 

"https://sparc.org.in/courses/university/it_courses/mca/mca- course-

in-gtb-nagar-sparc-academy" 

alt="Transparent-image" 

width="100%"> 

</body> 

</html> 

 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  20  

Output: 

 
Supported Browsers: The browsers supported by Styling Images are listed below: 

 Google Chrome 

 Internet Explorer 

 Microsoft Edge 

 Firefox 

 Opera 

CSS Selectors 

CSS selectors are used to “find” (or select) HTML elements based on their 

element name, id, class, attribute, and more. We 

can divide CSS selectors into five categories: 

 Simple selectors (select elements based on name, id, class) 

 Combinator selectors (select elements based on a specific relationship between 

them) 

 Pseudo-class selectors (select elements based on a certain state) 

 Pseudo-elements selectors (select and style a part of an element) 

 Attribute selectors (select elements based on an attribute or attribute value) 

 

1. The CSS element Selector 

The element selector selects HTML elements based on the element name. 

 

 
 

2. The CSS id Selector 

 

The id selector uses the id attribute of an HTML element to select a specific 

element. 

 

The id of an element is unique within a page, so the id selector is used to 

select one unique element! 

 

To select an element with a specific id, write a hash (#) character, followed 

by the id of the element. 

https://www.w3schools.com/css/css_combinators.asp
https://www.w3schools.com/css/css_pseudo_classes.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_attribute_selectors.asp


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  21  

 

 

3. The CSS class Selector 

The class selector selects HTML elements with a specific class attribute. To 

select elements with a specific class, write a period (.) character, 

followed by the class name.HTML elements can also refer to more than one class. 

 

 
 

4. The CSS Universal Selector 

The universal selector (*) selects all HTML elements on the page. 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  22  

5. The CSS Grouping Selector 

 

The grouping selector selects all the HTML elements with the same style 

definitions. 

Look at the following CSS code (the h1, h2, and p elements have the same 

style definitions): 

It will be better to group the selectors, to minimize the code. 

To group selectors, separate each selector with a comma. 

 

CSS Flexbox 

The flexbox or flexible box model in CSS is a one-dimensional layout model that has 

flexible and efficient layouts with distributed spaces among items to control their alignment 

structure ie., it is a layout model that provides an easy and clean way to arrange items within 

a container. Flexbox can be useful for creating small-scales layouts & is responsive and 

mobile-friendly. 

Features of flexbox: 

 A lot of flexibility is given. 

 Arrangement & alignment of items. 

 Proper spacing 

 Order & Sequencing of items. 

 Bootstrap 4 is built on top of the flex layout. 

Before the flexbox model, we had 4 layout modes: 

 Block: It is used to make sections in web pages. 

 Inline: It is used for text. 

 Table: It is used for two-dimensional table data. 

 Positioned: It is used for the explicit position of an element. 

 

 

 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  23  

There are 2 main components of the Flexbox: 

 Flex Container: The parent “div” which contains various divisions is called a flex 

container. 

 Flex Items: The items inside the container “div” are flex items. 

 

For creating the flexbox, we need to create a flex container along with setting the display 

property to flex. 

 

 
<!DOCTYPE html> 

<html> 

<head> 

<title>Flexbox Tutorial</title> 

<style> 

.flex-container { 

display: flex; 

background-color: #32a852; 

} 

.flex-container div { 

background-color: #c9d1cb; 

margin: 10px; 

padding: 10px; 

} 

</style> 

</head> 

<body> 

<h2>COMPUTER SCIENCE</h2> 

<h4> Flexbox</h4> 

<div class="flex-container"> 

<div>Item1</div> 

<div>Item2</div> 

<div>Item3</div> 

</div> 

</body> 

</html> 

Output: 

 

COMPUTER SCIENCE 

 

 HTML 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  24  

Flexbox Axes: While working with Flexbox, we deal with 2 axes: 

 Main Axis 

 Cross Axis 

Main Axis: 

 By default, the main axis runs from left to right. 

 Main Start: The start of the main axis is called Main Start. 

 Main Size: The length between Main Start and Main End is called Main Size. 

 Main End: The endpoint is called Main End. 

 Main And Cross Axis 

 

 

left to right: 

flex-direction: row; 

right to left: 

flex-direction: row-reverse; 

top to bottom: 

flex-direction: column; 

bottom to top: 

flex-direction: column; 

Cross Axis: The cross axis will be perpendicular to the main axis. 

 By default, Cross Axis runs perpendicular to the Main Axis i.e. from top to bottom. 

 Cross Start: The start of the Cross axis is called Cross Start. 

 Cross Size: The length between Cross Start and Cross End is called Cross Size. 

 Cross End: The endpoint is called Cross End. 

Supported Browsers: 

 Google Chrome 29.0 

 Firefox 22.0 

 Microsoft Edge 11.0 

 Opera 48.0 

 Safari 10.0 

 

JavaScript: Data Types and Variables -Functions – Events 

1. Datatypes in JavaScript 

There are majorly two types of languages. First, one is Statically typed language 

where each variable and expression type is already known at compile time. Once a variable is 

declared to be of a certain data type, it cannot hold values of other data types. 

Example: C, C++, Java. 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  25  

// Java(Statically typed) 

int x = 5 // variable x is of type int and it will not store any other type. string y 

= 'abc' // type string and will only accept string values 

Other, Dynamically typed languages: These languages can receive different data types 

over time. For example- Ruby, Python, JavaScript, etc. 

// Javascript(Dynamically typed) 

var x = 5; // can store an integer 

var name = 'string'; // can also store a string. 

JavaScript is a dynamically typed (also called loosely typed) scripting language. That 

is, in JavaScript variables can receive different data types over time. Datatypes are 

basically typed data that can be used and manipulated in a program. 

The latest ECMAScript(ES6) standard defines following data types: Out of which six 

data types are Primitive(predefined). 

 Numbers: Represent both integer and floating-point numbers. Example: 5, 6.5, 7 etc. 

 String: A string is a sequence of characters. In JavaScript, strings can be enclosed 

within the single or double quotes. Example: “Hello GeeksforGeeks” etc. 

 Boolean: Represent a logical entity and can have two values: true or false. 

 Null: This type has only one value : null. 

 Undefined: A variable that has not been assigned a value is undefined. 

 Symbol: Unlike other primitive data types, it does not have any literal form. It is a 

built-in object whose constructor returns a symbol-that is unique. 

 bigint: The bigint type represents the whole numbers that are larger than 253-1. To form 

a bigint literal number, you append the letter n at the end of the number. 

 Object: It is the most important data-type and forms the building blocks for modern 

JavaScript. We will learn about these data types in detail in further articles. 

2. Variables in JavaScript: 

Variables in JavaScript are containers that hold reusable data. It is the basic 

unit of storage in a program. 

 The value stored in a variable can be changed during program execution. 

 A variable is only a name given to a memory location, all the operations done on the 

variable effects that memory location. 

 In JavaScript, all the variables must be declared before they can be used. 

Before ES2015, JavaScript variables were solely declared using the var keyword followed by 

the name of the variable and semi-colon. Below is the syntax to create variables in 

JavaScript: 

var var_name; 

var x; 

The var_name is the name of the variable which should be defined by the user and 

should be unique. These types of names are also known as identifiers. 

The rules for creating an identifier in JavaScript are, the name of the identifier should 

not be any pre-defined word(known as keywords), the first character must be a letter, an 

underscore (_), or a dollar sign ($). 

Subsequent characters may be any letter or digit or an underscore or dollar 

sign. 

We can initialize the variables either at the time of declaration or also later 

when we want to use them. Below are some examples of declaring and initializing variables 

in JavaScript: 

// declaring single variable var 

name; 

// declaring multiple variables 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  26  

var name, title, num; 

// initializing variables var name 

= "Harsh"; 

name = "Rakesh"; 

JavaScript is also known as untyped language. This means, that once a variable is created in 

JavaScript using the keyword var, we can store any type of value in this variable supported 

by JavaScript. 

// storing a mathematical expression var x = 5 + 

10 + 1; 

console.log(x); // 16 

After ES2015, we now have two new variable containers: let and const. Now we shall look at 

both of them one by one. The variable type Let shares lots of similarities with var but unlike 

var, it has scope constraints. To know more about them visit let vs var. Let’s make use of the 

let variable: 

// let variable let x; // 

undefined let name = 

'Mukul'; 

// can also declare multiple values let 

a=1,b=2,c=3; 

// assignment let a 

=3; 

a = 4; // works same as var. 

Variable Scope in Javascript 

Scope of a variable is the part of the program from where the variable may directly be 

accessible. 

In JavaScript, there are two types of scopes: 

1. Global Scope – Scope outside the outermost function attached to Window. 

2. Local Scope – Inside the function being executed. 

Let’s look at the code below. We have a global variable defined in the first line in the 

global scope. Then we have a local variable defined inside the function fun(). 

let globalVar = "This is a global variable"; 

function fun() { 

let localVar = "This is a local variable"; 

console.log(globalVar); 

console.log(localVar); 

} 

fun(); 

 

OUTPUT: 

 

 

 

https://www.geeksforgeeks.org/difference-between-var-and-let-in-javascript/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  27  

When we execute the function fun(), the output shows that both global, and local 

variables, are accessible inside the function as we are able to console.log them. This shows 

that inside the function we have access to both global variables (declared outside the 

function) and local variables (declared inside the function). 

Let’s move the console.log statements outside the function and put them just 

after calling the function. 

let globalVar = "This is a global variable"; 

function fun() { 

let localVar = "This is a local variable"; 

} 

fun(); 

console.log(globalVar); 

console.log(localVar); 

OUTPUT: 

3. JavaScript function 

 

A JavaScript function is a block of code designed to perform a particular task. A 

JavaScript function is executed when "something" invokes it (calls it). 

JavaScript Function Syntax 

 

A JavaScript function is defined with the function keyword, followed by a name, 

followed by parentheses (). 

 

Function names can contain letters, digits, underscores, and dollar signs (same rules as variables). 

 

The parentheses may include parameter names separated by commas: 

(parameter1, parameter2, ...) 

 

The code to be executed, by the function, is placed inside curly brackets: {} 

 

 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  28  

 

 

Function parameters are listed inside the parentheses () in the function definition. 

Function arguments are the values received by the function when it is invoked. 

Inside the function, the arguments (the parameters) behave as local variables. 

 

Function Invocation 

The code inside the function will execute when "something" invokes (calls) the function: 

 

 When an event occurs (when a user clicks a button) 

 When it is invoked (called) from JavaScript code 

 Automatically (self invoked) 

 

Function Return 

When JavaScript reaches a return statement, the function will stop executing. 

If the function was invoked from a statement, JavaScript will "return" to execute the 

code after the invoking statement. 

Functions often compute a return value. The return value is "returned" back to the 

"caller": 

 

 
 

Why Functions? 

 

You can reuse code: Define the code once, and use it many times. 

 

You can use the same code many times with different arguments, to produce different results. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  29  

 

The () Operator Invokes the Function 

 

Using the example above, toCelsius refers to the function object, and toCelsius() refers to the 

function result. 

 

Accessing a function without () will return the function object instead of the function result. 

 

Functions Used as Variable Values 

 

Functions can be used the same way as you use variables, in all types of formulas, 

assignments, and calculations. 

 

Local Variables 

 

Variables declared within a JavaScript function, become LOCAL to the function. 

Local variables can only be accessed from within the function. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  30  

 
 

4. JavaScript Events 

 

HTML events are "things" that happen to HTML elements. 

When JavaScript is used in HTML pages, JavaScript can "react" on these events. 

 

HTML Events 

An HTML event can be something the browser does, or something a user does. EXAMPLE: 

 

 An HTML web page has finished loading 

 An HTML input field was changed 

 An HTML button was clicked 

Often, when events happen, you may want to do something. 

JavaScript lets you execute code when events are detected. 

HTML allows event handler attributes, with JavaScript code, to be added to HTML 

elements. 

 

With single quotes: 

<element event='some JavaScript'> 

With double quotes: 

<element event="some JavaScript"> 

In the following example, an onclick attribute (with code), is added to a 

<button> element: 

In the example above, the JavaScript code changes the content of the element with id="demo". 

In the next example, the code changes the content of its own element 

(using this.innerHTML): 

Common HTML Events 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  31  

 

Here is a list of some common HTML events: 

 

Event Description 

Onchange An HTML element has been changed 

Onclick The user clicks an HTML element 

onmouseover The user moves the mouse over an HTML element 

onmouseout The user moves the mouse away from an HTML element 

onkeydown The user pushes a keyboard key 

onload The browser has finished loading the page 

JavaScript Event Handlers 

Event handlers can be used to handle and verify user input, user actions, and browser actions: 

 

 Things that should be done every time a page loads 

 Things that should be done when the page is closed 

 Action that should be performed when a user clicks a button 

 Content that should be verified when a user inputs data 

 And more ... 

 

Many different methods can be used to let JavaScript work with events: 

 

 HTML event attributes can execute JavaScript code directly 

 HTML event attributes can call JavaScript functions 

 

AJAX: GET and POST 

The jQuery get() and post() methods are used to request data from the server with an HTTP 

GET or POST request. 

 

HTTP Request: GET vs. POST 

Two commonly used methods for a request-response between a client and server are: GET 

and POST. 

 

 GET - Requests data from a specified resource 

 POST - Submits data to be processed to a specified resource 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  32  

GET is basically used for just getting (retrieving) some data from the server. Note: The GET 

method may return cached data. 

 

POST can also be used to get some data from the server. However, the POST method NEVER 

caches data, and is often used to send data along with the request. 

 

jQuery $.get() Method 

 

The $.get() method requests data from the server with an HTTP GET request. 

 

Syntax: 

 

$.get(URL,callback); 

 

The required URL parameter specifies the URL you wish to request. 

 

The optional callback parameter is the name of a function to be executed if the request succeeds. 

 

The following example uses the $.get() method to retrieve data from a file on the server: 

 

 

The first parameter of $.get() is the URL we wish to request ("demo_test.asp"). 

 

The second parameter is a callback function. The first callback parameter holds the content of 

the page requested, and the second callback parameter holds the status of the request. 

 

jQuery $.post() Method 

 

The $.post() method requests data from the server using an HTTP POST request. 

 

Syntax: 

 

$.post(URL,data,callback); 

 

 The required URL parameter specifies the URL you wish to request. 

 The optional data parameter specifies some data to send along with the request. 

 The optional callback parameter is the name of a function to be executed if the 

request succeeds. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  33  

 The following example uses the $.post() method to send some data along with the 

request: 

 

 

 The first parameter of $.post() is the URL we wish to request ("demo_test_post.asp"). 

 

 Then we pass in some data to send along with the request (name and city). 

 

 The ASP script in "demo_test_post.asp" reads the parameters, processes them, and 

returns a result. 

 

 The third parameter is a callback function. The first callback parameter holds the 

content of the page requested, and the second callback parameter holds the status of 

the request. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  34  

UNIT II 

SERVER SIDE PROGRAMMING WITH NODE JS 

Introduction to Web Servers 

Definition: A web server is a computer that runs websites. It's a computer program that 
distributes web pages as they are requisitioned. The basic objective of the web server is 
to store, process and deliver web pages to the users. 

This intercommunication is done using Hypertext Transfer Protocol (HTTP). 
These web pages are mostly static content that includes HTML documents, images, style 
sheets, test etc. Apart from HTTP, a web server also supports SMTP (Simple Mail 
transfer Protocol) and FTP (File Transfer Protocol) protocol for emailing and for file 
transfer and storage. 

A web server is a software program that serves web pages to web users 
(browsers). 

A web server delivers requested web pages to users who enter the URL in a web 
browser. Every computer on the internet that contains a web site must have a web 
server program. 

 

Characteristics of web servers 
A web server computer is just like any other computer. The basic characteristics of web 
servers are: 
 It is always connected to the internet so that clients can access the web pages 

hosted by the web server. 
 It always has an application called "web server" running. 

Web Server Working 
Web server respond to the client request in either of the following two ways: 

 Sending the file to the client associated with the requested URL. 
 Generating response by invoking a script and communicating with database 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  35  

 

 

 When client sends request for a web page, the web server search for the requested 
page if requested page is found then it will send it to client with an HTTP response. 

 If the requested web page is not found, web server will the send an HTTP 
response:Error 404 Not found. 

 If client has requested for some other resources then the web server will contact 
to the application server and data store to construct the HTTP response. 

Architecture 

Concurrent Approach 

Concurrent approach allows the web server to handle multiple client requests at the 
same time. It can be achieved by following methods: 

1. Multi-process 
2. Multi-threaded 
3. Hybrid method. 

1. Multi-processing 

In this a single process (parent process) initiates several single-threaded child 
processes and distribute incoming requests to these child processes. Each of the child 
processes are responsible for handling single request. 

It is the responsibility of parent process to monitor the load and decide if 
processes should be killed or forked. 

2. Multi-threaded 

Unlike Multi-process, it creates multiple single-threaded process. 

3. Hybrid 

It is combination of above two approaches. In this approach multiple process are 
created and each process initiates multiple threads. Each of the threads handles one 
connection. Using multiple threads in single process results in less load on system 
resources. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  36  

'--app=http://localhost:' + port 

There are many web servers available in the market both free and paid. Some of 
them are described below: 

 Apache HTTP server: The Apache HTTP web server was developed by the Apache 
Software Foundation. It is an open-source software which means that we can access 
and make changes to its code and mold it according to our preference.

The Apache Web Server can be installed and operated easily on almost all  
operating systems like Linux, MacOS, Windows, etc. 

 

 
 

 Microsoft Internet Information Services (IIS): IIS (Internet Information 
Services) is a high performing web server developed by Microsoft. It is strongly 
united with the operating system and is therefore relatively easier to administer.

It has all the features of the Apache HTTP Server except that it is not an 
open-source software and therefore its code is inaccessible which means that we 
cannot make changes in the code to suit our needs. It can be easily installed in any 
Windows device. 

 
Javascript in the Desktop with NodeJS 

Node.js is known for being a server-side platform, interest in using it for building 
desktop applications is growing rapidly. Bindings exist for GUI toolkits such as GTK+, QT 
and Cocoa. However, one of the advantages of using Node.js for web development is the 
ability to use the same language on both the server and client. 

 
It's possible to use Node.js together with a web browser shell to develop cross- 

platform desktop applications–and games using WebGL–using HTML, CSS and 
JavaScript. 

 
The Contenders 

Chrome Applications 

The most basic way of running a "desktop" application is to run a local server and use 
the web browser as the user interface. Chrome's command line exposes an extra flag to 
run itself in "application" mode, hiding everything but the web view. 

 
One example of this is Morkdown, a cross-platform application to edit GitHub Flavoured 
Markdown. It starts a Node.js HTTP server locally on a random port, then launches 
Chrome using as a command-line flag. 

 

https://github.com/rvagg/morkdown


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  37  

 

There are a few downsides to this approach. To be able to use the application, 
the user will need to have both Node.js and Chrome (or Chromium) installed on their 
computer. Ideally, desktop applications should be self-contained, allowing the user to 
launch it and use it straight away without runtime pre-requisites. 

Chrome applications don't feel entirely like desktop applications. Outside of the 
web view, operating-system-specific features and UI items can't be modified, and it isn't 
possible to brand the application (it will appear as another Chrome window). 

Since the application is running in Chrome, users still have access to regular web 
browser features, and can open new windows and tabs and even the Chrome Developer 
Tools. 

The need to have a server running to access the Node.js APIs means having two 
parts to the application: a HTTP API or WebSocket interface for the browser to talk to, 
and a web frontend to communicate with the server. This results in an undesirable layer 
whereby you have to write the server and the client separately, without the ability to 
run Node.js within the frontend. 

 
node-webkit 
node-webkit is a web browser shell built on Chromium, allowing for the Node.js API to 
be used alongside the DOM API within the same context. As a basic example, you could 
replace the contents of with a file read via in a tag like so: script fs.readFile body 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  38  

script 

require 

window 

 

https://github.com/rvagg/morkdown 
 

It's also possible to use modules from npm and require them the exact same way. 
Native addons are also supported to extend both node and node-webkit, however they 
must be built using nw-gyp. node-webkit comes with a library to manipulate external 
parts of the shell, including the menu bar, tray icons and clipboard. 

node-webkit applications are configured via a key in package.json, 
outlining various properties of the application such as the entry document, width and 
height amongst others. 

node-webkit has a major advantage to Chrome applications, as both DOM 
manipulation and Node.js API calls can be used in the same context without needing to 
run a separate server. 

The only caveat to this is that modules pulled into the application 
via only have access to the Node.js context, not the web view's. This means that 
Node.js modules must exclusively use functions and classes provided by Node.js or 
modules from npm, as the DOM is off limits. To get around this, you can include 
JavaScript using tags. 

 
 

atom-shell 
atom-shell–similarl to node-webkit–is a shell built using components from 

Chromium. Needing the entire Chromium source, atom-shell only builds 
libchromiumcontent. 

Building atom-shell is much faster than building node-webkit as a result. atom- 
shell uses an alternative method of integrating libuv with Chromium's event loop, as 
well as using an upcoming feature in Node.js 0.12, multi-context. 

 
There haven't been many large applications built with atom-shell apart from Atom 
itself, however atom-shell is fully documented. 

 

 

The distinction between the browser shell and its runtime allow for cleaner 
organisation of code that deals with application state management and the logic needed 
to power the UI, compared with node-webkit. 

 

http://strongloop.com/strongblog/whats-new-node-js-v0-12-multiple-context-execution/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  39  

Unlike node-webkit, application configuration is done via an entry script rather 
than an object in package.json. As a result, atom-shell is more flexible than node-webkit 
for application state customisation at startup. 

Unlike node-webkit, atom-shell uses APIs exposed by libchromiumcontent 
instead of modifying Chromium directly, allowing easier upgrading of the renderer. This 
results in new Blink features being brought into atom-shell at a quicker pace than node- 
webkit. 
Pros 
 Developing desktop applications using HTML, CSS and JavaScript, as a web 

developer, allows you to quickly push out functional, cross-platform applications 
using the frontend frameworks and npm modules you already know

 Access to the latest web technologies available in Blink
 Easy to package the application for end users
 If you already have an remote web application, you can already reuse most of that 

codebase to build a desktop application

Cons 
 When packaging applications using either shell, the resulting executable contains an 

almost complete version of Chromium and Node.js as well as your HTML, CSS and 
JavaScript.

  Depending on the target system, the entire packaged application can become almost 
100Mb, whilst the size of an application using native UI libraries can start at a mere 
few kilobytes in size.

 Compared to native applications, desktop web applications typically require a much 
larger amount of RAM and CPU power to run and render

NPM 
 

NPM is the world's largest Software Registry. 
 

The registry contains over 800,000 code packages. 

Open-source developers use npm to share software. 

Many organizations also use npm to manage private development. 
 

npm is two things: first and foremost, it is an online repository for the publishing 
of open-source Node.js projects; second, it is a command-line utility for interacting with 
said repository that aids in package installation, version management, and dependency 
management. A plethora of Node.js libraries and applications are published on npm, and 
many more are added every day. These applications can be searched for 
on https://www.npmjs.com/. Once you have a package you want to install, it can be 
installed with a single command-line command. 

 
npm is free to use. 

 
You can download all npm public software packages without any registration or logon. 

 
 
 

https://www.npmjs.com/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  40  

Windows Example 

C:\>npm install <package> 

Mac OS Example 

>npm install <package> 

Example 

{ 
"name" : "foo", 
"version" : "1.2.3", 
"description" : "A package for fooing things", 
"main" : "foo.js", 
"keywords" : ["foo", "fool", "foolish"], 
"author" : "John Doe", 
"licence" : "ISC" 
} 

Command Line Client 
 

npm includes a CLI (Command Line Client) that can be used to download and install 
software: 

 

 

Installing npm 
 

npm is installed with Node.js 
 

This means that you have to install Node.js to get npm installed on your computer. 

Download Node.js from the official Node.js web site: https://nodejs.org 

Software Package Manager 
 

The name npm (Node Package Manager) stems from when npm first was created 
as a package manager for Node.js. 

All npm packages are defined in files called package.json. The content of 
package.json must be written in JSON. At least two fields must be present in the 
definition file: name and version. 

 

Managing Dependencies 
 

npm can manage dependencies.npm can (in one command line) install all the 
dependencies of a project.Dependencies are also defined in package.json. 
Sharing Your Software 

 
If you want to share your own software in the npm registry, you can sign in at: 

https://www.npmjs.com 

https://nodejs.org/
https://www.npmjs.com/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  41  

C:\>npm 

C:\>npm login 
Username: <your username> 
Password: <your password> 

C:\Users\myuser>cd myproject 
C:\Users\myuser\myproject>npm publish 

var fs = require('fs'), 
http = require('http'); 

http.createServer(function (req, res) { 
fs.readFile(__dirname + req.url, function (err,data) { 
if (err) { 

res.writeHead(404); 
res.end(JSON.stringify(err)); 
return; 

} 
res.writeHead(200); 
res.end(data); 

}); 
}).listen(8080); 

Publishing a Package 
 

You can publish any directory from your computer as long as the directory has 
a package.json file. 

 
Check if npm is installed: 

 

Check if you are logged in: 
 

 C:\>npm whoami  
 

If not, log in: 
 

Navigate to your project and publish your project: 
 

 

Serving files with the http module 
 

A basic necessity for most http servers is to be able to serve static files. It is not 
that hard to do in Node.js. First you read the file, then you serve the file. Here is an 
example of a script that will serve the files in the current directory: 

 

 

This example takes the path requested and it serves that path, relative to the 
local directory. This works fine as a quick solution; however, there are a few problems 
with this approach. 

 
 

https://nodejs.org/en/knowledge/HTTP/servers/how-to-create-a-HTTPS-server/
https://nodejs.org/en/knowledge/file-system/how-to-read-files-in-nodejs/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  42  

var static = require('node-static'); 
var http = require('http'); 
var file = new(static.Server)(__dirname); 
http.createServer(function (req, res) { 
file.serve(req, res); 
}).listen(8080); 

First, this code does not correctly handle mime types. Additionally, a proper 
static file server should really be taking advantage of client side caching, and should 
send a "Not Modified" response if nothing has changed. Furthermore, there are security 
bugs that can enable a malicious user to break out of the current directory. (for 
example, GET /../../../). 

 

 

 
Introduction to the Express framework 

What is Express? 
Express is a small framework that sits on top of Node.js’s web server 

functionality to simplify its APIs and add helpful new features.It makes it easier to 
organize your application’s functionality with middle ware and routing; it adds helpful 
utilities to Node.js’s HTTP objects;it facilitates the rendering of dynamic HTTP objects. 

Express is a part of MEAN stack, a full stack JavaScript solution used in building 
fast, robust, and maintainable production web applications. 
MongoDB(Database) 
ExpressJS(Web Framework) 

AngularJS(Front-end Framework) 
NodeJS(Application   Server) 
Node. js - Express Framework 

1. Allows to set up middlewares to respond to HTTP Requests. 

2. Defines a routing table which is used to perform different actions based on HTTP 
Method and URL. 

3. Allows to dynamically render HTML Pages based on passing arguments to templates. 

Express is a minimal and flexible Node.js web application framework that 
provides a robust set of features to develop web and mobile applications. It facilitates 
the rapid development of Node based Web applications. 

 
Installing Express 

 
Firstly, install the Express framework globally using NPM so that it can be used 

to create a web application using node terminal. 

$ npm install express --save 

The above command saves the installation locally in the node_modules directory 
and creates a directory express inside node_modules. You should install the following 
important modules along with express − 

 body-parser − This is a node.js middleware for handling JSON, Raw, Text and URL 
encoded form data. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  43  

 cookie-parser − Parse Cookie header and populate req.cookies with an object 
keyed by the cookie names. 

 multer − This is a node.js middleware for handling multipart/form-data. 
$ npm install body-parser --save 
$ npm install cookie-parser --save 
$ npm install multer –save 

 
Installing Express on Windows (WINDOWS 10) 

Assuming that you have installed node.js on your system, the following steps 
should be followed to install express on your Windows: 

STEP-1: Creating a directory for our project and make that our working directory. 
$ mkdir gfg 

$ cd gfg 

STEP-2: Using npm init command to create a package.json file for our project. 
$ npm init 

This command describes all the dependencies of our project. The file will be 
updated when adding further dependencies during the development process, for 
example when you set up your build system. 

 

 

Keep pressing enter and enter “yes/no” accordingly at the terminus line. 
 

STEP-3: Installing Express 
Now in your gfg(name of your folder) folder type the following command line: 
$ npm install express --save 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  44  

NOTE- Here “WARN” indicates the fields that must be entered in STEP-2. 
STEP-4: Verify that Express.js was installed on your Windows: 
To check that express.js was installed on your system or not, you can run the following 
command line on cmd: 

C:\Users\Admin\gfg\node_modules>npm --version express 

The version of express.js will be displayed on successful installation. 

Hello world Example 
Following is a very basic Express app which starts a server and listens on port 

8081 for connection. This app responds with Hello World! for requests to the 
homepage. For every other path, it will respond with a 404 Not Found. 

var express = require('express'); 
var app = express(); 
app.get('/', function (req, res) { 

res.send('Hello World'); 
}) 
var server = app.listen(8081, function () { 

var host = server.address().address 
var port = server.address().port 
console.log("Example app listening at http://%s:%s", host, port) 

}) 

Save the above code in a file named server.js and run it with the following command. 

$ node server.js 

You will see the following output − 

Example app listening at http://0.0.0.0:8081 

Open http://127.0.0.1:8081/ in any browser to see the following result. 
 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  45  

Server-side rendering with Templating Engines 

Template Engines for Node.js 
Template engine helps us to create an HTML template with minimal code. Also, 

it can inject data into HTML template at client side and produce the final HTML. 

The following figure illustrates how template engine works in Node.js. 
 

Template Engine 
 

As per the above figure, client-side browser loads HTML template, JSON/XML 
data and template engine library from the server. Template engine produces the final 
HTML using template and data in client's browser. However, some HTML templates 
process data and generate final HTML page at server side also. 

 
There are many template engines available for Node.js. Each template engine 

uses a different language to define HTML template and inject data into it. 
 

The following is a list of important template engines for Node.js 
 

 Jade 
 Vash 
 EJS 
 Mustache 
 Dust.js 
 Nunjucks 
 Handlebars 
 atpl 
 haml 

 
Advantages of Template engine in Node.js 

 
1. Improves developer's productivity. 
2. Improves readability and maintainability. 
3. Faster performance. 
4. Maximizes client side processing. 
5. Single template for multiple pages. 
6. Templates can be accessed from CDN (Content Delivery Network). 

 

https://github.com/jadejs/jade
https://github.com/kirbysayshi/vash
https://github.com/tj/ejs
https://github.com/janl/mustache.js
https://github.com/linkedin/dustjs
https://github.com/mozilla/nunjucks
https://github.com/wycats/handlebars.js
https://github.com/soywiz/atpl.js
https://github.com/tj/haml.js


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  46  

Server-side rendering (SSR) is a popular technique for rendering a normally 
client-side only single page app (SPA) on the server and then sending a fully rendered 
page to the client. 

The client’s JavaScript bundle can then take over and the SPA can operate as 
normal. 

 
SSR technique is helpful in situations like the client has a slow internet 

connection and then rendering of the whole page on client-side takes too much time in 
certain situations Server Side Rendering might come as handy. One of the widely used 
modules used to do Server Side Rendering in Node.js is EJS Module. EJS stands 
for Embedded JavaScript template. 
Feature of EJS Module: 

1. Use plain javascript. 
2. Fast Development time. 
3. Simple syntax. 
4. Faster execution. 
5. Easy Debugging. 
6. Active Development. 
Installation of request module: 
1. First of all install express js and ejs using npm install. You also can visit this link to 
know more about EJS. 

npm install ejs 

2. The require() method is used to load and cache JavaScript modules. 

const ejs = require('ejs'); 

3. Next step is to create a folder and add a file name app.js and a file named index.ejs. 
Be careful, about syntax of index file, here it is ejs which denotes it is an ejs file. 

node app.js 

Render file using EJS renderFIle() method 
To perform Server Side Rendering we use renderFile() method of the ejs 

module, which helps us to render the ejs file on the server-side. 
Syntax: 
ejs.renderFile( fileName, { }, { }, callback); 

Here, callback function takes two arguments first is an error (if there is an error 
occurs then the renderFile returns an error) and on successful rendering it returns a 
template. 

 

 

 

 

 

 

 

 

https://www.npmjs.com/package/ejs


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  47  

Filename: app.js 
JAVASCRIPT 
// Requiring modules 
const express = require('express'); 
const app = express(); 
const ejs = require('ejs'); 
var fs = require('fs'); 
const port = 8000; 

// Render index.ejs file 
app.get('/', function (req, res) { 

// Render page using renderFile method 
ejs.renderFile('index.ejs', {}, 

{}, function (err, template) { 
if (err) { 

throw err; 
} else { 

res.end(template);}}); 
}); 

// Server setup 
app.listen(port, function (error) { 

if (error) 
throw error; 
else 
 console.log(“server id running”); 
 
}); 
 

Filename: index.ejs HTML 
<!DOCTYPE html> 
<html lang="en"> 
<head> 

<meta charset="UTF-8"> 

<meta name="viewport" content= 
"width=device-width, initial-scale=1.0"> 

</head> 
<body> 

<h1>Hello World</h1> 
</body></html> 

 
Steps to run the program: 
1. Folder Structure: 

 
 
 
 
 
 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  48  

"async and await make promises easier to write" 

async makes a function return a Promise 

await makes a function wait for a Promise 

2. Make sure you have installed the express and request module using the following 
commands: 

npm install express 

npm install ejs 

3. Run app.js using the below command: 
node app.js 

Starting Node Server 

4. Now type localhost:8000 in your browser to display the ejs page to see the below 
result: 

 
 

Static Files - async/await 
 

Async Syntax 
 

The keyword async before a function makes the function return a promise 

EXAMPLE: 

<!DOCTYPE html> 

<html> 

<body> 

<h2>JavaScript async / await</h2> 

<p id="demo"></p> 

<script> 

function myDisplayer(some) { 

document.getElementById("demo").innerHTML = some; 

} 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  49  

async function myFunction() {return "MCA Students";} 

myFunction().then( 

function(value) {myDisplayer(value);}, 

function(error) {myDisplayer(error);} 

);</script></body></html> 
 

OUTPUT: 
 

Await Syntax 
 

The keyword await before a function makes the function wait for a promise: 

let value = await promise; 

The await keyword can only be used inside an async function. 
 

EXAMPLE: 
 

<!DOCTYPE html> 
<html> 
<body> 
<h2>JavaScript async / await</h2> 
<p>Wait 3 seconds (3000 milliseconds) for this page to change.</p> 
<h1 id="demo"></h1> 
<script> 
async function myDisplay() { 
let myPromise = new Promise(function(resolve) { 

setTimeout(function() {resolve(" I MCA Students :)");}, 3000); 

}); 
document.getElementById("demo").innerHTML = await myPromise; 

} 
myDisplay(); 
</script></body></html>  



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  50  

app.get('/', (req, res) => res.send('Hello World!')) 

OUTPUT: 

 
Fetching JSON from Express 

What does JSON () do in Express? 
json() is a built-in middleware function in Express. This method is used to parse 

the incoming requests with JSON payloads and is based upon the bodyparser. This 
method returns the middleware that only parses JSON and only looks at the requests 
where the content-type header matches the type option. 

When you listen for connections on a route in Express, the callback function will 
be invoked on every network call with a Request object instance and a Response object 
instance. 
Example: 

Here we used the Response.send() method, which accepts any string. 

You can send JSON to the client by using Response.json(), a useful method. 

It accepts an object or array, and converts it to JSON before sending it: 

 res.json({ username: 'Flavio' })  

“how to get json data from json file in node js” Code Answer’s 

read json file node js 
 

 

how to get json data from json file in node js 
 

https://flaviocopes.com/json/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  51  

UNIT III 

ADVANCED NODE JS AND DATABASE 

Introduction to NoSQL databases 

A NoSQL originally referring to non SQL or non relational is a database that 
provides a mechanism for storage and retrieval of data. This data is modeled in means 
other than the tabular relations used in relational databases. 

NoSQL databases are used in real-time web applications and big data and their 
use are increasing over time. 

A NoSQL database includes simplicity of design, simpler horizontal scaling to 
clusters of machines and finer control over availability. The data structures used by 
NoSQL databases are different from those used by default in relational databases 
which makes some operations faster in NoSQL. 

The suitability of a given NoSQL database depends on the problem it should 
solve. Data structures used by NoSQL databases are sometimes also viewed as more 
flexible than relational database tables. 

Many NoSQL stores compromise consistency in favor of availability, speed and 
partition tolerance. Barriers to the greater adoption of NoSQL stores include the use of 
low-level query languages, lack of standardized interfaces, and huge previous 
investments in existing relational databases. 

Most NoSQL stores lack true ACID(Atomicity, Consistency, Isolation, 
Durability) transactions but a few databases, such as MarkLogic, Aerospike, FairCom 
c-treeACE, Google Spanner (though technically a NewSQL database), Symas LMDB, and 
OrientDB have made them central to their designs. 

Advantages of NoSQL: 
There are many advantages of working with NoSQL databases such as MongoDB and 
Cassandra. The main advantages are high scalability and high availability. 
1. High scalability – 

 
 NoSQL database use sharding for horizontal scaling. Partitioning of data and 

placing it on multiple machines in such a way that the order of the data is 
preserved is sharding. 

 Vertical scaling means adding more resources to the existing machine whereas 
horizontal scaling means adding more machines to handle the data. 

 Vertical scaling is not that easy to implement but horizontal scaling is easy to 
implement. 

 Examples of horizontal scaling databases are MongoDB, Cassandra etc. 
2. High availability – 

 
Auto replication feature in NoSQL databases makes it highly available because 

in case of any failure data replicates itself to the previous consistent state. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  52  

Disadvantages of NoSQL: 
 

1. Narrow focus – 
NoSQL databases have very narrow focus as it is mainly designed for storage but it 
provides very little functionality. Relational databases are a better choice in the 
field of Transaction Management than NoSQL. 

2. Open-source – 
NoSQL is open-source database. There is no reliable standard for NoSQL yet. 

3. Management challenge – 
Data management in NoSQL is much more complex than a relational database. 
NoSQL, in particular, has a reputation for being challenging to install and even 
more hectic to manage on a daily basis. 

4. GUI is not available – 
GUI mode tools to access the database is not flexibly available in the market. 

5. Backup – 
Backup is a great weak point for some NoSQL databases like MongoDB. MongoDB 
has no approach for the backup of data in a consistent manner. 

6. Large document size – 
Some database systems like MongoDB and CouchDB store data in JSON format. 
Which means that documents are quite large (BigData, network bandwidth, speed), 
and having descriptive key names actually hurts, since they increase the document 
size. 

Types of NoSQL database: 
 

1. MongoDB falls in the category of NoSQL document based database. 
2. Key value store: Memcached, Redis, Coherence 
3. Tabular: Hbase, Big Table, Accumulo 
4. Document based: MongoDB, CouchDB, Cloudant 

5. RDBMS (Relational Database Management System) 

6. OLAP (Online Analytical Processing) 

7. NoSQL (recently developed database) 
 

MongoDB system overview 

MongoDB is based on a NoSQL database that is used for storing data in a key- 
value pair. Its working is based on the concept of document and collection. It is also an 
open-source, a document-oriented, cross-platform database system that is written using 
C++. 

Mongo DB can be defined as a document-oriented database system that uses the 
concept of NoSQL. It also provides high availability, high performance, along with 
automatic scaling. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  53  

What is a Database? 
In MongoDB, a database can be defined as a physical container for collections of 

data. Here, on the file system, every database has its collection of files residing. Usually, 
a MongoDB server contains numerous databases. 
What are Collections? 

Collections can be defined as a cluster of MongoDB documents that exist within a 
single database. MongoDB collections do not implement the concept of schema. 
Documents that have collection usually contain different fields. Typically, all the 
documents residing within a collection are meant for a comparable or related purpose. 
What is a Document? 

A document can be defined as a collection of key-value pairs that contain 
dynamic schema. Dynamic schema is something that documents of the equal collection 
do not require for having the same collection of fields or construction, and a common 
field is capable of holding various types of data. 

Here is a table showing the relation between the terminologies used in RDBMS and 
MongoDB: 

RDBMS MongoDB 

Database Database 

Table Collection 

Tuple or Row Document 

Column Field 

Table Join Embedded Documents 

Primary Key Primary key / Default key 

Mysqld / Oracle Mongod 

 
Popular Organizations That Use MongoDB 

 Adobe 
 McAfee 
 LinkedIn 
 FourSquare 
 MetLife 
 eBay 

Why Use MongoDB? 

 Document-Oriented data storage, i.e., data, is stored in a JSON style format, which 
increases the readability of data as well. 

 Replication and high availability of data. 
 MongoDB provides Auto-sharding. 
 Ad hoc queries are supported by MongoDB, which helps in searching by range 

queries, field, or using regex terms. 
 Indexing of values can be used to create and improve the overall search 

performance in MongoDB. MongoDB allows any field to be indexed within a 
document. 

 MongoDB has a rich collection of queries. 
 Updating of data can be done at a faster pace. 
 It can be integrated with other popular programming languages also to handle 

structured as well as unstructured data within various types of applications. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  54  

Advantages of Using MongoDB 
 It is easy to set up, i.e., install the MongoDB. 
 Since MongoDB is a schema-less database, so there is no hassle of schema 

migration. 
 Since it is a document-oriented language, document queries are used, which 

plays a vital role in supporting dynamic queries. 
 Easily scalable. 
 It is easy to have a performance tuning as compared to other relational 

databases. 
 It helps in providing fast accessing of data because of its nature of implementing 

the internal memory to store the data. 
 MongoDB is also used as a file system that can help in easy management of load 

balancing. 
 MongoDB also supports the searching using the concept of regex (regular 

expression) as well as fields. 
 Users can run MongoDB as a windows service also. 
 It does not require any VM to run on different platforms. 
 It also supports sharding of data. 

Basic querying with MongoDB shell 

A query in a database system is a command that is used for extracting data from 
a database and display it in a readable form. Every query associated with the database 
system is associated with any particular language (such as SQL for structured data, 
MongoDB for unstructured data). 

 
Methods for Performing Queries in MongoDB 

 

1. The find() method: This method is used for querying data from a MongoDB 
collection. 
The basic syntax for using this method is: 
Syntax: 
db.collection_name.find() 
Example: 
db.writers.find() 

2. The pretty() method: This method is used for giving a proper format to the 
output extracted by the query. 
The basic syntax for using this method is: 
Syntax: 
db.collection_name.find().pretty() 
Example: 
db.writers.find().pretty() 

Here is how they can be implemented: 
 

Filtering Criteria in MongoDB Queries 
 

It is also possible to filter your results by giving or adding some specific criteria 
in which you are interested to. For example, if you wish to see the Gaurav Mandes data, 
you can add a specific attribute to the find() to fetch the data of Gaurav Mandes from 
that particular database. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  55  

 
Example: 
db.writers.find( { author: "Gaurav Mandes" } ) 

 

 
MongoDB Query Which Specify "AND" Condition 

MongoDB also allows you in specifying data values of the documents holding two 
or more specified values to be fetched from the query. Here are two examples showing 
the use of specifying queries using AND. 

Example: 
db.writers.find( { tools: "Visual Studio", born: 1948} ) 

 
MongoDB Query Which Specify "OR" Condition 

MongoDB allows users to specify either one or multiple values to be true. 
According to this, till one of the conditions is true, the document data will get returned. 
Here is an example showing the use of OR condition: 

 
Example: 
db.musicians.find({$or: [ { instrument: "Drums" }, { born: 1945 } ] } ) 

 

 
$in operator 
The $in operator is another special operator used in queries for providing a list of 
values in the query. When your document holds any of those provided values, it gets 
returned. Here is an example: 
Example: 
db.musicians.find( { "instrument": { $in: [ "Keyboards", "Bass" ] } } ) 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  56  

 

Using $explain 
The $explain operator provides information on the query, indexes used in a 

query and other statistics. It is very useful when analyzing how well your indexes are 
optimized. 

 
Using $hint 

The $hint operator forces the query optimizer to use the specified index to run a 
query. This is particularly useful when you want to test performance of a query with 
different indexes.   For   example,   the   following   query   specifies   the   index   on 
fields gender and user_name to be used for this query − 

 
Request body parsing in Express 

 Node.js body parsing middleware.
 Parse incoming request bodies in a middleware before your handlers, available 

under the req.body property.
 Note As req.body’s shape is based on user-controlled input, all properties and 

values in this object are untrusted and should be validated before trusting.
 For example, req.body.foo.toString() may fail in multiple ways, for example 

the foo property may not be there or may not be a string, and toString may not 
be a function and instead a string or other user input.

This does not handle multipart bodies, due to their complex and typically large nature. 
For multipart bodies, you may be interested in the following modules: 

 busboy and connect-busboy 
 multiparty and connect-multiparty 
 formidable 
 multer 

This module provides the following parsers: 
 JSON body parser 
 Raw body parser 
 Text body parser 
 URL-encoded form body parser 

Other body parsers you might be interested in: 
 body 
 co-body 

 
 
 
 

>db.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1}) 
{ "user_name" : "tombenzamin" } 

>db.users.find({gender:"M"},{user_name:1,_id:0}).explain() 

https://www.npmjs.org/package/busboy#readme
https://www.npmjs.org/package/connect-busboy#readme
https://www.npmjs.org/package/multiparty#readme
https://www.npmjs.org/package/connect-multiparty#readme
https://www.npmjs.org/package/formidable#readme
https://www.npmjs.org/package/multer#readme
https://expressjs.com/en/resources/middleware/body-parser.html#bodyparserjsonoptions
https://expressjs.com/en/resources/middleware/body-parser.html#bodyparserrawoptions
https://expressjs.com/en/resources/middleware/body-parser.html#bodyparsertextoptions
https://expressjs.com/en/resources/middleware/body-parser.html#bodyparserurlencodedoptions
https://www.npmjs.org/package/body#readme
https://www.npmjs.org/package/co-body#readme


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  57  

Installation 
 $ npm install body-parser                                                                                                                  
API 
 var bodyParser = require('body-parser') 

 The bodyParser object exposes various factories to create middlewares.
 All middlewares will populate the req.body property with the parsed body when 

the Content-Type request header matches the type option, or an empty object 
({}) if there was no body to parse, the Content-Type was not matched, or an error 
occurred.

 The various errors returned by this module are described in the errors section.
bodyParser.json([options]) 

 Returns middleware that only parses json and only looks at requests where 
the Content-Type header matches the type option. 

 This parser accepts any Unicode encoding of the body and supports automatic 
inflation of gzip and deflate encodings. 

 A new body object containing the parsed data is populated on the request object 
after the middleware (i.e. req.body). 

Options 
The json function takes an optional options object that may contain any of the 

following keys: 
inflate 

When set to true, then deflated (compressed) bodies will be inflated; when false, 
deflated bodies are rejected. Defaults to true. 

limit 
Controls the maximum request body size. If this is a number, then the value 

specifies the number of bytes; if it is a string, the value is passed to the bytes library for 
parsing. Defaults to '100kb'. 
reviver 

The reviver option is passed directly to JSON.parse as the second argument.  
strict 

When set to true, will only accept arrays and objects; when false will accept 
anything JSON.parse accepts. Defaults to true. 
type 

The type option is used to determine what media type the middleware will parse. 
This option can be a string, array of strings, or a function. If not a function, type option is 
passed directly to the type-is library and this can be an extension name (like json), a 
mime type (like application/json), or a mime type with a wildcard (like */* or */json). 
If a function, the type option is called as fn(req) and the request is parsed if it returns a 
truthy value. Defaults to application/json. 
verify 

The verify option, if supplied, is called as verify(req, res, buf, encoding), 
where buf is a Buffer of the raw request body and encoding is the encoding of the 
request. The parsing can be aborted by throwing an error. 
bodyParser.raw([options]) 

 Returns middleware that parses all bodies as a Buffer and only looks at requests 
where the Content-Type header matches the type option. 

 This parser supports automatic inflation of gzip and deflate encodings. 
 A new body object containing the parsed data is populated on the request object 

after the middleware (i.e. req.body). This will be a Buffer object of the body. 

https://expressjs.com/en/resources/middleware/body-parser.html#errors
https://www.npmjs.com/package/bytes
https://www.npmjs.org/package/type-is#readme


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  58  

Options 
The raw function takes an optional options object that may contain any of the 

following keys: 
inflate 

When set to true, then deflated (compressed) bodies will be inflated; when false, 
deflated bodies are rejected. Defaults to true. 
limit 

Controls the maximum request body size. If this is a number, then the value 
specifies the number of bytes; if it is a string, the value is passed to the bytes library for 
parsing. Defaults to '100kb'. 
type 

The type option is used to determine what media type the middleware will parse. 
This option can be a string, array of strings, or a function. If not a function, type option is 
passed directly to the type-is library and this can be an extension name (like bin), a 
mime type (like application/octet-stream), or a mime type with a wildcard 
(like */* or application/*). If a function, the type option is called as fn(req) and the 
request is parsed if it returns a truthy value. Defaults to application/octet-stream. 

verify 
The verify option, if supplied, is called as verify(req, res, buf, encoding), 

where buf is a Buffer of the raw request body and encoding is the encoding of the 
request. The parsing can be aborted by throwing an error. 

 
bodyParser.text([options]) 

 Returns middleware that parses all bodies as a string and only looks at requests 
where the Content-Type header matches the type option. 

 This parser supports automatic inflation of gzip and deflate encodings. 
 A new body string containing the parsed data is populated on the request object 

after the middleware (i.e. req.body). This will be a string of the body. 
Options 

The text function takes an optional options object that may contain any of the 
following keys: 
defaultCharset 

Specify the default character set for the text content if the charset is not specified 
in the Content-Type header of the request. Defaults to utf-8. 
inflate 

When set to true, then deflated (compressed) bodies will be inflated; when false, 
deflated bodies are rejected. Defaults to true. 
limit 

Controls the maximum request body size. If this is a number, then the value 
specifies the number of bytes; if it is a string, the value is passed to the bytes library for 
parsing. Defaults to '100kb'. 
type 

The type option is used to determine what media type the middleware will parse. 
This option can be a string, array of strings, or a function. If not a function, type option is 
passed directly to the type-is library and this can be an extension name (like txt), a 
mime type (like text/plain), or a mime type with a wildcard (like */* or text/*). If a 
function, the type option is called as fn(req) and the request is parsed if it returns a 
truthy value. Defaults to text/plain. 

 

https://www.npmjs.com/package/bytes
https://www.npmjs.org/package/type-is#readme
https://www.npmjs.com/package/bytes
https://www.npmjs.org/package/type-is#readme


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  59  

verify 
The verify option, if supplied, is called as verify(req, res, buf, encoding), 

where buf is a Buffer of the raw request body and encoding is the encoding of the 
request. The parsing can be aborted by throwing an error. 

 
bodyParser.urlencoded([options]) 

 Returns middleware that only parses urlencoded bodies and only looks at 
requests where the Content-Type header matches the type option. 

 This parser accepts only UTF-8 encoding of the body and supports automatic 
inflation of gzip and deflate encodings. 

 A new body object containing the parsed data is populated on the request object 
after the middleware (i.e. req.body). This object will contain key-value pairs, 
where the value can be a string or array (when extended is false), or any type 
(when extended is true). 

Options 
The urlencoded function takes an optional options object that may contain any of 

the following keys: 

extended 
The extended option allows to choose between parsing the URL-encoded data 

with the querystring library (when false) or the qs library (when true). The “extended” 
syntax allows for rich objects and arrays to be encoded into the URL-encoded format, 
allowing for a JSON-like experience with URL-encoded. 
Defaults to true, but using the default has been deprecated. 
inflate 

When set to true, then deflated (compressed) bodies will be inflated; when false, 
deflated bodies are rejected. Defaults to true. 
limit 

Controls the maximum request body size. If this is a number, then the value 
specifies the number of bytes; if it is a string, the value is passed to the bytes library for 
parsing. Defaults to '100kb'. 
parameterLimit 

The parameterLimit option controls the maximum number of parameters that 
are allowed in the URL-encoded data. If a request contains more parameters than this 
value, a 413 will be returned to the client. Defaults to 1000. 
type 

The type option is used to determine what media type the middleware will parse. 
This option can be a string, array of strings, or a function. If not a function, type option is 
passed directly to the type-is library and this can be an extension name 
(like urlencoded), a mime type (like application/x-www-form-urlencoded), or a mime 
type with a wildcard (like */x-www-form-urlencoded). If a function, the type option is 
called as fn(req) and the request is parsed if it returns a truthy value. Defaults 
to application/x-www-form-urlencoded. 
verify 

The verify option, if supplied, is called as verify(req, res, buf, encoding), 
where buf is a Buffer of the raw request body and encoding is the encoding of the 
request. The parsing can be aborted by throwing an error. 
 
 
 

https://www.npmjs.com/package/bytes
https://www.npmjs.org/package/type-is#readme


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  60  

Examples 
Express/Connect top-level generic 
This example demonstrates adding a generic JSON and URL-encoded parser as a top- 
level middleware, which will parse the bodies of all incoming requests. This is the 
simplest setup. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Express route-specific 
This example demonstrates adding body parsers specifically to the routes that need 
them. In general, this is the most recommended way to use body-parser with Express. 

 
 

 
Change accepted type for parsers 
All the parsers accept a type option which allows you to change the Content-Type that 
the middleware will parse. 

 
 

 

var express = require('express') 
var bodyParser = require('body-parser') 
var app = express() 
// parse various different custom JSON types as JSON 
app.use(bodyParser.json({ type: 'application/*+json' })) 
// parse some custom thing into a Buffer 
app.use(bodyParser.raw({ type: 'application/vnd.custom-type' })) 
// parse an HTML body into a string 
app.use(bodyParser.text({ type: 'text/html' })) 

res.send('welcome, ' + req.body.username) 
}) 
// POST /api/users gets JSON bodies 
app.post('/api/users', jsonParser, function (req, res) { 
// create user in req.body 

}) 

var express = require('express') 
var bodyParser = require('body-parser') 
var app = express() 
// create application/json parser 
var jsonParser = bodyParser.json() 
// create application/x-www-form-urlencoded parser 
var urlencodedParser = bodyParser.urlencoded({ extended: false }) 
// POST /login gets urlencoded bodies 
app.post('/login', urlencodedParser, function (req, res) { 

var express = require('express') 
var bodyParser = require('body-parser') 
var app = express() 
// parse application/x-www-form-urlencoded 
app.use(bodyParser.urlencoded({ extended: false })) 
// parse application/json 
app.use(bodyParser.json()) 
app.use(function (req, res) { 
res.setHeader('Content-Type', 'text/plain') 
res.write('you posted:\n') 
res.end(JSON.stringify(req.body, null, 2)) 
}) 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  61  

Install Node.js 

First, make sure you have a supported version of Node.js installed. The current 
version of MongoDB Node.js Driver requires Node 4.x or greater. 

Install the MongoDB Node.js Driver 

The MongoDB Node.js Driver allows you to easily interact with MongoDB 
databases from within Node.js applications. You'll need the driver in order to connect to 
your database and execute the queries described in this Quick Start series. 

If you don't have the MongoDB Node.js Driver installed, you can install it with the 
following command. 

At the time of writing, this installed version 3.6.4 of the driver. Running npm 
list mongodb will display the currently installed driver version number. 

Create a free MongoDB Atlas cluster and load the sample data 

Next, you'll need a MongoDB database. The easiest way to get started with MongoDB is 
to use Atlas, MongoDB's fully-managed database-as-a-service. 

Head over to Atlas and create a new cluster in the free tier. At a high level, a 
cluster is a set of nodes where copies of your database will be stored. Once your tier is 
created, load the sample data. 

NodeJS MongoDB connection 
 

 

 npm install mongodb  
 
 

 

Get your cluster’s connection info 

The final step is to prep your cluster for connection. 

In Atlas, navigate to your cluster and click CONNECT. The Cluster Connection 
Wizard will appear. 

The Wizard will prompt you to add your current IP address to the IP Access List 
and create a MongoDB user if you haven't already done so. Be sure to note the username 
and password you use for the new MongoDB user as you'll need them in a later step. 

Next, the Wizard will prompt you to choose a connection method. Select Connect 
Your Application. When the Wizard prompts you to select your driver version, 
select Node.js and 3.6 or later. Copy the provided connection string. 

Connect to your database from a Node.js application 

Now that everything is set up, it’s time to code! Let’s write a Node.js script that 
connects to your database and lists the databases in your cluster. 

Import MongoClient 

The MongoDB module exports MongoClient, and that’s what we’ll use to connect 
to a MongoDB database. We can use an instance of MongoClient to connect to a cluster, 
access the database in that cluster, and close the connection to that cluster. 

https://www.mongodb.com/cloud/atlas
https://docs.atlas.mongodb.com/sample-data/
https://www.mongodb.com/cloud/atlas


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  62  

Create our main function 

Let’s create an asynchronous function named main() where we will connect to 
our MongoDB cluster, call functions that query our database, and disconnect from our 
cluster. 

async function main() { 
// we'll add code here soon 

} 
The first thing we need to do inside of main() is create a constant for our 

connection URI. The connection URI is the connection string you copied in Atlas in the 
previous section. 

When you paste the connection string, don't forget to 
update <username> and <password> to be the credentials for the user you created in 
the previous section. The connection string includes a <dbname> placeholder. 

For these examples, we'll be using the sample_airbnb database, so 
replace <dbname> with sample_airbnb. 

Note: the username and password you provide in the connection string are NOT the 
same as your Atlas credentials. 

Now that we have our URI, we can create an instance of MongoClient. 

Note: When you run this code, you may see DeprecationWarnings around the URL 
string parserand the Server Discover and Monitoring engine. If you see these warnings, 
you can remove them by passing options to the MongoClient. 

For example, you could instantiate MongoClient by calling new MongoClient(uri, { 
useNewUrlParser: true, useUnifiedTopology: true }). 

Now we're ready to use MongoClient to connect to our cluster. client.connect() will 
return a promise. We will use the await keyword when we call client.connect() to 
indicate that we should block further execution until that operation has completed. 

 const {MongoClient} = require('mongodb');  
 

 

 
 

 
 

 

 const client = new MongoClient(uri);  
 

 

 await client.connect();  
 

 

 

 

 

 
 

 

 
/** 
* Connection URI. Update <username>, <password>, and <your-cluster-url> to 

reflect your cluster. 
* See https://docs.mongodb.com/ecosystem/drivers/node/ for more details 
*/ 

const uri = "mongodb+srv://<username>:<password>@<your-cluster- 
url>/test?retryWrites=true&w=majority"; 

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  63  

Now we are ready to interact with our database. Let's build a function that prints 
the names of the databases in this cluster. It's often useful to contain this logic in well 
named functions in order to improve the readability of your codebase. 

Throughout this series, we'll create new functions similar to the function we're 
creating here as we learn how to write different types of queries. For now, let's call a 
function named listDatabases(). 

Let’s wrap our calls to functions that interact with the database in a try/catch statement 
so that we handle any unexpected errors. 

try { 
await client.connect(); 
await listDatabases(client); 

} catch (e) { 
console.error(e); 

} 

We want to be sure we close the connection to our cluster, so we’ll end 
our try/catch with a finally statement. 

finally { 
await client.close(); 

} 

Putting it all together, our main() function and our call to it will look something like the 
following. 
 
 
 
 

 

 

 

 await listDatabases(client);  
 

 

 

 

 

 

 main().catch(console.error);  
 

 
 
 
 

Once we have our main() function written, we need to call it. Let’s send the errors to the 
console. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  64  

async function main(){ 
/** 
* Connection URI. Update <username>, <password>, and <your-cluster-url> to 

reflect your cluster. 
* See https://docs.mongodb.com/ecosystem/drivers/node/ for more details 
*/ 

const uri = "mongodb+srv://<username>:<password>@<your-cluster- 
url>/test?retryWrites=true&w=majority"; 

const client = new MongoClient(uri); 
try { 

// Connect to the MongoDB cluster 
await client.connect(); 
// Make the appropriate DB calls 
await listDatabases(client); 

} catch (e) { 
console.error(e); 

} finally { 
await client.close(); 

} 
} 
main().catch(console.error); 

This function will retrieve a list of databases in our cluster and print the results in the 
console. 

async function listDatabases(client){ 
databasesList = await client.db().admin().listDatabases(); 
console.log("Databases:"); 
databasesList.databases.forEach(db => console.log(` - ${db.name}`)); 

}; 

Save Your File 

You’ve been implementing a lot of code. Save your changes, and name your file 
something like connection.js. 

Execute Your Node.js Script 

Now you’re ready to test your code! Execute your script by running a command like the 
following in your terminal: node connection.js 

 
 
 

 
 

 
 
 
 
 
 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  65  

Databases: 
- sample_airbnb 
- sample_geospatial 
- sample_mflix 
- sample_supplies 
- sample_training 
- sample_weatherdata 
- admin 
- local 

 You will see output like the following:  
 

 

 
Adding and retrieving data to MongoDB from NodeJS 

 MongoDB, the most popular NoSQL database, is an open-source 
document-oriented database. 

 The term ‘NoSQL’ means ‘non-relational’. 
 It means that MongoDB isn’t based on the table-like relational database 

structure but provides an altogether different mechanism for storage 
and retrieval of data. 

 This format of storage is called BSON ( similar to JSON format). 
MongoDB module: 

 This module of Node.js is used for connecting the MongoDB database as well as 
used for manipulating the collections and databases in MongoDB.

 The mongodb.connect() method is used for connecting the MongoDB database 
which is running on a particular server on your machine.

 We can also use promises, in this method in resolve the object contains all the 
methods and properties required for collection manipulation and in reject the 
error occurs during connection.

Installing module: 
node install mongodb 
Project Structure: 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  66  

Running the server on Local IP: data is folder name 
mongod --dbpath=data --bind_ip 127.0.0.1 

MongoDB Database: 
Database:GFG 
Collection:GFGcollections 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Index.js 
1. Fetching single document of GFGcollections 
JAVASCRIPT: 

 
const MongoClient = require("mongodb"); 
const url = 'mongodb://localhost:27017/'; 
const databasename = "GFG"; // Database name 
MongoClient.connect(url).then((client) => { 

const connect = client.db(databasename); 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  67  

// Connect to collection 
const collection = connect 

.collection("GFGcollections"); 
// Fetching the records having 
// name as saini 
collection.find({ "name": "saini" }) 

.toArray().then((ans) => { 
console.log(ans); 

}); 
}).catch((err) => { 

// Printing the error message 
console.log(err.Message); 

}) 
OUTPUT: 

 
 

2. Fetching all documents of the GFGcollections 
JAVASCRIPT: 

 
const MongoClient = require("mongodb"); 
const url = 'mongodb://localhost:27017/'; 
const databasename = "GFG"; // Database name 
MongoClient.connect(url).then((client) => { 

const connect = client.db(databasename); 
// Connect to collection 
const collection = connect 

.collection("GFGcollections"); 
collection.find({}).toArray().then((ans) => { 

console.log(ans); 
}); 

}).catch((err) => { 
// Printing the error message 
console.log(err.Message); 

}) 
OUTPUT: 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  68  

 

 

Handling SQL databases from NodeJS 

 Node.js can be used in database applications. 
 One of the most popular databases is MySQL. 

 
MySQL Database 
To be able to experiment with the code examples, you should have MySQL installed on 
your computer. 
You can download a free MySQL database at https://www.mysql.com/downloads/. 

 

Install MySQL Driver 
Once you have MySQL up and running on your computer, you can access it by using 
Node.js. 
To access a MySQL database with Node.js, you need a MySQL driver. 
To download and install the "mysql" module, open the Command Terminal and execute 
the following: 
 C:\Users\Your Name>npm install mysql  

 
Now you have downloaded and installed a mysql database driver. 
Node.js can use this module to manipulate the MySQL database: 
var mysql = require('mysql'); 

 
Create Connection 
Start by creating a connection to the database. 
Use the username and password from your MySQL database. 
 demo_db_connection.js  

 
var mysql = require('mysql'); 
var con = mysql.createConnection({ 
host: "localhost", 
user: "yourusername", 
password: "yourpassword" 

}); 
con.connect(function(err) { 
if (err) throw err; 
console.log("Connected!"); 

}); 

https://www.mysql.com/downloads/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  69  

 
app.get('/cookie',function(req, res){ 
let minute = 60 * 1000; 
res.cookie(cookie_name, 'cookie_value', { maxAge: minute }); 
return res.send('cookie has been set!'); 
}); 

 

 
Handling Cookies in NodeJS 

 A cookie is a mechanism that allows the server to store its own information 
about a user on the user's own computer. 

 You can view the cookies that have been stored on your hard disk 
 The location of the cookies depends on the browser. 
 To use cookies in nodejs express application, we use cookie-parser package of 

npm, By using this package we can easily manage the express application 
cookies. 

 
Install package 
 npm install cookie-parser  

 
Use this middleware 

 
 

The module gives us access to req.cookies with an object keyed with the cookie name. 
We can also enable signed cookie support by passing a secret string, Which assigns 
req.secret. 

 
Set Cookie 

 

 

In the above code, We have set the maximum age of a Cookie, Which is optional. 

const express = require('express'); 
const cookieParser = require('cookie-parser'); 
const app = express(); 
// adding cookieParser to middleware stack 
app.use(cookieParser()); 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  70  

res.cookie(cookie_name , 'cookie_value', { secure: true}); 

app.get('/deletecookie', function(req,res){ 
res.clearCookie('cookie_name'); 
res.send('Cookie deleted'); 
}); 

We can also set the expire time in milliseconds like below 
res.cookie(cookie_name , 'cookie_value', {expire : 24 * 60 * 60 * 1000 }); 

We can also set cookie only over HttpOnly. 
This flag tells the browsers to not allow client-side script access to the Cookie. 

 
res.cookie(cookie_name , 'cookie_value', { HttpOnly: true}); 

We can tell express to use https encrypted channel to exchange cookie data 
with secure flag. 

 

Read Cookies 
We can access Cookies via request 

object, req.cookies.cookie_nameor req.cookies. 
 

Delete cookies 
We can also easily delete Cookies by using res.clearCookie function, which 

accepts the name of the Cookie which we want to delete. 
We can also delete Cookies from browser developers tools. 

 

 

HTTP Cookies in Node.js 
 Cookies are small data that are stored on a client side and sent to the client 

along with server requests. 
 Cookies have various functionality, they can be used for maintaining sessions 

and adding user-specific features in your web app. 
 For this, we will use cookie-parser module of npm which provides middleware 

for parsing of cookies. 
First set your directory of the command prompt to root folder of the project and run 
the following command: npm init 

This will ask you details about your app and finally will create 
a package.json file. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  71  

After that run the following command and it will install the required module 
and add them in your package.json file npm install express cookie-parser --save 
package.json file looks like this : 

 

After that we will setup basic express app by writing following code in our app.js file in 
root directory . 

 
let express = require('express'); 
//setup express app 
let app = express() 
//basic route for homepage 
app.get('/', (req, res)=>{ 
res.send('welcome to express app'); 
}); 
//server listens to port 3000 
app.listen(3000, (err)=>{ 
if(err) 
throw err; 
console.log('listening on port 3000'); 
}); 

 
After that if we run the command : node app.js 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  72  

 

Handling User Authentication with NodeJS 

Introduction 
 Creating a user registration form employs the management of the registered 

user. 
 This is where user role authentication comes into play. Role authentication 

ensures that non-admin users cannot make changes or access exclusive 
information. 

 It grants administrative privileges to admin users and basic privileges to basic 
users. 

 You can build your own authentication functionality with web tokens like JSON 
Web Token (JWT) or use a trusted third-party customer identity and access 
management (CIAM) software like LoginRadius. 

 
 

Set Up a Mongo Database 
You'll store all your user data — which includes username, password, and role — 

in MongoDB. 
Install a node package called Mongoose that will connect to MongoDB. Then 

create a user schema for your application. 

 
 npm init sets up your new project and creates a package.json file with the 

credentials. 
 After installing mongoose, create a new file db.js in the project's directory and 

require mongoose. 
 const Mongoose = require("mongoose")  
With the help of mongoose, you can connect your application to MongoDB: 

 

// db.js 
const Mongoose = require("mongoose") 
const localDB = `mongodb://localhost:27017/role_auth` 
const connectDB = async () => { 
await Mongoose.connect(localDB, { 
useNewUrlParser: true, 
useUnifiedTopology: true, 

}) 
console.log("MongoDB Connected") 

npm init 
npm install mongoose 

https://accounts.loginradius.com/auth.aspx?action=register


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  73  

 

 
 The code snippet here connects to mongodb://localhost:27017 and then 

specifies the name of the database /role_auth. 
 The function connectDB awaits for the connection, which contains 

the URI and options as a second parameter. 
 If it connects without errors, it will log out MongoDB Connected. Error issues will 

be fixed while connecting to the database. 
 After this, it exported the function for use in the server. 

 
 

Set Up the Server 

 
 Express.js is a Node.js framework for building web applications quickly and 

easily. 
 Nodemon is a tool that watches the file system and automatically restarts the 

server when there is a change. 
 You require express in your application to listen for a connection on port 5000. 
 Create a new file server.js in the root directory and create the listening event: 

 
 
 

 

The next step is to test your application. Open up your package.json file and add the 
following to scripts: 

 
Open your terminal and run npm run dev to start the server. 

 
 

Connect to the Database 
Earlier, you've created a function that connects to MongoDB and exported that function. 
Now import that function into your server.js: 

 
You also need to create an error handler that catches every unhandledRejection error. 

 

const server = app.listen(PORT, () => 
console.log(`Server Connected to port ${PORT}`) 

) 
// Handling Error 
process.on("unhandledRejection", err => { 
console.log(`An error occurred: ${err.message}`) 
server.close(() => process.exit(1)) 
}) 

const connectDB = require("./db"); 
... 
//Connecting the Database 
connectDB(); 

"scripts": { 
"start": "node server.js", 
"dev": "nodemon server.js" 

} 

npm i express nodemon 

} 
module.exports = connectDB 

const express = require("express") 
const app = express() 
const PORT = 5000 
app.listen(PORT, () => console.log(`Server Connected to port ${PORT}`)) 

https://expressjs.com/
https://www.npmjs.com/package/nodemon


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  74  

 The listening event is assigned to a constant server. 
 If an unhandledRejection error occurs, it logs out the error and closes 

the server with an exit code of 1. 

 
 

Create User Schema 
 Schema is like a blueprint that shows how the database will be constructed. 
 You'll structure a user schema that contains username, password, and role. 
 Create a new folder model in the project's directory, and create a file 

called User.js. 
Now open User.js and create the user schema: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 In the schema, the username will be unique, required, and will accept strings. 
 You've specified the minimum characters(6) the password field will accept. 

The role field grants a default value (basic) that you can change if needed. 
Now, you need to create a user model and export it: 

 
You've created the user model by passing the UserSchema as the second argument 
while the first argument is the name of the model user. 

 
 

Perform CRUD Operations 
You'll create functions that handle: 

 
 adding users; 
 getting all users; 
 updating the role of users; and, 
 deleting users. 

const User = Mongoose.model("user", UserSchema) 
module.exports = User 

// user.js 
const Mongoose = require("mongoose") 
const UserSchema = new Mongoose.Schema({ 
username: { 

type: String, 
unique: true, 
required: true, 

}, 
password: { 
type: String, 
minlength: 6, 
required: true, 

}, 
role: { 
type: String, 
default: "Basic", 
required: true, 

}, 
}) 

https://en.wikipedia.org/wiki/Database_schema


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  75  

Register Function 
 As the name implies, this function will handle the registrations of users. 
 Let's create a new folder named Auth. It will contain the Authentication file and 

the Route set-up file. 
 After creating the Auth folder, add two files — Auth.js and Route.js. 

Now open up our Auth.js file and import that User model: 

 
 The next step is to create an async express function that will take the user's data 

and register it in the database. 
 You need to use an Express middleware function that will grant access to the 

user's data from the body. 
You'll use this function in the server.js file: 

 
 

Let's go back to your Auth.js file and create the register function: 

 
The exported register function will be used to set up the routes. 

You got the username and password from the req.body and created a tryCatch block 
that will create the user if successful; else, it returns status code 401 with the error 
message. 

 
Set Up Register Route 
You'll create a route to /register using express.Router. 
Import the register function into your route.js file, and use it as the route's function: 

 

const express = require("express") 
const router = express.Router() 
const { register } = require("./auth") 

// auth.js 
exports.register = async (req, res, next) => { 
const { username, password } = req.body 
if (password.length < 6) { 
return res.status(400).json({ message: "Password less than 6 characters" }) 

} 
try { 
await User.create({ 

username, 
password, 

}).then(user => 
res.status(200).json({ 
message: "User successfully created", 
user, 

}) 
) 

} catch (err) { 
res.status(401).json({ 

message: "User not successful created", 
error: error.mesage, 

}) 
} 

} 

const User = require("../model/User") 

const app = express() 
app.use(express.json()) 

https://expressjs.com/en/guide/writing-middleware.html


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  76  

 

 
The last step is to import your route.js file as middleware in server.js: 

 
The server will use the router middleware function if there is a request to /api/auth. 
Test the Register Route 

You'll use Postman to test all the routes. 
Open up Postman to send a POST request 
to http://localhost:5000/api/auth/register and pass the username and password to the 
body: 

 

Login Function 
 You've created a function that adds registered users to the database. 
 You have to create another function that will authenticate user credentials and 

check if the user is registered. 
Open the Auth.js file and create the Login function, as follows: 

 
 
 
 
 
 
 
 
 
 
 

The login function returns status code 400 if the username and password were 
not provided. 
You need to find a user with the provided username and password: 

 

exports.login = async (req, res, next) => { 
try { 
const user = await User.findOne({ username, password }) 
if (!user) { 

app.use("/api/auth", require("./Auth/route")) 

router.route("/register").post(register) 
module.exports = router 

// auth.js 
exports.login = async (req, res, next) => { 
const { username, password } = req.body 
// Check if username and password is provided 
if (!username || !password) { 
return res.status(400).json({ 

message: "Username or Password not present", 
}) 

} 
} 

https://www.postman.com/downloads/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  77  

 

 
Here, it returns status code 401 when a user isn't found and 200 when a user is found. 
The code snippet wrapped all this in a tryCatch block to detect and output errors, if any. 
Set Up Login Route 
To set up the login route, import the login function into your route.js: 

 
 
 
 
 
 
 

Test the Login Route 
Make a POST request at http://localhost:5000/api/auth/login and pass a valid 
username and password to the body: 

 

res.status(401).json({ 
message: "Login not successful", 
error: "User not found", 

}) 
} else { 

res.status(200).json({ 
message: "Login successful", 
user, 

}) 
} 

} catch (error) { 
res.status(400).json({ 
message: "An error occurred", 
error: error.message, 
}) 

} 
} 

const express = require("express"); 
const router = express.Router(); 
const { register, login } = require("./auth"); 
... 
router.route("/login").post(login); 
module.exports = router; 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  78  

Update Function 
This function will be responsibile for updating the role of a basic user to an admin user. 
Open the auth.js file and create the update function, as follows: 

 
 The first if statement verifies if role and id are present in the request body. 
 The second if statement checks if the value of role is admin. 
 You should do this to avoid having over two roles. 
 After finding a user with that ID, you'll create a third if block that will check for 

the role of the user: 

 

exports.update = async (req, res, next) => { 
const { role, id } = req.body; 
// First - Verifying if role and id is presnt 
if (role && id) { 
// Second - Verifying if the value of role is admin 
if (role === "admin") { 

// Finds the user with the id 
await User.findById(id) 
.then((user) => { 
// Third - Verifies the user is not an admin 
if (user.role !== "admin") { 

user.role = role; 
user.save((err) => { 
//Monogodb error checker 
if (err) { 
res 
.status("400") 
.json({ message: "An error occurred", error: err.message }); 

process.exit(1); 
} 
res.status("201").json({ message: "Update successful", user }); 

}); 
} else { 

res.status(400).json({ message: "User is already an Admin" }); 

//auth.js 
exports.update = async (req, res, next) => { 
const { role, id } = req.body 
// Verifying if role and id is presnt 
if (role && id) { 
// Verifying if the value of role is admin 
if (role === "admin") { 

await User.findById(id) 
} else { 

res.status(400).json({ 
message: "Role is not admin", 

}) 
} 

} else { 
res.status(400).json({ message: "Role or Id not present" }) 

} 
} 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  79  

 

 
The third if block prevents assigning an admin role to an admin user, while the 
last if block checks if an error occurred when saving the role in the database. 
Set Up Update Route 
Import the update function in your route.js, as follows: 

 
Testing the Update Route 
Send a put request to http://localhost:5000/api/auth/update: 

 

Delete Function 
The deleteUser function will remove a specific user from the database. Let's 

create this function in our auth.js file: 

 

exports.deleteUser = async (req, res, next) => { 
const { id } = req.body 
await User.findById(id) 
.then(user => user.remove()) 
.then(user => 

res.status(201).json({ message: "User successfully deleted", user }) 
) 
.catch(error => 

res 

const { register, login, update } = require("./auth"); 
... 
router.route("/update").put(update); 

} 
}) 
.catch((error) => { 
res 

.status(400) 

.json({ message: "An error occurred", error: error.message }); 
}); 

 
... 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  80  

 

 
You remove the user based on the id you get from req.body. 
Set up the deleteUser Route 

Open your route.js file to create a delete request to /deleteUser, using 
the deleteUser as its function: 

 
 

 

Test the deleteUser Route 
Send a delete request to http://localhost:5000/api/auth/deleteUser by passing a 
valid id to the body: 

 

 

Hash User Passwords 
 Saving user passwords in the database in plain text format is reckless. 
 It is preferable to hash your password before storing it. 
 For instance, it will be tough to decipher the passwords in your database if they 

are leaked. 
 Hashing passwords is a cautious and reliable practice. 
 Let's use bcryptjs to hash your user passwords. 

Lets install bcryptjs: 

 
After installing bcryptjs, import it into your auth.js 

 const bcrypt = require("bcryptjs") 

npm i bcryptjs 

.status(400) 

.json({ message: "An error occurred", error: error.message }) 
) 

} 

const { register, login, update, deleteUser } = require("./auth"); 
... 
router.route("/deleteUser").delete(deleteUser); 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  81  

Refactor Register Function 
Instead of sending a plain text format to your database, lets hash the password 
using bcrypt: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 bcrypt takes in your password as the first argument and the number of times it 
will hash the password as the second argument. 

 Passing a large number will take bcrypt a long time to hash the password, so give 
a moderate number like 10. 

 bcrypt will return a promise with the hashed password; then, send that hashed 
password to the database. 

Test the Register Function 
Send a POST request to http://localhost:5000/api/auth/register and pass the username 
and password to the body: 

 

exports.register = async (req, res, next) => { 
const { username, password } = req.body; 
bcrypt.hash(password, 10).then(async (hash) => { 
await User.create({ 

username, 
password: hash, 

}) 
.then((user) => 
res.status(200).json({ 
message: "User successfully created", 
user, 

}) 
) 
.catch((error) => 
res.status(400).json({ 
message: "User not successful created", 
error: error.message, 

}) 
); 

}); 
}; 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  82  

Refactor the Login Function 

 
bcrypt.compare checks if the given password and the hashed password in the database 
are the same. 

exports.login = async (req, res, next) => { 
const { username, password } = req.body 
// Check if username and password is provided 
if (!username || !password) { 
return res.status(400).json({ 

message: "Username or Password not present", 
}) 

} 
try { 
const user = await User.findOne({ username }) 
if (!user) { 

res.status(400).json({ 
message: "Login not successful", 
error: "User not found", 

}) 
} else { 

// comparing given password with hashed password 
bcrypt.compare(password, user.password).then(function (result) { 
result 

? res.status(200).json({ 
message: "Login successful", 
user, 

}) 
: res.status(400).json({ message: "Login not succesful" }) 

}) 
} 

} catch (error) { 
res.status(400).json({ 
message: "An error occurred", 
error: error.message, 
}) 

} 
} 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  83  

Test the Login Function 
Send a POST request to http://localhost:5000/api/auth/login and pass a valid 
username and password to the body: 

 

 
 

Authenticate Users with JSON Web Token (JWT) 
 JSON Web Token helps shield a route from an unauthenticated user. 
 Using JWT in your application will prevent unauthenticated users from accessing 

your users' home page and prevent unauthorized users from accessing your 
admin page. 

 JWT creates a token, sends it to the client, and then the client uses the token for 
making requests. 

 It also helps verify that you're a valid user making those requests. 
You've to install JWT before using it in your application: 
 npm i jsonwebtoken  
Refactor the Register Function 

 When a user registers, you'll send a token to the client using JWT as a cookie. 
 To create this token, you need to set a secret string. 

You'll use the node's in-built package called crypto to create random strings: 
 
 

Output: 
 

node 
require("crypto").randomBytes(35).toString("hex") 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  84  

 Storing this secret string in an environment variable is a safe practice. 
 If this secret string is leaked, unauthenticated users can create fake tokens to 

access the route. 
Store your secret string in a variable: 

 
Once you've created your jwtSecret, import jsonwebtoken as the token in 
the register function: 

 

const jwt = require('jsonwebtoken') 
const jwtSecret = 
'4715aed3c946f7b0a38e6b534a9583628d84e96d10fbc04700770d572af3dce43 
625dd' 
exports.register = async (req, res, next) => { 
const { username, password } = req.body; 
bcrypt.hash(password, 10).then(async (hash) => { 
await User.create({ 

username, 
password: hash, 

}) 
.then((user) => { 
const maxAge = 3 * 60 * 60; 
const token = jwt.sign( 
{ id: user._id, username, role: user.role }, 
jwtSecret, 
{ 

expiresIn: maxAge, // 3hrs in sec 
} 

); 
res.cookie("jwt", token, { 
httpOnly: true, 
maxAge: maxAge * 1000, // 3hrs in ms 

}); 
res.status(201).json({ 
message: "User successfully created", 
user: user._id, 

}); 
}) 
.catch((error) => 
res.status(400).json({ 
message: "User not successful created", 
error: error.message, 

}) 
); 

}); 
}; 

const jwtSecret = 
 
"4715aed3c946f7b0a38e6b534a9583628d84e96d10fbc04700770d572af3dce43 
625dd" 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  85  

The code snippet created the token using JWT's sign function. This function takes in 
three parameters: 

 
 the payload is the first parament that you'll pass to the function. This payload holds data 

concerning the user, and this data should not contain sensitive information like 
passwords; 

 you passed your jwtSecret as the second parameter; and, 
 how long the token will last as the third parameter. 

After passing all these arguments, JWT will generate a token. After the token is 
generated, send it as a cookie to the client. 
Refactor the Login Function 
Also, generate a token for logged in users: 

 
Protect the Routes 

To prevent unauthenticated users from accessing the private route, take the 
token from the cookie, verify the token, and redirect users based on role. 

You'll get the token from the client using a node package called cookie-parser. 

exports.login = async (req, res, next) => { 
bcrypt.compare(password, user.password).then(function (result) { 

if (result) { 
const maxAge = 3 * 60 * 60; 
const token = jwt.sign( 

{ id: user._id, username, role: user.role }, 
jwtSecret, 
{ 
expiresIn: maxAge, // 3hrs in sec 

} 
); 
res.cookie("jwt", token, { 

httpOnly: true, 
maxAge: maxAge * 1000, // 3hrs in ms 

}); 
res.status(201).json({ 

message: "User successfully Logged in", 
user: user._id, 

}); 
} else { 
res.status(400).json({ message: "Login not succesful" }); 

} 
}); 

} 
} catch (error) { 
res.status(400).json({ 
message: "An error occurred", 
error: error.message, 
}); 

} 
}; 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  86  

Let's install the package before using it: 
 npm i cookie-parser  
After installing it, import it into your server.js file and use it as a middleware: 

 
 

 

You'll create your middleware that verifies the token and grants access to your 
private route. 

Let's create a new folder in the project's folder named middleware and create a 
file called auth.js. 
Admin Authentication 
Open the auth.js file and create the middleware: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The code snippet requests a token from the client, checks if a token is available, 
and verifies that token. 

 JWT verifies your token with your jwtSecret and returns a callback function. 
 This function returns status code 401 if the token fails the authentication test. 
 When you've created the token, you passed a payload that contained the user's 

credentials. 
 You'll get the role from the credentials and check if the user's role is admin. 
 If the user is not an admin, you return status code 401, but you'll call 

the next function if the user is an admin. 

const jwt = require("jsonwebtoken") 
const jwtSecret = 
 
"4715aed3c946f7b0a38e6b534a9583628d84e96d10fbc04700770d572af3dce43 
625dd" 
exports.adminAuth = (req, res, next) => { 
const token = req.cookies.jwt 
if (token) { 
jwt.verify(token, jwtSecret, (err, decodedToken) => { 

if (err) { 
return res.status(401).json({ message: "Not authorized" }) 

} else { 
if (decodedToken.role !== "admin") { 
return res.status(401).json({ message: "Not authorized" }) 

} else { 
next() 

} 
} 

}) 
} else { 
return res 

.status(401) 

.json({ message: "Not authorized, token not available" }) 
} 

} 

const cookieParser = require("cookie-parser"); 
 
app.use(cookieParser()); 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  87  

use role_auth 

mongo 

Basic User Authentication 
You'll also authenticate basic users before granting them access to the users route. 
Let's create another middleware in your auth.js file that will authenticate basic users: 

 
Protect the Routes 
You'll have two routes: one for the user and the other for the admin. 
Let's import this middleware into your server.js file and protect your routes: 

 
 
 

 

Updating user roles and deleting users should be done by an Admin, so you need to 
import this auth.js middleware into your route.js file to protect 
the update and delete routes. 
route.js: 

 
 
 

Populate the Database with Admin User 
You need to create an admin user in your database. 
Open up your terminal, and let's run some MongoDB methods: 

After mongo is started, you need to use the role_auth database: 

Before adding your admin user to the database, you need to hash the password 
using bcrypt in the node terminal. Open node terminal in your project's directory: 

 

const password = require("bcryptjs").hash("admin", 10) 
password 

const { adminAuth } = require("../middleware/auth") 
router.route("/update").put(adminAuth, update) 
router.route("/deleteUser").delete(adminAuth, deleteUser) 

exports.userAuth = (req, res, next) => { 
const token = req.cookies.jwt 
if (token) { 
jwt.verify(token, jwtSecret, (err, decodedToken) => { 

if (err) { 
return res.status(401).json({ message: "Not authorized" }) 

} else { 
if (decodedToken.role !== "Basic") { 
return res.status(401).json({ message: "Not authorized" }) 

} else { 
next() 

} 
} 

}) 
} else { 
return res 

.status(401) 

.json({ message: "Not authorized, token not available" }) 
} 

} 

const { adminAuth, userAuth } = require("./middleware/auth.js"); 
 
app.get("/admin", adminAuth, (req, res) => res.send("Admin Route")); 
app.get("/basic", userAuth, (req, res) => res.send("User Route")); 

https://docs.mongodb.com/manual/reference/method/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  88  

After you've created the constant password, you need to enter the password in the node 
terminal to get your hashed password. 

 
You'll use the hashed password to create your admin: 

 
 
 
 
 
 
 

To check if it was successfully created, run db.users.find().pretty() — this will output all 
users in the database. 

 
 

 

db.users.insert({ 
username: "admin", 
password: 

"$2a$10$mZwU9AbYSyX7E1A6fu/ZO.BDhmCOIK7k6jXvKcuJm93PyYuH2eZ3K", 
role: "admin", 

}) 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  89  

UNIT IV 

ADVANCED CLIENT SIDE PROGRAMMING 

React JS 

React. js is an open-source JavaScript library that is used for building user 
interfaces specifically for single-page applications. It's used for handling the view 
layer for web and mobile apps. React also allows us to create reusable UI components. 

 
Let us understand this with a practical example. 

Let’s say one of your friends posted a photograph on Facebook. Now you go and 
like the image and then you started checking out the comments too. Now while you 
are browsing over comments you see that the likes count has increased by 100, since 
you liked the picture, even without reloading the page. This magical count change is 
because of ReactJS. 

 
React is a declarative, efficient, and flexible JavaScript library for building user 

interfaces. ‘V’ denotes the view in MVC. ReactJS is an open-source, component-based 
front end library responsible only for the view layer of the application. It is 
maintained by Facebook. 

 
React uses a declarative paradigm that makes it easier to reason about your 

application and aims to be both efficient and flexible. It designs simple views for each 
state in your application, and React will efficiently update and render just the right 
component when your data changes. The declarative view makes your code more 
predictable and easier to debug. 

 
A React application is made of multiple components, each responsible for 

rendering a small, reusable piece of HTML. Components can be nested within other 
components to allow complex applications to be built out of simple building blocks. A 
component may also maintain an internal state – for example, a TabList component 
may store a variable corresponding to the currently open tab. 

 
React is not a framework. It is just a library developed by Facebook to solve 

some problems that we were facing earlier. 
Prerequisites: Download Node packages with their latest version. 
Example: Create a new React project by using the command below: 

npx create-react-app myapp 

 ReactDOM 

ReactJS is a library to build active User Interfaces thus rendering is one of the 
integral parts of ReactJS. React provides the developers with a package react- 
dom a.k.a ReactDOM to access and modify the DOM. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  90  

What is DOM? 
DOM, abbreviated as Document Object Model, is a World Wide Web Consortium 

standard logical representation of any webpage. In easier words, DOM is a tree-like 
structure that contains all the elements and it’s properties of a website as its nodes. 
DOM provides a language-neutral interface that allows accessing and updating of the 
content of any element of a webpage. 

Before React, Developers directly manipulated the DOM elements which 
resulted in frequent DOM manipulation, and each time an update was made the 
browser had to recalculate and repaint the whole view according to the particular CSS 
of the page, which made the total process to consume a lot of time. 

As a betterment, React brought into the scene the virtual DOM. The Virtual 
DOM can be referred to as a copy of the actual DOM representation that is used to hold 
the updates made by the user and finally reflect it over to the original Browser DOM at 
once consuming much lesser time. 
What is ReactDOM? 

ReactDOM is a package that provides DOM specific methods that can be used at the 
top level of a web app to enable an efficient way of managing DOM elements of the 
web page. ReactDOM provides the developers with an API containing the following 
methods and a few more. 

 render() 
 findDOMNode() 
 unmountComponentAtNode() 
 hydrate() 
 createPortal() 
Pre-requisite: To use the ReactDOM in any React web app we must first import 
ReactDOM from the react-dom package by using the following code snippet: 

import ReactDOM from 'react-dom' 

1. render() Function 
This is one of the most important methods of ReactDOM. This function is used 

to render a single React Component or several Components wrapped together in a 
Component or a div element. This function uses the efficient methods of React for 
updating the DOM by being able to change only a subtree, efficient diff methods, etc. 

Syntax: 
ReactDOM.render(element, container, callback) 

Parameters: This method can take a maximum of three parameters as described 
below. 
 element: This parameter expects a JSX expression or a React Element to be 

rendered. 
 container: This parameter expects the container in which the element has to be 

rendered. 
 callback: This is an optional parameter that expects a function that is to be 

executed once the render is complete. 
Return Type: This function returns a reference to the component or null if a stateless 
component was rendered. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  91  

2. findDOMNode() Function 
This function is generally used to get the DOM node where a particular React 

component was rendered. This method is very less used like the following can be done 
by adding a ref attribute to each component itself. 

Syntax: 
ReactDOM.findDOMNode(component) 

Parameters: This method takes a single parameter component that expects a React 
Component to be searched in the Browser DOM. 
Return Type: This function returns the DOM node where the component was 
rendered on success otherwise null. 

 
3. unmountComponentAtNode() Function 

This function is used to unmount or remove the React Component that was 
rendered to a particular container. As an example, you may think of a notification 
component, after a brief amount of time it is better to remove the component making 
the web page more efficient. 

Syntax: 
ReactDOM.unmountComponentAtNode(container) 

Parameters: This method takes a single parameter container which expects the DOM 
container from which the React component has to be removed. 
Return Type: This function returns true on success otherwise false. 

 
4. hydrate() Function 

This method is equivalent to the render() method but is implemented while 
using server-side rendering. 

Syntax: 
ReactDOM.hydrate(element, container, callback) 

Parameters: This method can take a maximum of three parameters as described 
below. 
 element: This parameter expects a JSX expression or a React Component to be 

rendered. 
 container: This parameter expects the container in which the element has to be 

rendered. 
 callback: This is an optional parameter that expects a function that is to be 

executed once the render is complete. 
Return Type: This function attempts to attach event listeners to the existing markup 
and returns a reference to the component or null if a stateless component was 
rendered. 

 
5. createPortal() Function 

Usually, when an element is returned from a component’s render method, it’s 
mounted on the DOM as a child of the nearest parent node which in some cases may 
not be desired. Portals allow us to render a component into a DOM node that resides 
outside the current DOM hierarchy of the parent component. 

Syntax: 
ReactDOM.createPortal(child, container) 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  92  

Parameters: This method takes two parameters as described below. 
 child: This parameter expects a JSX expression or a React Component to be 

rendered. 
 container: This parameter expects the container in which the element has to be 

rendered. 
Return Type: This function returns nothing. 

 
Important Points to Note: 
 ReactDOM.render() replaces the child of the given container if any. It uses a highly 

efficient diff algorithm and can modify any subtree of the DOM. 
 findDOMNode() function can only be implemented upon mounted components thus 

Functional components can not be used in findDOMNode() method. 
 ReactDOM uses observables thus provides an efficient way of DOM handling. 
 ReactDOM can be used on both the client-side and server-side. 

 
JSX 

React is a declarative, efficient, and flexible JavaScript library for building user 
interfaces. But instead of using regular JavaScript, React code should be written in 
something called JSX. 
sample JSX code: 
const ele = <h1>This is sample JSX</h1>; 

The above code snippet somewhat looks like HTML and it also uses a JavaScript- 
like variable but is neither HTML nor JavaScript, it is JSX. 

JSX is basically a syntax extension of regular JavaScript and is used to create React 
elements. These elements are then rendered to the React DOM. 

Why JSX? 
 It is faster than normal JavaScript as it performs optimizations while translating to 

regular JavaScript. 
 It makes it easier for us to create templates. 
 Instead of separating the markup and logic in separated files, React 

uses components for this purpose. We will learn about components in detail in 
further articles. 

Using JavaScript expressions in JSX: In React we are allowed to use normal 
JavaScript expressions with JSX. To embed any JavaScript expression in a piece of code 
written in JSX we will have to wrap that expression in curly braces {}. Consider the 
below program, written in the index.js file: 

 
import React from 'react'; 
import ReactDOM from 'react-dom'; 
const name = "Learner"; 
const element = <h1>Hello,{ name }.Welcome to MAMCE.< /h1>; 
ReactDOM.render( element,document.getElementById("root")); 

 
OUTPUT: 
Hello, Learner.Welcome to MAMCE. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  93  

In the above program we have embedded the javascript expression const name = 
“Learner”; in our JSX code. We embed the use of any JavaScript expression in JSX by 
wrapping them in curly braces except if-else statements. But we can use conditional 
statements instead of if-else statements in JSX. Below is the example where 
conditional expressing is embedded in JSX: 

 
import React from 'react'; 
import ReactDOM from 'react-dom'; 
let i = 1; 
const element = <h1>{ (i == 1) ? 'Hello World!' : 'False!' } < /h1>; 
ReactDOM.render( element,document.getElementById("root")); 
OUTPUT: 

 

In the above example, the variable i is checked if for the value 1. As it equals 1 so the 
string ‘Hello World!’ is returned to the JSX code. If we modify the value of the variable i 
then the string ‘False’ will be returned. 

 
Attributes in JSX: 

JSX allows us to use attributes with the HTML elements just like we do with 
normal HTML. But instead of the normal naming convention of HTML, JSX uses 
camelcase convention for attributes. 

For example, class in HTML becomes className in JSX. The main reason behind 
this is that some attribute names in HTML like ‘class’ are reserved keywords in 
JavaScripts. So, in order to avoid this problem, JSX uses the camel case naming 
convention for attributes. We can also use custom attributes in JSX. For custom 
attributes, the names of such attributes should be prefixed by data-. In the below 
example, we have used a custom attribute with name data-sampleAttribute for the 
<h2> tag. 

 
import React from 'react'; 
import ReactDOM from 'react-dom'; 
const element = <div><h1 className = "hello">Hello MCA</h1> 

<h2 data-sampleAttribute="sample">Custom attribute</h2> 
< /div>; 
ReactDOM.render( element,document.getElementById("root")); 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  94  

Specifying attribute values: 
JSX allows us to specify attribute values in two ways: 

1. As for string literals: We can specify the values of attributes as hard-coded strings 
using quotes: 

const ele = <h1 className = "firstAttribute">Hello!</h1>; 

1. As expressions: We can specify attributes as expressions using curly braces {}: 
const ele = <h1 className = {varName}>Hello!</h1>; 

Wrapping elements or Children in JSX: 
Consider a situation where you want to render multiple tags at a time. To do 

this we need to wrap all of this tag under a parent tag and then render this parent 
element to the HTML. All the subtags are called child tags or children of this parent 
element. 
Notice in the below example how we have wrapped h1, h2, and h3 tags under a single 
div element and rendered them to HTML: 
import React from 'react'; 
import ReactDOM from 'react-dom'; 
const element = <div><h1>This is Heading 1 < /h1> 

<h2>This is Heading 2</h2 > 
<h3>This is Heading 3 < /h3> 
</div > ; 

ReactDOM.render( element,document.getElementById("root")); 
OUTPUT: 

 

Comments in JSX: 

JSX allows us to use comments as it allows us to use JavaScript expressions. 
Comments in JSX begins with /* and ends with */. We can add comments in JSX by 
wrapping them in curly braces {} just like we did in the case of expressions. 

Below example shows how to add comments in JSX:  

import React from 'react'; 

import ReactDOM from 'react-dom'; 

const element = <div><h1>Hello World !</h1> 

{/ * This is a comment in JSX * /} 

</div>; 

ReactDOM.render( element,document.getElementById("root")); 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  95  

Components 

React Components 
 

Components are independent and reusable bits of code. They serve the same 
purpose as JavaScript functions, but work in isolation and return HTML. 

 
A Component is one of the core building blocks of React. In other words, we 

can say that every application you will develop in React will be made up of pieces 
called components. 

Components make the task of building UIs much easier. You can see a UI broken 
down into multiple individual pieces called components and work on them 
independently and merge them all in a parent component which will be your final UI. 

 

Google’s custom search at the top can be seen as an individual component, the 
navigation bar can be seen as an individual component, the sidebar is an individual 
component, the list of articles or post is also an individual component and finally, we 
can merge all of these individual components to make a parent component which will 
be the final UI for the homepage. 
Components in React basically return a piece of JSX code that tells what should be 
rendered on the screen. 

1. Functional Components: Functional components are simply javascript functions. 
We can create a functional component in React by writing a javascript function. 
These functions may or may not receive data as parameters, Below example shows 
a valid functional component in React: 

 
const Democomponent=()=> 
{ 

return <h1>Welcome Message!</h1>; 
} 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  96  

2. Class Components: The class components are a little more complex than the 
functional components. The functional components are not aware of the other 
components in your program whereas the class components can work with each 
other. We can pass data from one class component to other class components. We 
can use JavaScript ES6 classes to create class-based components in React. Below 
example shows a valid class-based component in React: 

 

class Democomponent extends React.Component 
{ 

render(){ 
return <h1>Welcome Message!</h1>; 

} 
} 
The components we created in the above two examples are equivalent, and we also 
have stated the basic difference between a functional component and class component 
Rendering Components 

React is also capable of rendering user-defined components. To render a 
component in React we can initialize an element with a user-defined component and 
pass this element as the first parameter to ReactDOM.render() or directly pass the 
component as the first argument to the ReactDOM.render() method. 
Below syntax shows how to initialize a component to an element: 

 
const elementName = <ComponentName />; 

In the above syntax, the ComponentName is the name of the user-defined 
component. 

 
The name of a component should always start with a capital letter. This is done 

to differentiate a component tag with html tags. 
Below example renders a component named Welcome to the screen: 
Open your index.js file from your project directory, and make the given below 
changes: 
src index.js: 

 
 

import React from 'react'; 
import ReactDOM from 'react-dom'; 
// This is a functional component 

const Welcome=()=> 
{ 

return <h1>Hello World!</h1> 
} 
ReactDOM.render( 
<Welcome />, 
document.getElementById("root") 

); 

 javascript 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  97  

Output: 
 

 

Let us see step-wise what is happening in the above example: 

1. We call the ReactDOM.render() as the first parameter. 
2. React then calls the component Welcome, which returns <h1>Hello World!</h1>; 

as the result. 
3. Then the ReactDOM efficiently updates the DOM to match with the returned 

element and renders that element to the DOM element with id as “root”. 
Properties 

React enables developers to create dynamic and advanced component using 
properties. Every component can have attributes similar to HTML attributes and each 
attribute’s value can be accessed inside the component using properties (props). 

 
Props are arguments passed into React components. 

Props are passed to components via HTML attributes. 

 props stands for properties.  

For example, Hello component with a name attribute can be accessed inside the 
component through this.props.name variable. 

<Hello name="React" /> 
// value of name will be "Hello* const name = this.props.name 

React properties supports attribute’s value of different types. They are as follows, 

 String 
 Number 
 Datetime 
 Array 
 List 
 Objects 

React Props 

 Props stand for "Properties." They are read-only components. It is an object 
which stores the value of attributes of a tag and work similar to the HTML 
attributes. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  98  

 
import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
function Car(props) { 
return <h2>I am a { props.brand }!</h2>; 

} 
const myElement = <Car brand="Ford" />; 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(myElement); 

 It gives a way to pass data from one component to other components. It is similar 
to function arguments. Props are passed to the component in the same way as 
arguments passed in a function. 

 Props are immutable so we cannot modify the props from inside the component. 
Inside the components, we can add attributes called props. These attributes are 
available in the component as this.props and can be used to render dynamic data 
in our render method. 

 When you need immutable data in the component, you have to add props 
to reactDom.render() method in the main.js file of your ReactJS project and used 
it inside the component in which you need. 

 

output: 
 

 

Fetch API 

What is fetch API in JavaScript? 

The Fetch API provides a JavaScript interface for accessing and 
manipulating parts of the HTTP pipeline, such as requests and responses. It also 
provides a global fetch() method that provides an easy, logical way to fetch resources 
asynchronously across the network. 

ReactJS: ReactJS is a declarative, efficient, and flexible JavaScript library for 
building user interfaces. It’s ‘V’ in MVC. ReactJS is an open-source, component-based 
front-end library responsible only for the view layer of the application. It is 
maintained by Facebook. 

API: API is an abbreviation for Application Programming Interface which is a 
collection of communication protocols and subroutines used by various programs to 
communicate between them. A programmer can make use of various API tools to 
make its program easier and simpler. Also, an API facilitates the programmers with an 
efficient way to develop their software programs. 

https://www.geeksforgeeks.org/react-js-introduction-working/
https://www.geeksforgeeks.org/introduction-to-apis/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  99  

Approach: used the API endpoint 
from http://jsonplaceholder.typicode.com/users we have created the component in 
App.js and styling the component in App.css. From the API we have target “id”, “name”, 
“username”, “email” and fetch the data from API endpoints. 

Below is the stepwise implementation of how we fetch the data from an API in 
react. We will use the fetch function to get the data from the API. 
Step by step implementation to fetch data from an api in react. 

 Step 1: Create React Project 
npm create-react-app MY-APP 

 Step 2: Change your directory and enter your main folder charting as 
cd MY-APP 

 Step 3: API endpoint 
https://jsonplaceholder.typicode.com/users 

API 
 Step 4: Write code in App.js to fetch data from API and we are using fetch function. 

http://jsonplaceholder.typicode.com/users


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  100  

Project Structure: It will look the following. 

 
 

Project Structure 
Example: 
App.js 

import React from "react"; 
import './App.css'; 
class App extends React.Component { 

// Constructor 
constructor(props) { 

super(props); 
this.state = { 

 

}; 
} 

 
items: [], 
DataisLoaded: false 

// ComponentDidMount is used to 
// execute the code 
componentDidMount() { 

fetch("https://jsonplaceholder.typicode.com/users") 
.then((res) => res.json()) 
.then((json) => { 

this.setState({ 
items: json, 
DataisLoaded: true 

}); 
}) 

} 
render() { 

const { DataisLoaded, items } = this.state; 
if (!DataisLoaded) return <div> 

<h1> Pleses wait some time .... </h1> </div> ; 
return ( 
<div className = "App"> 

<h1> Fetch data from an api in react </h1> { 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  101  

items.map((item) => ( 
<ol key = { item.id } > 

User_Name: { item.username }, 
Full_Name: { item.name }, 
User_Email: { item.email } 
</ol> 

)) 
} 

</div> 
); 

} 
} 
export default App; 

 
Write code in App.css for styling the app.js file. 

App.CSS 

.App { 
text-align: center; 
color: Green; 

} 
.App-header { 

background-color: #282c34; 
min-height: 100vh; 
display: flex; 
flex-direction: column; 
align-items: center; 
justify-content: center; 
font-size: calc(10px + 2vmin); 
color: white; 

} 
.App-link { 

color: #61dafb; 
} 
@keyframes App-logo-spin { 

from { 
 

} 
to { 

 
} 

} 

transform: rotate(0deg); 

transform: rotate(360deg); 

 
 

Step to run the application: Open the terminal and type the following command. 
npm start 
Output: Open the browser and our project is shown in the 
URL http://localhost:3000/ 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  102  

 

 
 

Using the JavaScript Fetch API 
 

The Fetch API through the fetch() method allows us to make an HTTP request to 
the backend. With this method, we can perform different types of operations using 
HTTP methods like the GET method to request data from an endpoint, POST to send 
data to an endpoint, and more. 

 
Since we are fetching data, our focus is the GET method. 

 
fetch() requires the URL of the resource we want to fetch and an optional 

parameter: 
 

fetch(url, options) 
 

We can also specify the HTTP method in the optional parameter. For 
the GET method, we have the following: 

 
fetch(url, { 
method: "GET" // default, so we can ignore 

}) 
 

Or, we can simply ignore the optional parameter because GET is the default: 

fetch(url) 

As mentioned earlier, we will fetch data from a REST API. We could use any API, 
but here we will use a free online API called JSONPlaceholder to fetch a list of posts into 
our application; here is a list of the resources we can request 

 
By applying what we’ve learned so far, a typical fetch() request looks like the following: 

 
import { useState, useEffect } from "react"; 

export default function App() { 
const [data, setData] = useState(null); 
const [loading, setLoading] = useState(true); 
const [error, setError] = useState(null); 

 
useEffect(() => { 
fetch(`https://jsonplaceholder.typicode.com/posts`) 

https://jsonplaceholder.typicode.com/posts
https://jsonplaceholder.typicode.com/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  103  

.then((response) => console.log(response)); 
}, []); 
return <div className="App">App</div>; 
} 

 

In the code, we are using the fetch() method to request post data from the 
resource endpoint as seen in the useEffect Hook. This operation returns a promise that 
could either resolve or reject. 

 
If it resolves, we handle the response using .then(). But at this stage, the returned 

data is a Response object, which is not the actual format that we need, although it is 
useful to check for the HTTP status and to handle errors. 

 

 

State and Lifecycle 

What is state in react JS? 

The state is a built-in React object that is used to contain data or 
information about the component. A component's state can change over time; 
whenever it changes, the component re-renders. 

React doesn’t recommend using multiple renders instead it uses a stateful 
approach where the page is re-rendered once a state is altered. 
What are the lifecycle of react JS? 

Each component in React has a lifecycle which you can monitor and manipulate 
during its three main phases. 

The three phases are: 1. Mounting 2. Updating 3. Unmounting. 

1.Mounting 

Mounting means putting elements into the DOM. 
 

React has four built-in methods that gets called, in this order, when mounting a 
component: 

 
1. constructor() 
2. getDerivedStateFromProps() 
3. render() 
4. componentDidMount() 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  104  

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
class Header extends React.Component { 
constructor(props) { 

super(props); 
this.state = {favoritecolor: "red"}; 

} 
render() { 
return ( 

<h1>My Favorite Color is {this.state.favoritecolor}</h1> 
); 

} 
} 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Header />); 

The render() method is required and will always be called, the others are optional and 
will be called if you define them. 

 
 constructor 

 

The constructor() method is called before anything else, when the component is 
initiated, and it is the natural place to set up the initial state and other initial values. 

 
The constructor() method is called with the props, as arguments, and you should 

always start by calling the super(props) before anything else, this will initiate the 
parent's constructor method and allows the component to inherit methods from its 
parent (React.Component). 

 

OUTPUT: 
 

 getDerivedStateFromProps 
 

The getDerivedStateFromProps() method is called right before rendering the 
element(s) in the DOM. 

 
This is the natural place to set the state object based on the initial props. 

 
It takes state as an argument, and returns an object with changes to the state. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  105  

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
class Header extends React.Component { 
constructor(props) { 

super(props); 
this.state = {favoritecolor: "red"}; 

} 
static getDerivedStateFromProps(props, state) { 
return {favoritecolor: props.favcol }; 

} 
render() { 
return ( 

<h1>My Favorite Color is {this.state.favoritecolor}</h1> 
); 

} 
} 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Header favcol="yellow"/>); 

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
class Header extends React.Component { 
render() { 

return ( 
<h1>This is the content of the Header component</h1> 

); 
}} 

const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Header />); 

The example below starts with the favorite color being "red", but 
the getDerivedStateFromProps() method updates the favorite color based on 
the favcol attribute: 

 

OUTPUT: 
 

 render 
 

The render() method is required, and is the method that actually outputs the 
HTML to the DOM. 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  106  

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
class Header extends React.Component { 
constructor(props) { 

super(props); 
this.state = {favoritecolor: "red"}; 

} 
componentDidMount() { 
setTimeout(() => { 

this.setState({favoritecolor: "yellow"}) 
}, 1000) 

} 
render() { 
return ( 

<h1>My Favorite Color is {this.state.favoritecolor}</h1> 
); 

} 
} 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Header />); 

OUTPUT: 
 

 
 

 componentDidMount 
 

The componentDidMount() method is called after the component is rendered. 
 

This is where you run statements that requires that the component is already 
placed in the DOM. 

 

OUTPUT: 
 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  107  

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
class Header extends React.Component { 
constructor(props) { 

super(props); 
this.state = {favoritecolor: "red"}; 

} 
static getDerivedStateFromProps(props, state) { 
return {favoritecolor: props.favcol }; 

} 
changeColor = () => { 
this.setState({favoritecolor: "blue"}); 

} 
render() { 
return ( 

<div> 
<h1>My Favorite Color is {this.state.favoritecolor}</h1> 
<button type="button" onClick={this.changeColor}>Change color</button> 
</div> 

); }} 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Header favcol="yellow" />); 

2. Updating 
 

A component is updated whenever there is a change in the component's state or props. 
 

React has five built-in methods that gets called, in this order, when a component is 
updated: 

 
1. getDerivedStateFromProps() 
2. shouldComponentUpdate() 
3. render() 
4. getSnapshotBeforeUpdate() 
5. componentDidUpdate() 

 
The render() method is required and will always be called, the others are optional and 
will be called if you define them. 

 
 getDerivedStateFromProps 

 

Also at updates the getDerivedStateFromProps method is called. This is the first 
method that is called when a component gets updated. 

 
This is still the natural place to set the state object based on the initial props. 

 
The example below has a button that changes the favorite color to blue, but since 

the getDerivedStateFromProps() method is called, which updates the state with the 
color from the favcol attribute, the favorite color is still rendered as yellow: 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  108  

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
class Header extends React.Component { 
constructor(props) { 

super(props); 
this.state = {favoritecolor: "red"}; 

} 
shouldComponentUpdate() { 
return false; 

} 
changeColor = () => { 
this.setState({favoritecolor: "blue"}); 

} 
render() { 
return ( 

<div> 
<h1>My Favorite Color is {this.state.favoritecolor}</h1> 
<button type="button" onClick={this.changeColor}>Change color</button> 
</div> 

); 
} 

} 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Header />); 

OUTPUT: 
 

 shouldComponentUpdate 
 

In the shouldComponentUpdate() method you can return a Boolean value that 
specifies whether React should continue with the rendering or not. 

 
The default value is true. 

 
The example below shows what happens when 

the shouldComponentUpdate() method returns false: 
 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  109  

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
class Header extends React.Component { 
constructor(props) { 

super(props); 
this.state = {favoritecolor: "red"}; 

} 
changeColor = () => { 
this.setState({favoritecolor: "blue"}); 

} 
render() { 
return ( 

<div> 
<h1>My Favorite Color is {this.state.favoritecolor}</h1> 
<button type="button" onClick={this.changeColor}>Change color</button> 
</div> 

); 
} 

} 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Header />); 

OUTPUT: 
 

 render 
 

The render() method is of course called when a component gets updated, it has 
to re-render the HTML to the DOM, with the new changes. 

 
The example below has a button that changes the favorite color to blue: 

 

OUTPUT: 
 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  110  

 getSnapshotBeforeUpdate 
 

In the getSnapshotBeforeUpdate() method you have access to 
the props and state before the update, meaning that even after the update, you can 
check what the values were before the update. 

 
If the getSnapshotBeforeUpdate() method is present, you should also include 

the componentDidUpdate() method, otherwise you will get an error. 
 

The example below might seem complicated, but all it does is this: 
 

When the component is mounting it is rendered with the favorite color "red". 
 

When the component has been mounted, a timer changes the state, and after one 
second, the favorite color becomes "yellow". 

 
This action triggers the update phase, and since this component has 

a getSnapshotBeforeUpdate() method, this method is executed, and writes a message to 
the empty DIV1 element. 

 
Then the componentDidUpdate() method is executed and writes a message in 

the empty DIV2 element: 
 

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
class Header extends React.Component { 
constructor(props) { 

super(props); 
this.state = {favoritecolor: "red"}; 

} 
componentDidMount() { 
setTimeout(() => { 

this.setState({favoritecolor: "yellow"}) 
}, 1000) 

} 
getSnapshotBeforeUpdate(prevProps, prevState) { 
document.getElementById("div1").innerHTML = 
"Before the update, the favorite was " + prevState.favoritecolor; 

} 
componentDidUpdate() { 
document.getElementById("div2").innerHTML = 
"The updated favorite is " + this.state.favoritecolor; 

} 
render() { 
return ( 

<div> 
<h1>My Favorite Color is {this.state.favoritecolor}</h1> 
<div id="div1"></div> 
<div id="div2"></div> 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  111  

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
class Header extends React.Component { 
constructor(props) { 

super(props); 
this.state = {favoritecolor: "red"}; 

} 
componentDidMount() { 
setTimeout(() => { 

this.setState({favoritecolor: "yellow"}) 
}, 1000) 

} 
componentDidUpdate() { 
document.getElementById("mydiv").innerHTML = 

 

 
OUTPUT: 

 

 componentDidUpdate 
 

The componentDidUpdate method is called after the component is updated in 
the DOM. 

 
The example below might seem complicated, but all it does is this: 

 
When the component is mounting it is rendered with the favorite color "red". 

 
When the component has been mounted, a timer changes the state, and the color 

becomes "yellow". 
 

This action triggers the update phase, and since this component has 
a componentDidUpdate method, this method is executed and writes a message in the 
empty DIV element: 

 

</div> 
); 

} 
} 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Header />); 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  112  

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
class Container extends React.Component { 
constructor(props) { 

super(props); 
this.state = {show: true}; 

} 
delHeader = () => { 
this.setState({show: false}); 

 

 
OUTPUT: 

 

3. Unmounting 
 

The next phase in the lifecycle is when a component is removed from the DOM, 
or unmounting as React likes to call it. 

 
React has only one built-in method that gets called when a component is unmounted: 

 
 componentWillUnmount() 

3.1componentWillUnmount 

The componentWillUnmount method is called when the component is about to be 
removed from the DOM. 

 

"The updated favorite is " + this.state.favoritecolor; 
} 
render() { 
return ( 

<div> 
<h1>My Favorite Color is {this.state.favoritecolor}</h1> 
<div id="mydiv"></div> 
</div> 

); 
} 

} 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Header />); 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  113  

 

 
OUTPUT: 

 

} 
render() { 
let myheader; 
if (this.state.show) { 

myheader = <Child />; 
}; 
return ( 

<div> 
{myheader} 
<button type="button" onClick={this.delHeader}>Delete Header</button> 
</div> 

); 
} 

} 
class Child extends React.Component { 
componentWillUnmount() { 
alert("The component named Header is about to be unmounted."); 

} 
render() { 
return ( 

<h1>Hello World!</h1> 
); 

} 
} 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Container />); 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  114  

JS Localstorage 

JavaScript localStorage 
 

LocalStorage is a data storage type of web storage. This allows the JavaScript 
sites and apps to store and access the data without any expiration date. This means that 
the data will always be persisted and will not expire. So, data stored in the browser will 
be available even after closing the browser window. 

 
In short, all we can say is that the localStorage holds the data with no expiry date, 

which is available to the user even after closing the browser window. It is useful in 
various ways, such as remembering the shopping cart data or user login on any website. 

 
In the past days, cookies were the only option to remember this type of temporary 

and local information, but now we have localStorage as well. Local storage comes with a 
higher storage limit than cookies (5MB vs 4MB). It also does not get sent with 
every HTTP request. So, it is a better choice now for client-side storage. Some essential 
points of localStorage need to be noted: 

 
o localStorage is not secure to store sensitive data and can be accessed using any 

code. So, it is quite insecure. 

o It is an advantage of localStorage over cookies that it can store more data than 
cookies. You can store 5MB data on the browser using localStorage. 

o localStorage stores the information only on browser instead in database. 
Thereby the localStorage is not a substitute for a server-based database. 

o localStorage is synchronous, which means that each operation executes one after 
another. 

 
localStorage Methods 

 
The localStorage offers some methods to use it. Before that, a basic overview of these 
methods are as follows: 

 

Methods Description 

setItem() This method is used to add the data through key and 
value to localStorage. 

getItem() It is used to fetch or retrieve the value from the 
storage using the key. 

removeItem() It removes an item from storage by using the key. 

clear() It is used to gets clear all the storage. 

 
Each of these methods is used with localStorage keyword connecting with dot(.) 
character. 

https://www.javatpoint.com/computer-network-http


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  115  

For Example: localStorage.setItem(). 

LocalStorage property is read-only. 

Following some codes given, which are used to add, retrieve, remove, and clear the data 
in localStorage. Use them in your code accordingly whenever needed. You need a key- 
value pair to add some data in localStorage. So, let key is city and its value is 
Noida, i.e., key: value = city: Noida. 

 

Add data 
 

To add the data in localStorage, both key and value are required to pass in setItem() 
function. 

localStorage.setItem("city", "Noida"); 

Retrieve data 

It requires only the key to retrieve the data from storage and a JavaScript variable to 
store the returned data. 

const res = localStorage.getItem("city"); 
 

Remove data 
 

It also requires only the key to remove the value attached with it. 
localStorage.removeItem("city"); 

Clear localStorage 

It is a simple clear() function of localStorage, which is used to remove all the 
localStorage data: 

 
localStorage.clear()

Advantage of localStorage 

 
o The data collected by localStorage is stored in the browser. You can store 5 MB 

data in the browser. 

o There is no expiry date of data stored by localStorage. 

o You can remove all the localStorage item by a single line code, i.e., clear(). 

o The localStorage data persist even after closing the browser window, like items 
in shopping cart. 

o It also has advantages over cookies because it can store more data than cookies. 
 

Browser compatibility 
 

The localStorage has specified in HTML 5, which is supported by several browsers, like 
Chrome. Below is a list of different browsers and their versions that supports JavaScript 
localStorage. 

https://www.javatpoint.com/javascript-tutorial


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  116  

 

Browser  

Chrome 

 

Internet 
Explorer 

 

Firefox 

 

 

Opera 

 

 

Safari 

 

 

Edge 

Version 
support 

4.0 8.0 3.5 11.5 4 12 

 
Example 

It is a basic example of adding a key and value to localStorage and retrieving back by the 
key. See the code below how localStorage methods work: 

1. <html> 
2. <body> 
3. <div id="result"></div> 
4. <script> 
5. // Check browser support 
6. if (typeof(Storage) !== "undefined") { 
7. // Store an item to localStorage 
8. localStorage.setItem("firstname", "Alen"); 
9. // Retrieve the added item 
10. document.getElementById("result").innerHTML = localStorage.getItem("firstname"); 
11. } 
12. else { 
13. //display this message if browser does not support localStorage 
14.  document.getElementById("result").innerHTML = "Sorry, your browser does not supp 

ort Web Storage."; 
15. } 
16. </script> </body></html> 

 
 

Output 
 

 Alen  
 

Clear all records 
 

Clear() method of localStorage is used to clear the entire storage data. When this 
method invokes, it clears all the records for that domain from the storage. It does not 
contain any parameters. See the syntax to clear the localStorage: 

window.localStorage.clear(); 
Or 

localStorage.clear(); 
We will use this clear code in below example. 
Check localStorage 

 
On the JavaScript console, you can check what is   in   local   storage   by 

typing localStorage command on it. Even if there nothing in localStorage, it has length = 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  117  

0 inside it. 
 

Command 

LocalStorage 

Output 

 Storage {length: 0}  

Events 
 

An event is an action that could be triggered as a result of the user action or 
system generated event. For example, a mouse click, loading of a web page, pressing a 
key, window resizes, and other interactions are called events. 

 
React has its own event handling system which is very similar to handling events 

on DOM elements. The react event handling system is known as Synthetic Events. The 
synthetic event is a cross-browser wrapper of the browser's native event. 

 

 

Handling events with react have some syntactic differences from handling events on 
DOM. These are: 

 
1. React events are named as camelCase instead of lowercase. 

2. With JSX, a function is passed as the event handler instead of a string. For 
example: 

 
Event declaration in plain HTML: 

1. <button onclick="showMessage()"> 
2. Hello MCA 
3. </button> 

Event declaration in React: 
1. <button onClick={showMessage}> 
2. Hello MCA 
3. </button> 

3. In react, we cannot return false to prevent   the default behavior.   We   must 
call preventDefault event explicitly to prevent the default behavior. For example: 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  118  

In plain HTML, to prevent the default link behavior of opening a new page, we can write: 
 

1. <a href="#" onclick="console.log('You had clicked a Link.'); return false"> 
2. Click_Me 
3. </a> 

In React, we can write it as: 
 

1. function ActionLink() { 
2. function handleClick(e) { 
3. e.preventDefault(); 
4. console.log('You had clicked a Link.'); 5.
 } 
6. return ( 
7. <a href="#" onClick={handleClick}> 
8. Click_Me 9.
 </a> 
10. ); 
11. } 

 
Example 

 
In the below example, we have used only one component and adding an onChange 
event. This event will trigger the changeText function, which returns the company 
name. 

1. import React, { Component } from 'react'; 
2. class App extends React.Component { 
3. constructor(props) { 
4. super(props); 
5. this.state = { 
6. companyName: '' 7.
 }; 
8. } 
9. changeText(event) { 
10. this.setState({ 
11. companyName: event.target.value 
12. }); 
13. } 
14. render() { 
15. return ( 
16. <div> 
17. <h2>Simple Event Example</h2> 
18. <label htmlFor="name">Enter company name: </label> 
19. <input type="text" id="companyName" onChange={this.changeText.bind(thi s)}/> 
20. <h4>You entered: { this.state.companyName }</h4> 
21. </div> 
22. ); 
23. } 
24. } 
25. export default App; 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  119  

Output 
 

When you execute the above code, you will get the following output. 
 

 

After entering the name in the textbox, you will get the output as like below screen. 
 

 

Just like HTML DOM events, React can perform actions based on user events. 

React has the same events as HTML: click, change, mouseover etc. 

Adding Events 
 

React events are written in camelCase syntax: 

onClick instead of onclick. 

React event handlers are written inside curly braces: 

onClick={shoot} instead of onClick="shoot()". 

 
 
 
 
 

 

EXAMPLE: 

 

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
function Football() { 
const shoot = () => { 
alert("Great Shot!"); 

} 
return ( 
<button onClick={shoot}>Take the shot!</button> 

); 
} 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Football />); 

React: 

<button onClick={shoot}>Take the Shot!</button> 
HTML: 

<button onclick="shoot()">Take the Shot!</button> 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  120  

OUTPUT: 
 

Lifting State Up 

Lifting up the State: As we know, every component in React has its own state. 
Because of this sometimes data can be redundant and inconsistent. So, by Lifting up 
the state we make the state of the parent component as a single source of truth and 
pass the data of the parent in its children. 

Time to use Lift up the State: If the data in “parent and children components” 
or in “cousin components” is Not in Sync. 
Example 1: If we have 2 components in our App. A -> B where, A is parent of B. 
keeping the same data in both Component A and B might cause inconsistency of data. 
Example 2: If we have 3 components in our App. 

A 

/ \ 

B C 

Where A is the parent of B and C. In this case, If there is some Data only in component 
B but, component C also wants that data. We know Component C cannot access the 
data because a component can talk only to its parent or child (Not cousins). 

Problem: Let’s Implement this with a simple but general example. We are considering 
the second example. 
Complete File Structure: 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  121  

Approach: To solve this, we will Lift the state of component B and component C to 
component A. Make A.js as our Main Parent by changing the path of App in the index.js 
file 
Before: 
import App from './App'; 

After: 
import App from './A'; 

Filename- A.js: 

import React,{ Component } from 'react'; 
import B from './B' 
import C from './C' 
class A extends Component { 
constructor(props) { 
super(props); 
this.handleTextChange = 
this.handleTextChange.bind(this); 

this.state = {text: ''}; 
} 
handleTextChange(newText) { 
this.setState({text: newText}); 

} 
render() { 
return ( 

<React.Fragment> 
<B text={this.state.text} 

handleTextChange={this.handleTextChange}/> 
<C text={this.state.text} /> 

</React.Fragment> 
); 

}} 
export default A; 

Filename- B.js: 
import React,{ Component } from 'react'; 
class B extends Component { 
constructor(props) { 

super(props); 
this.handleTextChange = this.handleTextChange.bind(this); 

} 
handleTextChange(e){ 

this.props.handleTextChange(e.target.value); 
} 
render() { 

return ( 
<input value={this.props.text} 

onChange={this.handleTextChange} /> 
); }} 

export default B; 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  122  

 

Filename- C.js: 
import React,{ Component } from 'react'; 
class C extends Component { 
render() { 

return ( 
<h3>Output: {this.props.text}</h3> 

); 
} 
} 
export default C; 
Output: Now, component C can Access text in component B through component A. 

Composition and Inheritance 

React Composition is a development pattern based on React's original 
component model where we build components from other components using explicit 
defined props or the implicit children prop. 

Composition Patterns 

1. Lifting State & Container/Presenter 
2. Higher-Order Component (HOC) 
3. Render Prop/Function-as-Child 
4. “Renderless” State Provider 

1.Lifting State & Container/Presenter 

The simplest way to compose React components is to follow these rules: 

 

1. Divide components into stateful “containers” and stateless “presenters”. 
 

2. Pass functions (“callbacks”) that change the container state as props to children 
 

3. If two components need access to the same state, move the state into their common 
parent 

EXAMPLE: 

class Container extends Component { 
state = { 
text: 'foo' 

} 
changeText = newText => this.setState({text: newText}) 
render() { 
<div> 

<Presenter1 text={this.state.text} changeText={this.changeText} /> 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  123  

<Presenter2 text={this.state.text} /> 
<div> 

} 
} 

 
 

2. Higher-Order Component (HOC) 

A higher-order component is a function that takes a component and returns a 
component. One use case is to inject additional props or context. 

 
Think of an HOC as a component factory or a stage in a “component assembly line”. 
// JSX 
const withFooProp = WrappedComponent => props => <WrappedComponent foo={2} 
{...props} /> 
// createElement 
const withFooProp = WrappedComponent => props => h(WrappedComponent, { foo: 2, 
...props }) 
const Bar // ... a component 
export default withFooProp(Bar) // export an augmented version of Bar 
// elsewhere... 
import Bar from './bar' 
// props {baz: 2, foo: 2} 
<Bar baz={2} /> 

 
Without JSX it is technically possible to use HOCs inline as well, but this will cause 

a re-paint every render because a new component class is created each time and React 
uses the identity of the component constructor as part of its reconciliation. 
Examples 
 React-Redux uses an HOC called connect to map store state to props 
 React-Router’s withRouter HOC provides route context to components needing 

access to history APIs 
Disadvantages 
 Creates a wrapper around components, allocating a new function and taking up space 

in the tree when debugging 
 Higher-order function composition doesn’t always work inline with JSX, depending 

on what you’re trying to do. 
3. Render Prop/Function-as-Child 

Components that use the “render prop” pattern invert control of rendering from 
the component itself to the consumer by accepting the render function as a prop. This 
prop is commonly called “render”, although since JSX children are turned into the 3rd 
argument to createElement, the children prop can be repurposed as a render prop, too 
(the function-as-child pattern). 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  124  

FileName: function-as-child.js 

const InjectTimestamp = ({children, ...props}) => { 
const time = new Date() 
return children(time) 

} 
InjectTimestamp.propTypes = { 
children: PropTypes.func, 

} 
const Foo = () => { 
return ( 
<div> 

<InjectTimestamp> 
{ time => <div>time.toLocaleString()</div> } 

</InjectTimestamp> 
</div> 

) 
} 

 

FileName: render-prop.js 

const InjectTimestamp = ({render, ...props}) => { 
const time = new Date() 
return render(time) 

} 
InjectTimestamp.propTypes = { 
render: PropTypes.func, 

} 
const Foo = () => { 
return ( 
<div> 

<InjectTimestamp render={time => ( 
<div>{ time.toLocaleString() }</div> 

)} /> 
</div> 

) 
} 
Disadvantages 
 Function signature is difficult to enforce (static checking works, using PropTypes at 

runtime is impossible) 
 For the function-as-child pattern, implicitly redefining the meaning of the 3rd 

argument (children) in createElement can be confusing 
4. “Renderless” State Provider 

The “renderless” component pattern takes the container-presenter pattern to the 
extreme and forces state management to be implemented completely separately from 
render logic. React Powerplug is one library that provides utilities for composing 
components with this pattern. 

https://github.com/renatorib/react-powerplug/blob/master/README.md


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  125  

What is inheritance in react JS? 

Inheritance allows the app to do the coupling between the parent-child 
component and reuse properties such as state values and function in its child 
components. React does not use inheritance except in the initial component class, 
which extends from the react package 
Two classes exist are: 
 Superclass(Parent Class) 
 Subclass(Child Class) 

In React, the composition model is used instead of inheritance, so that code can be re-
used again between the components. In react extends keyword is used on the main 
function i.e the constructor function. 

By using the extends keyword you can have the present component have all the 
component properties from the already existing component. The composition model 
uses the super-sub class relationship by passing the state and props. The sub-class 
segment can access any progressions to one another. 

 
Creating React Application: 
 Step 1: Create a React application using the following command in the terminal/ 

command prompt: 
create-react-app foldername 

 Step 2: After creating your project folder i.e. foldername, move to it using the 
following command: 
cd foldername 

Project Structure: It will look like the following: 

 

Project Structure 

Here, you have two components i.e. AppComponent and a ChildComponent, and the 
child component takes over all the app properties. 
Example: Now write down the following code in the App.js file. Here, App is our 
default(parent) component where   we   have   written   our   code.   In   the   below 
code, this.state.message is passed to ChildComponent. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  126  

FileName :App.js 
import logo from './logo.svg'; 
import React from 'react'; 
import './App.css'; 
import ChildComponent from "./ChildComponent"; 
class App extends React.Component { 

constructor(props) { 
super(props); 
this.state = { 

message: " Geeks for Geeks message" 
}; 

} 
render() { 

return ( 
<div> 

<ChildComponent message={this.state.message} /> 
</div> 

); 
}} 

export default App; 
Now write down the following code in the ChildComponent.js file. The child 
component accepts all the app component properties. 

FileName:ChildComponent.js 
import React from "react"; 
class ChildComponent extends React.Component { 

render() { 
const { message } = this.props; 
return ( 

<div> 
<p> Message from App component : <b>{message}</b> </p> 
</div> 

); 
}} 

export default ChildComponent; 
Step to Run Application: Run the application using the following command from the 
root directory of the project: 
npm start 

OUTPUT: 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  127  

UNIT V 

APP IMPLEMENTATION IN CLOUD 

 Cloud providers Overview 

Cloud computing is Web-based computing that allows businesses and individuals 
to consume computing resources such as virtual machines, databases, processing, 
memory, services, storage, messaging, events, and pay-as-you-go. Cloud services often 
improve upon older ones. 

Advantages of cloud computing 
 

1. Cloud computing allows a business to cut their operational and fixed monthly costs of 
hardware, databases, servers, software licenses. 
2. Cloud computing offers 24/7 uptime (99.99% uptime). Cloud servers and data 
centers are managed by the cloud service provided. 
3. Cloud computing is scalable and reliable. There is no limit to the number of users or 
resources. 
4. Cloud computing provides maintainability and automatic updates of new software, 
OS, databases, and third-party software. 
5. Cloud service providers have data centers in various locations, which makes them 
faster and more reliable. Larger companies such as Microsoft and AWS even have data 
centers around the world. 

 
Cloud computing can be divided into three major categories, Software as a 

Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). 
 

 Infrastructure: The foundation of every computing environment. This 
infrastructure could include networks, database services, data management, data 
storage (known in this context as cloud storage), servers (cloud is the basis 
for serverless computing), and virtualization. 

 Platforms: The tools needed to create and deploy applications. These platforms 
could include operating systems like Linux®, middleware, and runtime 
environments. 

 Software: Ready-to-use applications. This software could be custom or standard 
applications provided by independent service providers. 

 
The two leaders in cloud computing are Amazon and Microsoft, followed by Google, 
Alibaba, and IBM. 

https://www.redhat.com/en/topics/cloud-computing/what-is-iaas
https://www.redhat.com/en/topics/hyperconverged-infrastructure/what-is-software-defined-networking
https://www.redhat.com/en/topics/data-services/what-is-data-management
https://www.redhat.com/en/topics/data-services/what-is-data-management
https://www.redhat.com/en/topics/data-storage
https://www.redhat.com/en/topics/data-storage/what-is-cloud-storage
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://www.redhat.com/en/topics/virtualization
https://www.redhat.com/en/topics/cloud-computing/what-is-paas
https://www.redhat.com/en/topics/linux
https://www.redhat.com/en/topics/linux
https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-Java-runtime-environment
https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-Java-runtime-environment
https://www.redhat.com/en/topics/cloud-computing/what-is-saas


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  128  

 

 
 

Here is a list of my top 10 cloud service providers: 
1. Amazon Web Services (AWS) 
2. Microsoft Azure 
3. Google Cloud 
4. Alibaba Cloud 
5. IBM Cloud 
6. Oracle 
7. Salesforce 
8. SAP 
9. Rackspace Cloud 
10. VMWare 

 
The following table summarizes the top 3 key players and their offerings in the cloud 
computing world: 

 
 AWS Azure Google Cloud 
Company AWS Inc. Microsoft Google 
Launch year 2006 2010 2008 

Geographical 
Regions 

25 54 21 

Availability 
Zones 

78 140 (countries) 61 

 
 

 
Key offerings 

Compute, storage, 
database, analytics, 
networking, machine 
learning, and AI, 
mobile, developer 
tools, IoT, security, 
enterprise 
applications, 
blockchain. 

Compute, storage, 
mobile, data 
management, 
messaging, media 
services, CDN, machine 
learning and AI, 
developer tools, 
security, blockchain, 
functions, IoT. 

 
Compute, storage, 
databases, 
networking, big data, 
cloud AI, 
management tools, 
Identity and security, 
IoT, API platform 

Compliance 
Certificates 

46 90 
 

Annual 
Revenue 

$33 billion $35 billion $8 billion 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  129  

Virtual Private Cloud 
 

 
A virtual private cloud (VPC) is a secure, isolated private cloud hosted within 

a public cloud. VPC customers can run code, store data, host websites, and do anything 
else they could do in an ordinary private cloud, but the private cloud is hosted remotely 
by a public cloud provider. 

 
VPCs combine the scalability and convenience of public cloud computing with 

the data isolation of private cloud computing. 
 

What is a public cloud? What is a private cloud? 
 

A public cloud is shared cloud infrastructure. Multiple customers of the cloud 
vendor access that same infrastructure, although their data is not shared – just like 
every person in a restaurant orders from the same kitchen, but they get different dishes. 
Public cloud service providers include AWS, Google Cloud Platform, and Microsoft 
Azure, among others. 

 
A private cloud, however, is single-tenant. A private cloud is a cloud service that 

is exclusively offered to one organization. A virtual private cloud (VPC) is a private 
cloud within a public cloud; no one else shares the VPC with the VPC customer. 

 
How is a VPC isolated within a public cloud? 

 
A VPC isolates computing resources from the other computing resources 

available in the public cloud. 
 

Key technologies for isolating a VPC from the rest of the public cloud: 
 

Subnets: A subnet is a range of IP addresses within a network that are reserved so that 
they're not available to everyone within the network, essentially dividing part of the 
network for private use. 

 
VLAN: A VLAN is a virtual LAN. Like a subnet, a VLAN is a way of partitioning a 
network, but the partitioning takes place at a different layer within the OSI model. 

https://www.cloudflare.com/learning/cloud/what-is-a-private-cloud/
https://www.cloudflare.com/learning/cloud/what-is-a-public-cloud/
https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://www.cloudflare.com/learning/dns/glossary/what-is-my-ip-address/
https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  130  

VPN: A virtual private network (VPN) uses encryption to create a private network over 
the top of a public network. VPN traffic passes through publicly shared Internet 
infrastructure – routers, switches, etc. – but the traffic is scrambled and not visible to 
anyone. 

 
 What are the advantages of using a VPC instead of a private cloud? 

 

Scalability: VPC is hosted by a public cloud provider, customers can add more 
computing resources on demand. 

 
Easy hybrid cloud deployment: It's relatively simple to connect a VPC to a public 
cloud or to on-premises infrastructure via the VPN. 

 
Better performance: Cloud-hosted websites and applications typically perform better 
than those hosted on local on-premises servers. 

 
Better security: The public cloud providers that offer VPCs often have more resources 
for updating and maintaining the infrastructure, especially for small and mid-market 
businesses. 
Features 

 
 Availability: Redundant resources and highly fault-tolerant availability zone 

architectures mean your applications and workloads are highly available. 
 Security: VPC is a logically isolated network, your data and applications won’t 

share space or mix with those of the cloud provider’s other customers. 
  Affordability: VPC customers can take advantage of the public cloud’s cost- 

effectiveness, such as saving on hardware costs, labor times, and other 
resources. 

Benefits 
 

 Flexible business growth: Because cloud infrastructure resources—including 
virtual servers, storage, and networking—can be deployed dynamically, VPC 
customers can easily adapt to changes in business needs. 

 Satisfied customers: The high availability of VPC environments enables 
reliable online experiences that build customer loyalty and increase trust in 
your brand. 

Three-tier architecture in a VPC 
 

The majority of today’s applications are designed with a three-tier architecture 
comprised of the following interconnected tiers: 

 
 The web or presentation tier, which takes requests from web browsers and 

presents information created by, or stored within, the other layers to end users. 
 The application tier, which houses the business logic and is where most 

processing takes place. 
 The database tier, comprised of database servers that store the data processed 

in the application tier. 

 

https://www.cloudflare.com/learning/vpn/what-is-a-vpn/
https://www.cloudflare.com/learning/ssl/what-is-encryption/
https://www.ibm.com/cloud/learn/cloud-server
https://www.ibm.com/cloud/learn/cloud-server
https://www.ibm.com/cloud/learn/networking-a-complete-guide


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  131  

Scaling (Horizontal and Vertical) 

Vertical Scaling 
Vertical scaling refers to adding more resources (CPU/RAM/DISK) to your 
server (database or application server is still remains one) as on demand. 
Vertical Scaling is most commonly used in applications and products of middle- 
range as well as small and middle-sized companies. One of the most common 
examples of Virtual Scaling is to buy an expensive hardware and use it as 
a Virtual Machine hypervisor (VMWare ESX). 
Vertical Scaling usually means upgrade of server hardware. Some of the reasons 
to scale vertically includes increasing IOPS (Input / Ouput Operations), 
amplifying CPU/RAM capacity, as well as disk capacity. 
However, even after using virtualization, whenever an improved performance is 
targeted, the risk for downtimes with it is much higher than using horizontal 
scaling. 
Vertical scaling of cloud resources is the enhancement of memory, processing 
power, networking, and other technical capabilities of an existing cloud server, 
either by the addition or replacement of components such as CPUs and HDDs. 

https://www.spiceworks.com/security/network-security/articles/what-is-network-security/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  132  

 Vertical scaling is also referred to as scaling ‘up’ (or ‘down’). Compared to 
horizontal scaling (scaling ‘out’ or ‘in’), vertical cloud scaling entails an increase 
in power and thereby throughput of a single server or other machine. 

 When you scale up, your data and applications continue to exist on a single node. 
However, the load of processing them spreads through more powerful 
components, mostly to handle increased workloads. 

 Leading cloud service providers such as AWS and Azure have many instance 
sizes available for users. Therefore, vertical scaling of cloud resources is 
available for several solutions, including RDS databases and EC2 instances. 

 How does vertical cloud scaling work? 
 

 Cloud scalability is primarily of two types: vertical scaling (upgrading of existing 
remote infrastructure) and horizontal scaling (deploying new infrastructure). 

 In traditional data centers, vertical scaling is normally achieved by purchasing 
new, powerful servers or components. 

 The old servers or components are replaced and either resold, discarded as 
scrap, or repurposed for less intensive processing- or memory-based 
applications. 

 However, vertical scaling in a cloud environment is much simpler for the end- 
user. In most cases, all it takes is the modification of instance size on a web 
portal. 

 Ensuring the availability of adequate infrastructure and resources to meet 
scalability demands is the cloud vendor’s responsibility. 

Vertical Cloud Scaling Process: 6 Key Steps 
 

The scaling process differs for every leading cloud platform. However, it is generally 
easy to understand and implement. The following steps are the most relevant in a cloud 
environment powered by AWS. 

https://www.spiceworks.com/tech/data-center/articles/want-to-achieve-five-nines-uptime-2-keys-to-maximize-data-center-performance/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  133  

 
 

 

Step I: Forecast and plan for demand 
 

This is best achieved through in-depth research to understand past demand and 
forecast future demand trends. 

 
This strategy should involve stakeholders from across the organization, your 

cloud vendor(s), and consultants (if necessary). Together, work to identify all your 
cloud resource needs, as well as the metrics and constraints that are critical for success 
with vertical scaling. 

 
Step II: Set a perpetual number of instances 

 
Demand levels, related scalability, and flexibility requirements, it is time to set 

your vertical cloud scaling parameters accordingly. Begin by configuring the auto- 
scaling feature to preserve a fixed number of instances perpetually. 

 
EC2 auto scaling scans the health of running instances routinely and replaces bad 

instances if it detects any. This way, you will have the number of instances you need to 
scale up or down whenever required. 

 
AWS will automatically manage the creation and termination of instances to 

ensure that stable capacity is maintained according to the fixed value specified. This 
enables the maintenance of a minimum and maximum capacity for automatic vertical 
scaling. 

https://www.spiceworks.com/tech/cloud/articles/top-community-cloud-providers/
https://www.spiceworks.com/tech/cloud/articles/top-community-cloud-providers/
https://www.spiceworks.com/tech/cloud/articles/aws-elastic-feud/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  134  

Step III: Become familiar with manual scaling 
 

However, it is helpful to keep this information handy if the need to regulate 
performance without the help of scaling rules arises. 

 
Manual vertical scaling is straightforward in the case of RDS or EC2 servers; 

simply change the size of the instance. 
 

Be warned, however, that this is just a contingency step with some drawbacks, 
including the need for manual intervention, potentially higher costs due to architecture 
being left larger than required, and downtime during the changing of instance size. 

 
Step IV: Set scaling as per a fixed schedule 

 
It’s time to put this knowledge to use. As long as your demand forecast from step 

1 is accurate, you should be able to scale instances automatically at fixed dates and 
times whenever required. 

 
For instance, during the launch of a new product or a seasonal shopping event. 

This will enable all stakeholders to predict the availability of resources at any given 
moment in advance and even increase the number of perpetual instances if required. 

 
Step V: Ensure demand is driving scalability 

 
It is wise to check back often to ensure that your cloud platform scales as per 

demand, even if your demand forecast is not perfect. 
 

The demand-based scaling capabilities of leading cloud vendors are comfortably 
responsive to fluctuations in traffic. 

 
If everything is set up correctly, traffic spikes that you haven’t scheduled for 

according to step 4 should still be addressed. 
 

After all, one of the key benefits of automatic vertical scaling is its ability to 
address demand that cannot be predicted. 

 
Step VI: Remember to scale back down 

 
It is critical to keep this final step in mind, not only in manual intervention but 

also otherwise. Familiarize yourself with the pricing structure of your cloud provider, 
especially the bits specific to vertical scaling (or scaling in general). 

 
Generally speaking, scaling beyond a limit will cost you, even if it is fully 

automatic. Keep an eye out for opportunities to scale back down whenever feasible. 
 

Horizontal Scaling 
 Horizontal Scaling is a must use technology – whenever a high availability of 

(server) services are required Scaling horizontally involves adding more 
processing units or phyiscal machines to your server or database. 

https://www.spiceworks.com/tech/cloud/articles/public-cloud-service-providers/
https://www.spiceworks.com/tech/cloud/articles/top-private-cloud-solutions/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  135  

 It involves growing the number of nodes in the cluster, reducing the 
responsibilities of each member node by spreading the key space wider and 
providing additional end-points for client connections. 

 Horizontal Scaling has been historically much more used for high level of 
computing and for application and services. 

 Although this does not alter the capacity of each individual node, the load is 
decreased due to the distribution between separate server nodes. 

The Internet and particular web services have boosted the use of Horizontal Scaling. 
Most giant companies that provide well known web services like Google (Gmail, 
YouTube), Yahoo, Facebook, EBay, Amazon etc. are using heavily horizontal scaling. 

 

Horizontal cloud scaling, also known as scaling out, is the enhancement of cloud 
bandwidth by adding new computing nodes or machines. In simple terms, horizontal 
cloud scaling means adding a new server to a data center to help the existing servers 
handle the increased workload. 

 

Horizontal cloud scaling is normally used for websites, applications, and other internet 
platforms hosted on the cloud that see wide fluctuations in network traffic. 

Through horizontal scaling, the servers that host and process the data for these 
services are increased or decreased as needed. 

https://www.spiceworks.com/tech/cloud/articles/what-is-cloud-storage/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  136  

This enables the service to adapt to fluctuations in demand, prevent downtime, and 
ensure high-quality service delivery. 

 
Disadvantages of horizontal scaling 

 
 Increase in the complexity of operations and maintenance. 
 When a data center has multiple servers, it becomes harder to manage and 

maintain. 
 Things become more complicated on the software front as well because the 

need to add load balancing and virtualization may arise. 
 Backup also becomes difficult as the synchronization and communication 

among numerous machines need to be addressed. 
 

Horizontal Scaling Process: 6 Key Steps 

Step 1: Begin with the blueprint 

Start by including all relevant stakeholders in the study of past demand trends 
for your organization. 

 
Next, brainstorm with them to determine the short-, medium-, and long-term 

bandwidth requirements your organization would need to fulfill in the foreseeable 
future. 

 

 

Step 2: Plan for hardware acquisition 
 

At this stage of the process, it is important to include representatives from the IT 
department, as they will be responsible for the ongoing upkeep of this hardware. 

 
Work with all concerned parties to identify how you’ll go about scaling out. 

Aspects to be considered here should include hardware cost, compatibility, and the 
amount and type of infrastructure required. 

 

https://www.spiceworks.com/security/security-careers-skills/articles/security-skills-to-sharpen-in-2021/
https://www.spiceworks.com/security/security-careers-skills/articles/security-skills-to-sharpen-in-2021/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  137  

Step 3: Opt for stateless scalability 
 

Businesses generally have multiple instances of their applications running on the 
cloud at the same time. As you scale out, it becomes more difficult to guarantee that 
client requests will be received by one instance every time. 

 
This makes stateful horizontal scaling (scaling that involves the storage of 

data between sessions for later use) unsuitable for most business applications. 
 

Step 4: Leverage microservices as required 
 

After setting up the hardware and preparing it for horizontal scaling, the next 
step is to optimize the process. This can be achieved with the help of microservices. 

 
Microservices allow the splitting of services among various business functions. 

 
 Step 5: Aim for multi-cloud compatibility 

 
It would make sense to host all your business applications in your own data 

centers for now. However, there might come a time when you need to expand beyond 
the workload that your in-house servers can handle, such as a big sale or any other 
popular event. 

That’s when ensuring multi-cloud compatibility can prove to be immensely 
useful. By ensuring that your applications are capable of running on any cloud platform, 
you can scale out into the infrastructure of a third-party cloud vendor as required. 

 
Step 6: Finally, automate! 

 
Automation makes it easy and cost-effective to create and replicate workloads. It 

also helps ensure that your servers scale out whenever there is a spike in demand, 
without the need for manual intervention. 

 
The Difference 

 

 

 

https://www.spiceworks.com/tech/cloud/articles/hybrid-cloud-storage-platforms/
https://www.spiceworks.com/tech/cloud/articles/hybrid-cloud-storage-platforms/
https://www.spiceworks.com/tech/data-management/articles/top-10-challenges-of-using-microservices-for-managing-distributed-systems/
https://www.spiceworks.com/tech/cloud/articles/what-is-multicloud-infrastructure/


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  138  

Difference between Horizontal and Vertical Scaling 
 

Horizontal Scaling Vertical Scaling 

 
Horizontal Scaling is defined as the 
ability to extend capacity by interfacing 
different hardware or software entities 

Vertical Scaling is defined as the 
ability to increase an existing 
system’s capacity by adding 

resources 

It is based on partitioning where each 
node contains a single part of data 

The data is present on a single node 
and is scaled through multicore 

It is referred to as Scale-out It is referred to as Scale-up 

The licensing fee is costly The licensing is cost-effective 

 
It requires a load balancer to distribute 
load among the servers within a system 

Scaling the server capacity 
enhances the load capacity of the 

server 

It implies boosting the power of 
individual server with the existing server 

It implies boosting the power of the 
individual server 

 

 Virtual Machines, Ethernet and Switches 
 

What is a virtual machine (VM)? 
 

 A virtual machine is a virtual representation, or emulation, of a physical 
computer. They are often referred to as a guest while the physical 
machine they run on is referred to as the host. 

 Virtualization makes it possible to create multiple virtual machines, each 
with their own operating system (OS) and applications, on a single 
physical machine. A VM cannot interact directly with a physical computer. 

 Instead, it needs a lightweight software layer called a hypervisor to 
coordinate between it and the underlying physical hardware. The 
hypervisor allocates physical computing resources—such as processors, 
memory, and storage—to each VM. It keeps each VM separate from others 
so they don’t interfere with each other. 

 While this technology can go by many names, including virtual server, 
virtual server instance (VSI) and virtual private server (VPS), this article 
will simply refer to them as virtual machines. 

 
How virtualization works 

When a hypervisor is used on a physical computer or server, (also known as bare 
metal server), it allows the physical computer to separate its operating system and 
applications from its hardware. Then, it can divide itself into several independent 
“virtual machines.” 

https://www.ibm.com/cloud/learn/virtualization-a-complete-guide
https://www.ibm.com/cloud/learn/hypervisors


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  139  

 
Each of these new virtual machines can then run their own operating systems 

and applications independently while still sharing the original resources from the bare 
metal server, which the hypervisor manages. Those resources include memory, RAM, 
storage, etc. 

 
There are two primary types of hypervisors. 

 
Type 1 hypervisors run directly on the physical hardware (usually a server), taking the 
place of the OS. Typically, you use a separate software product to create and manipulate 
VMs on the hypervisor. 

 
Type 2 hypervisors run as an application within a host OS and usually target single- 
user desktop or notebook platforms. With a Type 2 hypervisor, you manually create a 
VM and then install a guest OS in it. You can use the hypervisor to allocate physical 
resources to your VM, manually setting the amount of processor cores and memory it 
can use. Depending on the hypervisor’s capabilities, you can also set options like 3D 
acceleration for graphics. 

 
Advantages and benefits of VMs 

 
 Resource utilization and improved ROI: Because multiple VMs run on a 

single physical computer, customers don’t have to buy a new server every time 

they want to run another OS, and they can get more return from each piece of 
hardware they already own. 

 Scale: With cloud computing, it’s easy to deploy multiple copies of the same 
virtual machine to better serve increases in load. 

 Portability: VMs can be relocated as needed among the physical computers in 
a network. This makes it possible to allocate workloads to servers that have 
spare computing power. 

  Flexibility: Creating a VM is faster and easier than installing an OS on a 
physical server. Developers and software testers can create new environments 
on demand to handle new tasks as they arise. 

 Security: A VM is a file that can be scanned for malicious software by an 
external program. The fast, easy creation of VMs also makes it possible to 
completely delete a compromised VM and then recreate it quickly, hastening 
recovery from malware infections. 

 
Types of VMs 

 
 Windows virtual machines 
 Android virtual machines 
 Mac virtual machines 
 iOS virtual machines 
 Java virtual machines 
 Python virtual machines 
 Linux virtual machines 
 VMware virtual machines 
 Ubuntu virtual machines 

https://www.ibm.com/cloud/learn/cloud-computing-gbl


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  140  

 
Windows virtual machines 

 
 Most hypervisors support VMs running the Windows OS as a guest. Microsoft’s 

Hyper-V hypervisor comes as part of the Windows operating system. 
 When installed, it creates a parent partition containing both itself and the 

primary Windows OS, each of which gets privileged access to the hardware. 
 Other operating systems, including Windows guests, run in child partitions that 

communicate with the hardware via the parent partition. 
 

Android virtual machines 
 

 Google’s open-source Android OS is common on mobile devices and connected 
home devices such as home entertainment devices. 

 The Android OS runs only on the ARM processor architecture that is common to 
these devices, but enthusiasts, Android gamers, or software developers might 
want to run it on PCs. 

 
Mac virtual machines 

 
 Apple only allows its macOS system to run on Apple hardware, prohibiting 

people from running it on non-Apple hardware as a VM or otherwise under its 
end user license agreement. 

iOS virtual machines 
 

 It is not possible to run iOS in a VM today because Apple strictly controls its iOS 
OS and doesn’t allow it to run on anything other than iOS devices. 

 The closest thing to an iOS VM is the iPhone simulator that ships with the Xcode 
integrated development environment, which simulates the entire iPhone system 
in software. 

Java virtual machines 
 

 The Java platform is an execution environment for programs written in the Java 
software development language. 

 Java’s promise was “write once, run anywhere” functionality. 
 This meant that any Java program could run on any hardware running the Java 

platform. 
 To achieve that, the Java platform includes a Java virtual machine (JVM). 

 
Python virtual machines 

 
 Like the JVM, the Python VM doesn’t run on a hypervisor, and it doesn’t contain a 

guest OS. 
 It is a tool that enables programs written in the Python programming language to 

run on a variety of CPUs. 
 Similar to Java, Python translates its programs into an intermediate format called 

bytecode, storing it in a file ready for execution. 
 When the program runs, the Python VM translates the bytecode into machine 

code for fast execution. 

https://www.ibm.com/cloud/learn/android-development-explained


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  141  

 
Linux virtual machines 

 
 It is also a common host OS used to run VMs and even has its own hypervisor 

called the kernel-based virtual machine (KVM). 
 

VMware virtual machines 
 

 VMware was an early virtualization software vendor and is now a popular 
provider of both Type 1 and Type 2 hypervisor and VM software to enterprise 
customers. 

 
Ubuntu virtual machines 

 
 Ubuntu can be deployed as a guest OS on Microsoft Hyper-V. 
 It provides an optimized version of Ubuntu Desktop that works well in Hyper-V’s 

Enhanced Session Mode, providing tight integration between the Windows host 
and Ubuntu VM. 

 It includes support for clipboard integration, dynamic desktop resizing, shared 
folders, and moving the mouse between the host and guest desktops. 

 Docker Container 

Docker is an open platform for developing, shipping, and running applications. 
Docker enables you to separate your applications from your infrastructure so you can 
deliver software quickly. 

The Docker platform 
 Docker provides the ability to package and run an application in a loosely 

isolated environment called a container. 
 The isolation and security allows you to run many containers simultaneously on 

a given host. 
 Containers are lightweight and contain everything needed to run the application, 

so you do not need to rely on what is currently installed on the host. 
 You can easily share containers while you work, and be sure that everyone you 

share with gets the same container that works in the same way. 

Docker provides tooling and a platform to manage the lifecycle of your 
containers: 

 
 Develop your application and its supporting components using containers. 
 The container becomes the unit for distributing and testing your application. 
 When you’re ready, deploy your application into your production environment, 

as a container or an orchestrated service. This works the same whether your 
production environment is a local data center, a cloud provider, or a hybrid of 
the two. 

 
Docker architecture 

 Docker uses a client-server architecture. 

 The Docker client talks to the Docker daemon, which does the heavy lifting of 
building, running, and distributing your Docker containers. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  142  

 The Docker client and daemon can run on the same system, or you can connect a 
Docker client to a remote Docker daemon. 

 The Docker client and daemon communicate using a REST API, over UNIX 
sockets or a network interface. 

 Another Docker client is Docker Compose, that lets you work with applications 
consisting of a set of containers. 

 

 
 

The Docker daemon 
The Docker daemon (dockerd) listens for Docker API requests and manages 

Docker objects such as images, containers, networks, and volumes. 
A daemon can also communicate with other daemons to manage Docker services. 

The Docker client 
The Docker client (docker) is the primary way that many Docker users interact 

with Docker. When you use commands such as docker run, the client sends these 
commands to dockerd, which carries them out. 

The docker command uses the Docker API. The Docker client can communicate 
with more than one daemon. 

Docker Desktop 
Docker Desktop is an easy-to-install application for your Mac or Windows 

environment that enables you to build and share containerized applications and 
microservices. 

Docker Desktop includes the Docker daemon (dockerd), the Docker client 
(docker), Docker Compose, Docker Content Trust, Kubernetes, and Credential Helper. 

Docker registries 
A Docker registry stores Docker images. Docker Hub  is a  public registry that 

anyone can use, and Docker is configured to look for images on Docker Hub by default. 

When you use the docker pull or docker run commands, the required images are 
pulled from your configured registry. 

When you use the docker push command, your image is pushed to your 
configured registry. 

Docker objects 
When you use Docker, you are creating and using images, containers, networks, 

volumes, plugins, and other objects. This section is a brief overview of some of those 
objects. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  143  

 
Images 

An image is a read-only template with instructions for creating a Docker 
container. Often, an image is based on another image, with some additional 
customization. 

Example: you may build an image which is based on the ubuntu image, but 
installs the Apache web server and your application, as well as the configuration details 
needed to make your application run. 

You might create your own images or you might only use those created by others 
and published in a registry. To build your own image, you create a Dockerfile with a 
simple syntax for defining the steps needed to create the image and run it. Each 
instruction in a Dockerfile creates a layer in the image. 

When you change the Dockerfile and rebuild the image, only those layers which 
have changed are rebuilt. This is part of what makes images so lightweight, small, and 
fast, when compared to other virtualization technologies. 

 
Containers 

A container is a runnable instance of an image. You can create, start, stop, move, 
or delete a container using the Docker API or CLI. You can connect a container to one or 
more networks, attach storage to it, or even create a new image based on its current 
state. 

You can control how isolated a container’s network, storage, or other underlying 
subsystems are from other containers or from the host machine. 

When a container is removed, any changes to its state that are not stored in persistent 
storage disappear. 

Example docker run command 
The following command runs an ubuntu container, attaches interactively to your local 
command-line session, and runs /bin/bash. 

$ docker run -i -t ubuntu /bin/bash 

 Kubernetes 

Kubernetes is an open source container orchestration platform that automates 
many of the manual processes involved in deploying, managing, and scaling 
containerized applications. 

Modern software is increasingly run as fleets of containers, sometimes called 
microservices. 

A complete application may comprise many containers, all needing to work 
together in specific ways. 

 
Kubernetes is software that turns a collection of physical or virtual hosts (servers) 

into a platform that: 
 Hosts containerized workloads, providing them with compute, storage, and 

network resources, and 
 

 Automatically manages large numbers of containerized applications — keeping 
them healthy and available by adapting to changes and challenges 

https://www.redhat.com/en/topics/open-source/what-is-open-source


MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  144  

Kubernetes work 
 

1. When developers create a multi-container application, they plan out how all the 
parts fit and work together, how many of each component should run, and 
roughly what should happen when challenges (e.g., lots of users logging in at 
once) are encountered. 

 
2. They store their containerized application components in a container registry 

(local or remote) and capture this thinking in one or several text files comprising 
aconfiguration. To start the application, they “apply” the configuration to 
Kubernetes. 

 
3. Kubernetes job is to evaluate and implement this configuration and maintain it 

until told otherwise. It: 
 

o Analyzes the configuration, aligning its requirements with those of all the 
other application configurations running on the system 

 
o Finds resources appropriate for running the new containers (e.g., some 

containers might need resources like GPUs that aren’t present on every 
host) 

 
o Grabs container images from the registry, starts up the new containers, 

and helps them connect to one another and to system resources (e.g., 
persistent storage), so the application works as a whole 

 
4. Then Kubernetes monitors everything, and when real events diverge from 

desired states, Kubernetes tries to fix things and adapt. 

 
Use of Kubernetes 

 
One of the benefits of Kubernetes is that it makes building and running complex 
applications much simpler. Here’s a handful of the many Kubernetes features: 

 
 Standard services like local DNS and basic load-balancing that most applications 

need, and are easy to use. 
 

 Standard behaviors (e.g., restart this container if it dies) that are easy to invoke, 
and do most of the work of keeping applications running, available, and 
performant. 

 
 A standard set of abstract “objects” (called things like “pods,” “replicasets,” and  

“deployments”) that wrap around containers and make it easy to build 
configurations around collections of containers. 

 
 A standard API that applications can call to easily enable more sophisticated 

behaviors, making it much easier to create applications that manage other 
applications. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  145  

components : 

 

 
 

The master node controls and manages a set of worker nodes and contains the 
Kubernetes cluster. We can talk to the master node via CLI, GUI, or API, and more than 
one master node can be used for fault tolerance. Kubernetes uses the etcd, and all 
master nodes are connected to etcd, which is a distributed key-value store. 

 
API Server 

 
API servers perform all administrative tasks on the master nodes. Users send the 

command to the API server, which then validates the request process and executes 
them. The API server determines if the request is valid or not and then processes it. 

 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  146  

Key-Value Store (etcd) 
 

Etcd is an open-source distributed Key-Value Store used to hold and manage the 
critical information that distributed systems need to keep running. The Key-Value Store, 
also called etcd, is a database Kubernetes uses to back up all cluster data. It stores the 
entire configuration and state of the cluster. 

 
Controller 

 
The role of the Controller is to obtain the desired state from the API Server. It 

checks the current state of the nodes it is tasked to control, and determines if there are 
any differences, and resolves them if any. 

 
Scheduler 

 

The Scheduler’s main job is to watch for new requests coming from the API 
Server and assign them to healthy nodes. It ranks the quality of the nodes and deploys 
pods to the best-suited node. 

 
Worker Node 

 
Worker nodes listen to the API Server for new work assignments; they execute 

the work assignments and then report the results to the Kubernetes Master node. 
 

 
Kubelet 

 
The kubelet runs on every node in the cluster. It is the principal Kubernetes 

agent. By installing kubelet, the node’s CPU, RAM, and storage become part of the 
broader cluster. It watches for tasks sent from the API Server, executes the task, and 
reports back to the Master. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  147  

Container Runtime 
 

The container runtime pulls images from a container image registry and starts 
and stops containers. A 3rd party software or plugin, such as Docker, usually performs 
this function. 

 
Kube-proxy 

 
The kube-proxy makes sure that each node gets its IP address. 

 

Pod 
 

A pod is the smallest element of scheduling in Kubernetes. Without it, a container 
cannot be part of a cluster. 

 

Kubernetes Services 
 

One of the best features Kubernetes offers is that non-functioning pods get replaced by 
new ones automatically. The new pods have a different set of IPs. It can lead to 
processing issues and IP churn as the IPs no longer match. If left unattended, this 
property would make pods highly unreliable. 

 
1. Traditional Deployment 

 
Initially, developers deployed applications on individual physical servers. This type of 
deployment posed several challenges. The sharing of physical resources meant that one 
application could take up most of the processing power, limiting the performance of 
other applications on the same machine. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  148  

 

 
 

It takes a long time to expand hardware capacity, which in turn increases costs. To 
resolve hardware limitations, organizations began virtualizing physical machines. 

 
2. Virtualized Deployment 

 
Virtualized deployments allow you to scale quickly and spread the resources of a single 
physical server, update at will, and keep hardware costs in check. Each VM has its 
operating system and can run all critical systems on top of the virtualized hardware. 

 

 

3. Container Deployment 
 

Container Deployment is the next step in the drive to create a more flexible and efficient 
model. Much like VMs, containers have individual memory, system files, and processing 
space. 

 
Multiple applications can now share the same underlying operating system. This feature 
makes containers much more efficient than full-blown VMs. They are portable across 
clouds, different devices, and almost any OS distribution. 



MC4201 FULL STACK WEB DEVELOPMENT 
 

G.K.VENNILA,MCA.,M.Phil DEPARTMENT OF COMPUTER APPLICATION MAM COLLEGE OF ENGINEERING  149  

 

 
 

The container structure also allows for applications to run as smaller, independent 
parts. These parts can then be deployed and managed dynamically on multiple 
machines. The elaborate structure and the segmentation of tasks are too complex to 
manage manually. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

********************************************************************************** 



UNIT V                       APP IMPLEMENTATION IN CLOUD  

Cloud providers Overview   – Scaling (Horizontal and vertical) – Virtual Machines, Ethernet and 

Switches – Docker Container – Kubernetes 

  
Cloud Providers Overview: 

In Spinnaker, providers are integrations to the Cloud platforms you deploy your applications to. 

In this section, you’ll register credentials for your Cloud platforms. Those credentials are known 
as Accounts in Spinnaker, and Spinnaker deploys your applications via those accounts. 

Supported providers: 

 

All of Spinnaker’s abstractions and capabilities are built on top of the Cloud Providers that it 
supports. So, for Spinnaker to do anything you must enable at least one provider, with one 
Account added for it. 

Add as many of the following providers as you need. When you’re done, return to this page. 

 App Engine 

 Amazon Web Services 

 Azure 

 Cloud Foundry 

 DC/OS 

 Google Compute Engine 

 Kubernetes 

 Oracle 

CPI - Cloud Provider Interface: 

Why do we need it? 

The Kubernetes Controller Manager (KCM) is a daemon that embeds the core control loops 
shipped with Kubernetes. The Cloud Provider Interface is responsible for running all the 
platform specific control loops that were previously run in core Kubernetes components like 
the KCM and the kubelet, but have been moved out-of-tree to allow cloud and infrastructure 
providers to implement integrations that can be developed, built and released independent 
of Kubernetes core. 



Since Kubernetes is a declarative system, the purpose of these control loops is to watch the 
actual state of the system through the API server. If the actual state is different from the 
desired/declared state, it initiates operations to rectify the situation by making changes to 
try to move the current state towards the desired state. 

When an application is deployed in Kubernetes, the application definition (the desired end-
state of the application) is persisted in etcd via the API server on the K8s master node. 

The API server holds both a record of the desired state and another record of the actual 
state (real world observed state). When these records differ, a controller is responsible for 
initiating tasks to rectify the difference. This could be something as simple as a request to 
add a PersistentVolume to a Pod. In this case the desired state is different from the actual 
state, so the controllers will initiate tasks to make them the same, i.e. whatever is needed to 
attach the correct PV to the Pod. 

The Cloud Provider Interface (CPI) replaces the Kubernetes Controller Manager for only the 
cloud specific control loops. The Cloud Provider breaks away some of the functionality 
of Kubernetes controller manager (KCM) and handles it separately. Note that in many cases, 
some of these interfaces are not relevant for some CPIs, so you may only see a subset of 
these interfaces implemented for your cloud provider. 

Interfaces (optionally) implemented in the Cloud Provider are as follows: 

 Node control loops, provide cloud specific info about nodes in your cluster. It does a number 
of tasks: 

o Initialize a node with cloud specific zone/region labels 
o Initialize a node with cloud specific instance details, for example, type and size  
o Obtain the node’s IP addresses and hostname 
o In case a node becomes unresponsive, check the cloud to see if the node has been deleted 

from the cloud. If the node has been deleted from the cloud, delete the Kubernetes Node 
object. 

 Route control loops, provide cloud specific info about networking. It is responsible for 
configuring network routes in the infrastructure so that containers on different nodes in 
the Kubernetes cluster can communicate with each other. At the time of writing, the route 
controller is only applicable for Google Compute Engine clusters, and is not applicable 
to vSphere. 

 Service control loops - responsible for listening to K8s Service type create, update, and 
delete events. This is also known as a Load Balancer control loop, a cloud specific ingress 
controller. Based on the current state of the services in Kubernetes, it configures load 
balancers (such as Amazon ELB , Google LB, or Oracle Cloud Infrastructure LB) to reflect the 
state of the services in Kubernetes. Additionally, it ensures that service backends for load 
balancers are up to date. vSphere does not have a native load balancer per-se. However, 
VMware’s network virtualization product, NSX, can be used to provide such functionality to 
K8s. 



 There is no volume controller now. This responsibility has been taken over by the CSI, the 
Container Storage Initiative. So for vSphere, when transitioning from in-tree to out-of tree, 

you need both a CPI and CSI to get the same level of functionalist as the 
previous vSphere Cloud Provider (VCP), e.g. zones for placement. 

 Custom control loops - implementations of the CPI can also run custom controllers 
that enhance the cluster’s capabilities specific to the underlying infrastructure 
platform. vSphere today does not run any custom controllers but may introduce them 
in the future. 

 

The vSphere Cloud Provider does not implement LoadBalancer, Clusters or Routes - these 
networking features are not available in native vSphere. The vSphere CPI is only 
implementing node instances in the vSphere CPI. The credentials to connect to vSphere is 
managed with a Kubernetes secrets file. Zone support is significant because vSphere has its 
own concept of zones/fault domains. The CPI maps those vSphere Zone concepts 
to Kubernetes Zone concepts. vSphere tags are used to identify zones and regions 
in vSphere datacenter objects. These same tags are mapped to labels in Kubernetes, allowing 
placement of Nodes and thus Pods and Persistent Volumes in the appropriate Zone or 
Region. 

CPI Integration Detailed: 

Once the vSphere Cloud Provider is fully functional on your cluster, your cluster will have 
access to new integration points with vSphere. Below are the key integrations that are 
enabled by the vSphere cloud provider. 



Kubernetes Nodes: 

When a Kubernetes node registers itself with the Kubernetes API server, it will request 
additional information about itself from the cloud provider. As of today, the cloud provider 
will provide a new Node object in the cluster with it's node addresses, instance type and 
zone/region topology. 

Virtual private cloud: 

A virtual private cloud (VPC) is an on-demand configurable pool of shared resources allocated 
within a public cloud environment, providing a certain level of isolation between the different 
organizations (denoted as users hereafter) using the resources. The isolation between one VPC 
user and all other users of the same cloud (other VPC users as well as other public cloud users) 
is achieved normally through allocation of a private IP subnet and a virtual communication 
construct (such as a VLAN or a set of encrypted communication channels) per user. In a VPC, 
the previously described mechanism, providing isolation within the cloud, is accompanied with 
a virtual private network (VPN) function (again, allocated per VPC user) that secures, by means 
of authentication and encryption, the remote access of the organization to its VPC resources. 
With the introduction of the described isolation levels, an organization using this service is in 
effect working on a 'virtually private' cloud (that is, as if the cloud infrastructure is not shared 
with other users), and hence the name VPC. 

VPC is most commonly used in the context of cloud infrastructure as a service. In this context, 
the infrastructure provider, providing the underlying public cloud infrastructure, and the 
provider realizing the VPC service over this infrastructure, may be different vendors. 

 

 



Virtual private cloud (VPC) is a cloud computing standard for securing 
cloud apps in a public cloud environment. 

If you are a cloud computing enthusiast or technology learner, you must have heard of the term 
Virtual private cloud (VPC.) It refers to the booming resource-sharing cloud 
computing technology. 

Gone are the days when IT enterprises used to depend on the private cloud for data security. 
The scenario has changed with the emergence of advanced cloud security protocols. Now, 
many users go for the public cloud for savings and scalability when they need to use cloud 
resources. 

Continue reading this blog to know more about the technology and its functionalities 

Defining a Virtual Private Cloud (VPC):  

First, let’s look at its detailed definition to understand the concept. Virtual private cloud or VPC 
is a cloud resource-sharing standard. VPC will ensure security and data operations throughput 
like a private cloud, even if you use any crowded public cloud environment. 

For example, imagine the public cloud as a restaurant with hundreds of others dining there. 
Here, a VPC is equivalent to a private chamber that you can use with your family and have 
privacy and security within a public premise. 

The reason behind its popularity is manifold. Some of the perks of using VPC are minimal IT 
infrastructure cost, on-demand resource scaling (up and down), and virtually zero downtime 
due to maintenance. 

Moreover, The process for setting up a private cloud-like computing system for various types of 
websites and applications (web, mobile, or desktop) is super easy. You can also set it up on a 
public cloud ecosystem managed by a third party. 

A VPC is a perfect solution for cloud users who want complete control over their software-as-a-
service (SaaS) apps and prefer powerful customization options. The reason is the segregation of 
their cloud assets from other cloud users. Furthermore, modifications that VPC users make 
don’t interfere with the settings or assets of non-VPC users. 

VPC ensures the security of VPC users by allowing access to their digital assets only through 
some particular IP addresses. The users can control access permission and assign apps or 
website access permission to a trusted group of public cloud users. 

 



How to Construct a VPC: 
 

A VPC architecture consists of multiple cloud resources. It’s more or less similar to a home 
computing system. The only difference is it exists in the cloud. 

Here are the cloud resources of a VPC: 

 A virtual server instance (VSI) creates the compute resources. It comes with specific 
processing power and memory. 

 The logical instance assists in data communication. This instance is known as 
networking. It allows end-users to access the cloud apps or tools they own. 

 A flexible storage resource for data storage. You may scale up or scale down your 
storage quota based on the changing needs. 

The VPC networking system uses various complicated and robust protocols to perform different 
actions. For instance, tool users can access the public gateways using the internet, which is a 
public-facing network. 

In the VPC architecture, there are also elements like load balancers that distribute the incoming 
traffic to different VSIs. As a result, the network can positively impact the operation and 
performance of the tool. VPC also uses routers for internal communication between segmented 
works and bring traffic. It ensures that the external traffic gets to the public-facing apps. 

The logical instances or cloud resources of a VPC remain segregated from the remaining public 
cloud. To keep the logical instances isolated, the cloud computing vendor uses various virtual 
and physical mechanisms. 

The data within a VPC operates through a three-tier architecture where all the tiers need their 
own subnet. For this reason, each tier gets dedicated IP address ranges. 

The VPC networking system uses various complicated and robust protocols to perform different 
actions. For instance, tool users can access the public gateways using the internet, which is a 
public-facing network. 

In the VPC architecture, there are also elements like load balancers that distribute the incoming 
traffic to different VSIs. As a result, the network can positively impact the operation and 
performance of the tool. VPC also uses routers for internal communication between segmented 
works and bring traffic. It ensures that the external traffic gets to the public-facing apps. 

The logical instances or cloud resources of a VPC remain segregated from the remaining public 
cloud. To keep the logical instances isolated, the cloud computing vendor uses various virtual 
and physical mechanisms. 



The data within a VPC operates through a three-tier architecture where all the tiers need their 
own subnet. For this reason, each tier gets dedicated IP address ranges. 

How to Isolate a VPC: 

By generating a virtual layer on public cloud hardware, a VPC keeps partial processing storage, 
capability, and memory for itself. It’s possible to create several VPCs based on the power of 
public cloud infrastructure. Thus, a virtual private network (VPN) keeps its user data and the 
data processing methods separated from other public cloud users. 

You can ensure the secured and isolated data transmission by these networking components: 

#1. Network Address Translation (NAT) 

All the cloud-based tools located on the VPC uses separate private IP addresses to transmit 
data. Thus, the public-facing connection becomes impossible for any VPC-hosted app unless 
you use NAT to overcome this obstacle. 

When someone attempts to access your app, NAT will ensure safe communication between 
private and public domains. It does so by matching the predefined public IP with the private IP. 

#2. Virtual Local Area Network (VLANs) 

The function of VLAN is to split the public cloud network into an isolated and reserved network. 
The data link layer of the OSI model is the place where splitting occurs. 

In a VPC environment, Your systems will communicate via a VLAN system. Hence, it’ll stay 
separated from the other components of the public cloud. 

#3. Virtual Private Networks (VPNs) 

VPN is the most popular of the protocols that develop a private networking channel on a public 
network. 

VPC uses the public cloud network to transmit data between the nodes or cloud assets. But, it 
utilizes the VPN technology for data encryption while transmitting through shared resources 
such as routers, switches, etc. 

#4. Private Internet Protocols (Subnet IPs) 

A VPC also contains private IP addresses which you can use for internal application connectivity 
for security and performance. Data transmitted through private IPs within VPC won’t be 
traveling through the public Internet. 



Conclusion  

To sum up, a virtual private cloud (VPC) is a private cloud computing environment 

located within a public cloud. Besides flexibility, it offers you scalability, reduced risk, and 

minimum downtime. If you prefer cloud-based service, VPC is an affordable option for 

you if you want your network infrastructure to expand along with your business growth. 

Cloud computing is becoming more secure as time passes and new technologies 

emerge. Learn more about challenges and risks in cloud computing to keep your cloud 

assets safe 

Horizontal Scaling vs Vertical Scaling & Multi-Tenancy: 

In this section we will learn about various Cloud Concepts:- a) Scaling on the cloud b) 
Degradation of Services c) Availability Vs Durability on the Cloud d) Single & Multi-tenancy 
Applications e) Types of Cloud Deployments 

Discover the differences between horizontal and vertical scaling — both in the 

cloud and on-premise  

What Is Scalability? 

Scalability describes a system’s elasticity. While we often use it to refer to a system’s 
ability to grow, it is not exclusive to this definition. We can scale down, scale up, and 
scale out accordingly.  

If you are running a website, web service, or application, its success hinges on the 
amount of network traffic it receives. It is common to underestimate just how much 
traffic your system will incur, especially in the early stages. This could result in a 
crashed server and/or a decline in your service quality.  

Thus, scalability describes your system’s ability to adapt to change and demand. 
Good scalability protects you from future downtime and ensures the quality of your 
service. 

But what options do you have when it comes to implementing scaling and ensuring 
your business’s scalability? That’s where horizontal and vertical scaling come in.  

What Is Horizontal Scaling? 

Horizontal scaling (aka scaling out) refers to adding additional nodes or machines to 
your infrastructure to cope with new demands. If you are hosting an application on a 



server and find that it no longer has the capacity or capabilities to handle traffic , 
adding a server may be your solution. 

It is quite similar to delegating workload among several employees instead of one. 
However, the downside of this may be the added complexity of your operation. You 
must decide which machine does what and how your new machines work with your 
old machines.  

You can consider this the opposite of vertical scaling. 

What Is Vertical Scaling?  

Vertical scaling (aka scaling up) describes adding additional resources to a system 
so that it meets demand. How is this different from horizontal scaling?  

While horizontal scaling refers to adding additional nodes, vertical scaling describes 
adding more power to your current machines. For instance, if your server requires 
more processing power, vertical scaling would mean upgrading the CPUs. You can 
also vertically scale the memory, storage, or network speed. 

Additionally, vertical scaling may also describe replacing a server entirely or moving 
a server’s workload to an upgraded one.  

Horizontal Vs. Vertical Scaling 

 Once again, the biggest central functional difference between the two is that horizontal 
scaling often forces you to rework how you implement your services or layers. For instance, 
let’s look at simple three-tier architecture.  

You have your presentation tier (user interface/client), logic tier (virtual server/services), 
and data tier (storage/databases). In the case of horizontal scaling, you can delegate each 
tier (or the functions responsible for them) to a different node.  

However, you may already be running these tiers on different servers but find that one of 
these servers is underperforming or no longer meets demands. Once again, you can choose 
to scale this server vertically or horizontally. You may upgrade it with more resources or 
add another server to share the workload.  

For further illustration, let’s consider databases. If you host your database on a single 
dedicated server and it gets too large, horizontal scaling would mean adding a new node, 
partitioning, and sharing the data between the old server and the new. 

In our “lifting weights” analogy, horizontal scaling would mean buying new clothes while 
vertical scaling would be modifying your old clothes to handle your new gains.   



With that being said, let’s look at a simple breakdown of the advantages and disadvantages 
of vertical and horizontal scaling.  

Advantages of horizontal scaling 

 Scaling is easier from a hardware perspective - All horizontal scaling requires you to do is 
add additional machines to your current pool. It eliminates the need to analyze which 
system specifications you need to upgrade. 

 Fewer periods of downtime - Because you’re adding a machine, you don’t have to switch 
the old machine off while scaling. If done effectively, there may never be a need for 
downtime and clients are less likely to be impacted. 

 Increased resilience and fault tolerance - Relying on a single node for all your data and 
operations puts you at a high risk of losing it all when it fails. Distributing it among several 
nodes saves you from losing it all.  

 Increased performance - If you are using horizontal scaling to manage your network traffic, 
it allows for more endpoints for connections, considering that the load will be delegated 
among multiple machines.      

Disadvantages of horizontal scaling 

 Increased complexity of maintenance and operation  - Multiple servers are harder to 
maintain than a single server is. Additionally, you will need to add software for  load 
balancing and possibly virtualization. Backing up your machines may also become a little 
more complex. You will need to ensure that nodes synchronize and communicate 
effectively.  

 Increased Initial costs - Adding new servers is far more expensive than upgrading old 
ones.    

Advantages of vertical scaling 

 Cost-effective - Upgrading a pre-existing server costs less than purchasing a new one. 
Additionally, you are less likely to add new backup and virtualization software when scaling 
vertically. Maintenance costs may potentially remain the same too.  

 Less complex process communication - When a single node handles all the layers of your 
services, it will not have to synchronize and communicate with other machines to work. This 
may result in faster responses. 

 Less complicated maintenance - Not only is maintenance cheaper but it is less complex 
because of the number of nodes you will need to manage.  

 Less need for software changes - You are less likely to change how the software on a server 
works or how it is implemented.          



Disadvantages of vertical scaling 

 Higher possibility for downtime - Unless you have a backup server that can handle 
operations and requests, you will need some considerable downtime to upgrade your 
machine.  

 Single point of failure - Having all your operations on a single server increases the risk of 
losing all your data if a hardware or software failure was to occur.  

 Upgrade limitations - There is a limitation to how much you can upgrade a machine. Every 
machine has its threshold for RAM, storage, and processing power.   

Which Should You Choose And When? 

Both horizontal and vertical scaling have their own benefits and limitations. Since there isn’t 
a one-size-fits-all solution for organizations, you need to scale according to your needs and 
resources. Here are a few factors to consider along with which type of scaling suits the 
situation best:   

 Cost - Initial hardware costs for horizontal upgrades are higher. If you are working on a tight 
budget and need to add more resources to your infrastructure quickly and cheaply, then 
vertical scaling may be the best option for you. 

 Future-proofing - Adding additional updated machines through horizontal scaling will 
increase the overall performance threshold of your organization. There is a limit to how 
much you can vertically scale a single node and it may not be able to handle the demands of 
the future. 

 Topographic distribution - If you plan to have nationwide or global clients, it is 
unreasonable to expect them all to access your services from a single machine in a single 
location. In a situation like this, you’ll need to horizontally scale your resources to maintain 
your service level agreement (SLA). 

 Reliability - Horizontal scaling may offer you a more reliable system. It increases 
redundancy and ensures that you are not relying on a single machine. If one machine fails, 
another may be able to pick up the slack temporarily.  

 Upgradability and flexibility - If you are running your application’s tiers on individual 
machines, they are easier to decouple and upgrade without any downtime. 

 Performance and complexity - Performance will depend on how your services work and 
how they are interconnected. Simple straightforward applications won’t benefit much from 
being run on multiple machines. In fact, it may degrade its quality. Sometimes it’s better to 
leave the application as is and upgrade the hardware to meet demand. Horizontal scaling 
may require you to rewrite the code or add a virtual machine that unifies all the servers.    

On-Premise Vs. Cloud Scaling 

For the majority of this guide, we’ve chosen to keep things simple by using on-premise non-
cloud scaling for our examples.  However, cloud scaling works much the same.  



A cloud service provider (CSP) may implement hyper-converged infrastructure-based 
horizontal scaling or choose to use virtual distributed services. 

The former is quite common among private and hybrid cloud solutions. In most cases, your 
cloud provider will handle the scaling. This means you or your IT management won’t have to 
worry as much about what new hardware is required to meet new demands.     

Service providers such as Azure and AWS have automatic scaling.  

They can increase and decrease resources according to your requirements at any given 
time. They can scale up or out when traffic to your application is at its peak and scale down 
when demand is lessened. This provides organizations with more efficient and cost-
effective scaling. This is another reason to consider cloud migration.  

Cost: The Grand Determinant 

Despite your aspirations or organization’s needs, what may determine your decision, in the 
end, is cost. While horizontal scaling sounds great from a functional standpoint, you m ay 
not be able to afford it (right now). Nevertheless, it is still important to note that on -
premise vertical and horizontal scaling may not be the only options available to you.  

You can integrate both or migrate your organization’s infrastructure to a cloud service 
provider and allow them to handle scaling for you. The latter may be more financially and 
pragmatically feasible for you, especially in the long run.  

However, how do you actually prove this? If you migrate to a cloud solution, how do you 
determine your present and future cloud expenditure?  

A cloud cost management platform may be the best way to do this. You can determine and 
prove that migration and cloud auto-scaling will ultimately be more cost-effective than on-
premise scaling. 
 
CloudZero has assisted companies such as ResponseTap to improve cost predictability and 
scale more efficiently by allowing them to see exactly which features and products impact 
their AWS spend. CloudZero allows companies to map and view a detailed breakdown of 
their total cloud spend – from the highest level down to the most basic components. 

What is a virtual machine? 

A Virtual Machine (VM) is a compute resource that uses software instead of a physical 

computer to run programs and deploy apps. One or more virtual “guest” machines run 

on a physical “host” machine.  Each virtual machine runs its own operating 



system and functions separately from the other VMs, even when they are all running on the 

same host. This means that, for example, a virtual MacOS virtual machine can run on a physical 

PC.  

Virtual machine technology is used for many use cases across on-premises and cloud 

environments. More recently, public cloud services are using virtual machines to provide virtual 

application resources to multiple users at once, for even more cost efficient and flexible 

compute.   

What are virtual machines used for? 

Virtual machines (VMs) allow a business to run an operating system that behaves like a 

completely separate computer in an app window on a desktop. VMs may be deployed to 

accommodate different levels of processing power needs, to run software that requires a 

different operating system, or to test applications in a safe, sandboxed environment. 

Virtual machines have historically been used for server virtualization, which enables IT teams 

to consolidate their computing resources and improve efficiency. Additionally, 

virtual machines can perform specific tasks considered too risky to carry out in a host 

environment, such as accessing virus-infected data or testing operating systems. Since the 

virtual machine is separated from the rest of the system, the software inside the virtual 

machine cannot tamper with the host computer.   

 

How do virtual machines work? 

The virtual machine runs as a process in an application window, similar to any other 

application, on the operating system of the physical machine. Key files that make up a virtual 

machine include a log file, NVRAM setting file, virtual disk file and configuration file. \ 

 

Advantages of virtual machines 

Virtual machines are easy to manage and maintain, and they offer several advantages over 

physical machines:    

 VMs can run multiple operating system environments on a single physical 

computer, saving physical space, time and management costs.  



 Virtual machines support legacy applications, reducing the cost 

of migrating to a new operating system. For example, a Linux virtual 

machine running a distribution of Linux as the guest operating system can 

exist on a host server that is running a non-Linux operating system, such 

as Windows.  

 VMs can also provide integrated disaster recovery and application 

provisioning options.  

Disadvantages of virtual machines 

While virtual machines have several advantages over physical machines, there are also 

some potential disadvantages:  

 Running multiple virtual machines on one physical machine can result 

in unstable performance if infrastructure requirements are not met.  

 Virtual machines are less efficient and run slower than a full physical 

computer. Most enterprises use a combination of physical and virtual 

infrastructure to balance the corresponding advantages and 

disadvantages.  

The two types of virtual machines 

Users can choose from two different types of virtual machines—process VMs and system VMs:   

A process virtual machine allows a single process to run as an application on a host machine, 

providing a platform-independent programming environment by masking the information of 

the underlying hardware or operating system. An example of a process VM is the Java Virtual 

Machine, which enables any operating system to run Java applications as if they were native to 

that system.    

A system virtual machine is fully virtualized to substitute for a physical machine. A system 

platform supports the sharing of a host computer’s physical resources between multiple virtual 

machines, each running its own copy of the operating system. This virtualization process relies 

on a hypervisor, which can run on bare hardware, such as VMware ESXi, or on top of an 

operating system.   



What are 5 types of virtualization? 

All the components of a traditional data center or IT infrastructure can be virtualized today, 

with various specific types of virtualization:    

 Hardware virtualization: When virtualizing hardware, virtual versions of 

computers and operating systems (VMs) are created and consolidated 

into a single, primary, physical 

server. A hypervisor communicates directly with a physical server’s disk 

space and CPU to manage the VMs. Hardware virtualization, which is also 

known as server virtualization, allows hardware resources to be utilized 

more efficiently and for one machine to simultaneously run different 

operating systems.  

 Software virtualization: Software virtualization creates a computer 

system complete with hardware that allows one or more guest operating 

systems to run on a physical host machine. For example, Android OS can 

run on a host machine that is natively using a Microsoft Windows OS, 

utilizing the same hardware as the host machine 

does. Additionally, applications can be virtualized and delivered from a 

server to an end user’s device, such as a laptop or smartphone. 

This allows employees to access centrally hosted applications when 

working remotely.  

 Storage virtualization: Storage can be virtualized by consolidating 

multiple physical storage devices to appear as a single storage 

device. Benefits include increased performance and speed, load balancing 

and reduced costs. Storage virtualization also helps with disaster recovery 

planning, as virtual storage data can be duplicated and quickly transferred 

to another location, reducing downtime.   

 Network virtualization: Multiple sub-networks can be created on the 

same physical network by combining equipment into a single, software-

based virtual network resource. Network virtualization also divides 

available bandwidth into multiple, independent channels, each of which 

can be assigned to servers and devices in real time. Advantages include 

increased reliability, network speed, security and better 

monitoring of data usage. Network virtualization can be a good choice for 

companies with a high volume of users who need access at all times.  



 Desktop virtualization: This common type of virtualization separates the 

desktop environment from the physical device and stores a desktop on a 

remote server, allowing users to access their desktops from anywhere on 

any device. In addition to easy accessibility, benefits of virtual desktops 

include better data security, cost savings on software licenses and 

updates, and ease of management.  

 

Container vs virtual machine 

Like virtual machines, container technology such as Kubernetes is similar in the sense 

of running isolated applications on a single platform. While virtual 

machines virtualize the hardware layer to create a “computer,” containers package up just 

a single app along with its dependencies. Virtual machines are often managed by a 

hypervisor, whereas container systems provide shared operating system services from the 

underlying host and isolate the applications using virtual-memory hardware.   

A key benefit of containers is that they have less overhead compared to virtual machines. 

Containers include only the binaries, libraries and other required dependencies, and the 

application. Containers that are on the same host share the same operating system kernel, 

making containers much smaller than virtual machines. As a result, containers boot 

faster, maximize server resources, and make delivering applications easier. Containers have 

become popluar for use cases such as web applications, DevOps testing, microservices and 

maximizing the number of apps that can be deployed per server.   

Virtual machines are larger and slower to boot than containers. They are logically isolated from 

one another, with their own operating system kernel, and offer the benefits of a completely 

separate operating system. Virtual machines are best for running multiple applications 

together, monolithic applications, isolation between apps, and for legacy apps running on older 

operating systems. Containers and virtual machines may also be used together.  

 

Setting up a virtual machine 

Virtual machines can be simple to set up, and there are many guides online that 

walk users through the process. VMware offers one such useful virtual machine set-up guide.   

 



What is an Ethernet Switch? 
 

Ethernet switching connects wired devices such as computers, laptops, routers, servers, and 
printers to a local area network (LAN). Multiple Ethernet switch ports allow for faster 
connectivity and smoother access across many devices at once. 

An Ethernet switch creates networks and uses multiple ports to communicate between devices 
in the LAN. Ethernet switches differ from routers, which connect networks and use only a single 
LAN and WAN port.  A full wired and wireless corporate infrastructure provides wired 
connectivity and Wi-Fi for wireless connectivity. 

Hubs are similar to Ethernet switches in that connected devices on the LAN will be wired to 
them, using multiple ports. The big difference is that hubs share bandwidth equally among 
ports, while Ethernet switches can devote more bandwidth to certain ports without degrading 
network performance. When many devices are active on a network, Ethernet switching 
provides more robust performance. 

Routers connect networks to other networks, most commonly connecting LANs to wide area 
networks (WANs). Routers are usually placed at the gateway between networks and route data 
packets along the network. 

Most corporate networks use combinations of switches, routers, and hubs, and wired and 
wireless technology. 

 

What Ethernet Switches Can Do For Your Network 
 

Ethernet switches provide many advantages when correctly installed, integrated, and managed. 
These include: 

1. Reduction of network downtime 
2. Improved network performance and increased available bandwidth on the network 
3. Relieving strain on individual computing devices 
4. Protecting the overall corporate network with more robust security 
5. Lower IT capex and opex costs thanks to remote management and consolidated wiring 
6. Right-sizing IT infrastructure and planning for future expansion using modular switches 

Most corporate networks support a combination of wired and wireless technologies, including 
Ethernet switching as part of the wired infrastructure. Dozens of devices can connect to a 



network using an Ethernet switch, and administrators can monitor traffic, control 
communications among machines, securely manage user access, and rapidly troubleshoot. 

The switches come in a wide variety of options, meaning organizations can almost always find a 
solution right-sized for their network. These range from basic unmanaged network switches 
offering plug-and-play connectivity, to feature-rich Gigabit Ethernet switches that perform at 
higher speeds than wireless options. 

 

How Ethernet Switches Work: Terms and Functionality 
 

Frames are sequences of information, travel over Ethernet networks to move data between 
computers. An Ethernet frame includes a destination address, which is where the data is 
traveling to, and a source address, which is the location of the device sending the frame. In a 
standard seven-layer Open Systems Interconnection (OSI) model for computer networking, 
frames are part of Layer 2, also known as the data-link layer. These are sometimes known as 
“link layer devices” or “Layer 2 switches.” 

Transparent Bridging is the most popular and common form of bridging, crucial to Ethernet 
switch functionality. Using transparent bridging, a switch automatically begins working without 
requiring any configuration on a switch or changes to the computers in the network (i.e. the 
operation of the switch is transparent). 

Address Learning -- Ethernet switches control how frames are transmitted between switch 
ports, making decisions on how traffic is forwarded based on 48-bit media access control (MAC) 
addresses that are used in LAN standards. An Ethernet switch can learn which devices are on 
which segments of the network using the source addresses of the frames it receives. 

Every port on a switch has a unique MAC address, and as frames are received on ports, the 
software in the switch looks at the source address and adds it to a table of addresses it 
constantly updates and maintains. (This is how a switch “discovers” what devices are reachable 
on which ports.) This table is also known as a forwarding database, which is used by the switch 
to make decisions on how to filter traffic to reach certain destinations. That the Ethernet switch 
can “learn” in this manner makes it possible for network administrators to add new connected 
endpoints to the network without having to manually configure the switch or the endpoints. 

Traffic Filtering -- Once a switch has built a database of addresses, it can smoothly select how it 
filters and forwards traffic. As it learns addresses, a switch checks frames and makes decisions 
based on the destination address in the frame. Switches can also isolate traffic to only those 
segments needed to receive frames from senders, ensuring that traffic does not unnecessarily 
flow to other ports. 



Frame Flooding -- Entries in a switch’s forwarding database may drop from the list if the switch 
doesn’t see any frames from a certain source over a period of time. (This keeps the forwarding 
database from becoming overloaded with “stale” source information.) If an entry is dropped—
meaning it once again is unknown to the switch—but traffic resumes from that entry at a later 
time, the switch will forward the frame to all switch ports (also known as frame flooding) to 
search for its correct destination. When it connects to that destination, the switch once again 
learns the correct port, and frame flooding stops. 

Multicast Traffic -- LANs are not only able to transmit frames to single addresses, but also 
capable of sending frames to multicast addresses, which are received by groups of endpoint 
destinations. Broadcast addresses are a specific form of multicast address; they group all of the 
endpoint destinations in the LAN. Multicasts and broadcasts are commonly used for functions 
such as dynamic address assignment, or sending data in multimedia applications to multiple 
users on a network at once, such as in online gaming. (Streaming applications such as video, 
which send high rates of multicast data and generate a lot of traffic, can hog network 
bandwidth. 

 

Managed vs. Unmanaged Ethernet Switches 
 

Unmanaged Ethernet switching refers to switches that have no user configuration; these can 
just be plugged in and turned on. 

Managed Ethernet switching refers to switches that can be managed and programmed to 
deliver certain outcomes and perform certain tasks, from adjusting speeds and combining users 
into subgroups, to monitoring network traffic. 

 

Containerization using Docker 

 
Docker is the containerization platform that is used to package your application and all its 

dependencies together in the form of containers to make sure that your application works 

seamlessly in any environment which can be developed or tested or in production. Docker is a 



tool designed to make it easier to create, deploy, and run applications by using containers.  

  

Docker is the world’s leading software container platform. It was launched in 2013 by a 

company called Dotcloud, Inc which was later renamed Docker, Inc. It is written in the Go 

language. It has been just six years since Docker was launched yet communities have already 

shifted to it from VMs. Docker is designed to benefit both developers and system 

administrators making it a part of many DevOps toolchains. Developers can write code 

without worrying about the testing and production environment. Sysadmins need not worry 

about infrastructure as Docker can easily scale up and scale down the number of systems. 

Docker comes into play at the deployment stage of the software development cycle.  

 

 

Containerization  

Containerization is OS-based virtualization that creates multiple virtual units in the userspace, 
known as Containers. Containers share the same host kernel but are isolated from each other 
through private namespaces and resource control mechanisms at the OS level. Container-



based Virtualization provides a different level of abstraction in terms of virtualization and 
isolation when compared with hypervisors. Hypervisors use a lot of hardware which results in 
overhead in terms of virtualizing hardware and virtual device drivers. A full operating system 
(e.g -Linux, Windows) runs on top of this virtualized hardware in each virtual machine 
instance.  
But in contrast, containers implement isolation of processes at the operating system level, 
thus avoiding such overhead. These containers run on top of the same shared operating 
system kernel of the underlying host machine and one or more processes can be run within 
each container. In containers you don’t have to pre-allocate any RAM, it is allocated 
dynamically during the creation of containers while in VMs you need to first pre-allocate the 
memory and then create the virtual machine. Containerization has better resource utilization 
compared to VMs and a short boot-up process. It is the next evolution in virtualization.  

Containers can run virtually anywhere, greatly easy development and deployment: on Linux, 
Windows, and Mac operating systems; on virtual machines or bare metal, on a developer’s 
machine or in data centers on-premises; and of course, in the public cloud. Containers 
virtualize CPU, memory, storage, and network resources at the OS level, providing developers 
with a sandboxed view of the OS logically isolated from other applications. Docker is the most 
popular open-source container format available and is supported on Google Cloud Platform 
and by Google Kubernetes Engine.  

 

 

Docker Architecture 

Docker architecture consists of Docker client, Docker Daemon running on Docker Host, and 
Docker Hub repository. Docker has client-server architecture in which the client 
communicates with the Docker Daemon running on the Docker Host using a combination of 
REST APIs, Socket IO, and TCP. If we have to build the Docker image, then we use the client to 
execute the build command to Docker Daemon then Docker Daemon builds an image based 



on given inputs and saves it into the Docker registry. If you don’t want to create an image 
then just execute the pull command from the client and then Docker Daemon will pull the 
image from the Docker Hub finally if we want to run the image then execute the run 
command from the client which will create the container.  

 

  

Components of Docker 

The main components of Docker include – Docker clients and servers, Docker images, 
Dockerfile, Docker Registries, and Docker containers. These components are explained in 
detail in the below section :  
  

1. Docker Clients and Servers– Docker has a client-server architecture. The Docker 
Daemon/Server consists of all containers. The Docker Daemon/Server receives the 
request from the Docker client through CLI or REST APIs and thus processes the request 
accordingly. Docker client and Daemon can be present on the same host or different 
host.  
  

 

 

 



 

 

1. Docker Images– Docker images are used to build docker containers by using a read-only 
template. The foundation of every image is a base image eg. base images such as – 
ubuntu14.04 LTS, and Fedora 20. Base images can also be created from scratch and then 
required applications can be added to the base image by modifying it thus this process of 
creating a new image is called “committing the change”. 

2. Docker File– Dockerfile is a text file that contains a series of instructions on how to build 
your Docker image. This image contains all the project code and its dependencies. The 
same Docker image can be used to spin ‘n’ number of containers each with modification 
to the underlying image. The final image can be uploaded to Docker Hub and shared 
among various collaborators for testing and deployment. The set of commands that you 
need to use in your Docker File is FROM, CMD, ENTRYPOINT, VOLUME, ENV, and many 
more. 

3. Docker Registries– Docker Registry is a storage component for Docker images. We can 
store the images in either public/private repositories so that multiple users can 
collaborate in building the application. Docker Hub is Docker’s cloud repository. Docker 
Hub is called a public registry where everyone can pull available images and push their 
images without creating an image from scratch. 

4. Docker Containers– Docker Containers are runtime instances of Docker images. 
Containers contain the whole kit required for an application, so the application can be run 
in an isolated way. For eg.- Suppose there is an image of Ubuntu OS with NGINX SERVER 
when this image is run with the docker run command, then a container will be created 
and NGINX SERVER will be running on Ubuntu OS.  

  



 

 

Docker Compose 

Docker Compose is a tool with which we can create a multi-container application. It 
makes it easier to configure and  
run applications made up of multiple containers. For example, suppose you had an 
application that required WordPress and MySQL, you could create one file which 
would start both the containers as a service without the need to start each one 
separately. We define a multi-container application in a YAML file. With the docker-
compose-up command, we can start the application in the foreground. Docker-
compose will look for the docker-compose. YAML file in the current folder to start the 
application. By adding the -d option to the docker-compose-up command, we can start 
the application in the background. Creating a docker-compose. YAML file for 
WordPress application :  

  

#cat docker-compose.yaml 

version: ’2’ 

services: 

db: 

image: mysql:5.7 

volumes:db_data:/var/lib/mysql 



restart: always 

environment: 

MYSQL_ROOT_PASSWORD: WordPress 

MYSQL_DATABASE: WordPress 

MYSQL_USER: WordPress 

MYSQL_PASSWORD: WordPress 

WordPress: 

depends_on: 

- DB 

image: WordPress:latest 

ports: 

- "8000:80" 

restart: always 

environment: 

WORDPRESS_DB_HOST: db:3306 

 

WORDPRESS_DB_PASSWORD: wordpress 

volumes: 

db_data: 

In this docker-compose. YAML file, we have the following ports section for the 
WordPress container, which means that we are going to map the host’s 8000 port with 
the container’s 80 port. So that host can access the application with its IP and port no.   

  

Docker Networks 
When we create and run a container, Docker by itself assigns an IP address to it, by 
default. Most of the time, it is required to create and deploy Docker networks as per 
our needs. So, Docker let us design the network as per our requirements. There are 
three types of Docker networks- default networks, user-defined networks, and overlay 
networks.  

 



\ 

To get a list of all the default networks that Docker creates, we run the command 

shown below –  

   

 

 

There are three types of networks in Docker –  
  

1. Bridged network: When a new Docker container is created without the –network 
argument, Docker by default connects the container with the bridge network. In 
bridged networks, all the containers in a single host can connect through their IP 
addresses. A Bridge network is created when the span of Docker hosts is one i.e. 



when all containers run on a single host. We need an overlay network to create a 
network that has a span of more than one Docker host. 

2. Host network: When a new Docker container is created with the –network=host 
argument it pushes the container into the host network stack where the Docker 
daemon is running. All interfaces of the host are accessible from the container 
which is assigned to the host network. 

3. None network: When a new Docker container is created with the –network=none 
argument it puts the Docker container in its network stack. So, in this none 
network, no IP addresses are assigned to the container, because of which they 
cannot communicate with each other. 

We can assign any one of the networks to the Docker containers. The –network option 
of the ‘docker run’ command is used to assign a specific network to the container.   
  

$docker run --network ="network name" 

To get detailed information about a particular network we use the command-  
  

$docker network inspect "network name" 

  

Advantages of Docker – 
Docker has become popular nowadays because of the benefits provided by Docker 
containers. The main advantages of Docker are:  
  

1. Speed – The speed of Docker containers compared to a virtual machine is very fast. 
The time required to build a container is very fast because they are tiny and 
lightweight. Development, testing, and deployment can be done faster as 
containers are small. Containers can be pushed for testing once they have been 
built and then from there on to the production environment. 

2. Portability – The applications that are built inside docker containers are extremely 
portable. These portable applications can easily be moved anywhere as a single 
element and their performance also remains the same. 

3. Scalability – Docker has the ability that it can be deployed on several physical 
servers, data servers, and cloud platforms. It can also be run on every Linux 
machine. Containers can easily be moved from a cloud environment to a local host 
and from there back to the cloud again at a fast pace. 

4. Density – Docker uses the resources that are available more efficiently because it 
does not use a hypervisor. This is the reason that more containers can be run on a 
single host as compared to virtual machines. Docker Containers have higher 
performance because of their high density and no overhead wastage of resources.  



What is Kubernetes? 

Kubernetes is software that automatically manages, scales, and maintains multi-

container workloads in desired states 

Modern software is increasingly run as fleets of containers, sometimes called microservices. A 
complete application may comprise many containers, all needing to work together in specific 
ways. Kubernetes is software that turns a collection of physical or virtual hosts (servers) into a 
platform that: 

 Hosts containerized workloads, providing them with compute, storage, and network 
resources, and 

 Automatically manages large numbers of containerized applications — keeping them 
healthy and available by adapting to changes and challenges 

How does Kubernetes work? 

1. When developers create a multi-container application, they plan out how all the parts fit 
and work together, how many of each component should run, and roughly what should 
happen when challenges (e.g., lots of users logging in at once) are encountered. 

2. They store their containerized application components in a container registry (local or 
remote) and capture this thinking in one or several text files comprising aconfiguration. 
To start the application, they “apply” the configuration to Kubernetes. 

3. Kubernetes job is to evaluate and implement this configuration and maintain it until told 
otherwise. It: 

o Analyzes the configuration, aligning its requirements with those of all the other 
application configurations running on the system 

o Finds resources appropriate for running the new containers (e.g., some 
containers might need resources like GPUs that aren’t present on every host) 

o Grabs container images from the registry, starts up the new containers, and 
helps them connect to one another and to system resources (e.g., persistent 
storage), so the application works as a whole 



4. Then Kubernetes monitors everything, and when real events diverge from desired 
states, Kubernetes tries to fix things and adapt. For example, if a container crashes, 
Kubernetes restarts it. If an underlying server fails, Kubernetes finds resources 
elsewhere to run the containers that node was hosting. If traffic to an application 
suddenly spikes, Kubernetes can scale out containers to handle the additional load, in 
conformance to rules and limits stated in the configuration. 

Why use Kubernetes? 

One of the benefits of Kubernetes is that it makes building and running complex applications 
much simpler. Here’s a handful of the many Kubernetes features: 

 Standard services like local DNS and basic load-balancing that most applications need, 
and are easy to use. 

 Standard behaviors (e.g., restart this container if it dies) that are easy to invoke, and do 
most of the work of keeping applications running, available, and performant. 

 A standard set of abstract “objects” (called things like “pods,” “replicasets,” and 
“deployments”) that wrap around containers and make it easy to build configurations 
around collections of containers. 

 A standard API that applications can call to easily enable more sophisticated behaviors, 
making it much easier to create applications that manage other applications. 

The simple answer to “what is Kubernetes used for” is that it saves developers and operators a 
great deal of time and effort, and lets them focus on building features for their applications, 
instead of figuring out and implementing ways to keep their applications running well, at scale. 
 
By keeping applications running despite challenges (e.g., failed servers, crashed containers, 
traffic spikes, etc.) Kubernetes also reduces business impacts, reduces the need for fire drills to 
bring broken applications back online, and protects against other liabilities, like the costs of 
failing to comply with Service Level Agreements (SLAs). 

Where can I run Kubernetes? 

Kubernetes also runs almost anywhere, on a wide range of Linux operating systems (worker 
nodes can also run on Windows Server). A single Kubernetes cluster can span hundreds of bare-
metal or virtual machines in a datacenter, private, or any public cloud. Kubernetes can also run 
on developer desktops, edge servers, microservers like Raspberry Pis, or very small mobile and 
IoT devices and appliances. 



 
With some forethought (and the right product and architectural choices) Kubernetes can even 
provide a functionally-consistent platform across all these infrastructures. This means that 
applications and configurations composed and initially tested on a desktop Kubernetes can 
move seamlessly and quickly to more-formal testing, large-scale production, edge, or IoT 
deployments. In principle, this means that enterprises and organizations can build “hybrid” and 
“multi-clouds” across a range of platforms, quickly and economically solving capacity problems 
without lock-in. 

What is a Kubernetes cluster? 

The K8s architecture is relatively simple. You never interact directly with the nodes hosting your 
application, but only with the control plane, which presents an API and is in charge of 
scheduling and replicating groups of containers named Pods. Kubectl is the command line 
interface that allows you to interact with the API to share the desired application state or 
gather detailed information on the infrastructure’s current state. 
 
Let’s look at the various pieces. 

Nodes 

Each node that hosts part of your distributed application does so by leveraging Docker or a 
similar container technology, such as Rocket from CoreOS. The nodes also run two additional 
pieces of software: kube-proxy, which gives access to your running app, and kubelet, which 
receives commands from the k8s control plane. Nodes can also run flannel, an etcd backed 
network fabric for containers. 

Master 

The control plane itself runs the API server (kube-apiserver), the scheduler (kube-scheduler), 
the controller manager (kube-controller-manager) and etcd, a highly available key-value store 
for shared configuration and service discovery implementing the Raft consensus Algorithm. 

What is “enterprise Kubernetes?” 

Kubernetes, by itself, provides a core software framework for container and resource 
management, default services, plus an API. It’s engineered to be extensible via standard 
interfaces to provide important capabilities like: 

 Running containers – a container runtime or ‘engine’ 



 Letting containers communicate – a container network 

 Providing persistent storage – a container storage solution 

 Routing inbound traffic to containers in a secure and orderly way – an ingress solution 

 Full-featured load balancing – distributing inbound traffic evenly to container workloads 
– via integration with an external load-balancing solution 

… and many other components essential for efficient use and operations at scale. To make 
Kubernetes work at all — you or someone else needs to choose and integrate solutions to fill 
these critical slots. 
 
Kubernetes alternatives made available free of charge typically select from among open source 
alternatives to provide these capabilities. These are often very good solutions for learning and 
small-scale use. 
 
Organizations that want to use Kubernetes to run production software at scale need more, and 
more-mature functionality: 

 They need Kubernetes that’s feature-complete, hardened and secure, and easily 
integrated with centralized IT resources like directory services, monitoring and 
observability, notifications and ticketing, and so on. 

 They need Kubernetes that can be deployed, scaled, managed, and updated in 
consistent ways, perhaps across many different kinds of infrastructure. 

 They need all the different parts of Kubernetes to be validated together, and supported 
by a single vendor. 

“Enterprise Kubernetes” refers to products and suites of products that answer these needs: 
that fill all of Kubernetes’ feature slots with best-of-breed solutions, solve problems of 
Kubernetes management across multiple infrastructures, enable consistency, and provide 
complete support. 

How do I start using Kubernetes? 

Mirantis makes several Kubernetes solutions, appropriate for different uses. Our open source 
products can be used free of charge, with community support. Our flagship products can be 
trialed free of charge and are available with tiered support up to fully-managed services. 



 

31 

 

2 2 1 2 2 2 2 

3 2 1 2 2 2 2 

4 3 1 3 3 2 3 

5 3 1 3 3 2 3 

Avg 2.4 1 2.4 2.4 2 2.4 

 

 

MC4205                  CYBER SECURITY  L  T   P  C 

3   0  0   3 

COURSE  OBJECTIVES: 

 To learn the principles of cyber security and to identify threats and risks. 

 To learn how to secure physical assets and develop system security controls. 

 To understand how to apply security for Business applications and Network Communications. 

 To learn the technical means to achieve security. 

 To learn to monitor and audit security measures. 

UNIT I PLANNING FOR CYBER SECURITY 9 

Best Practices-Standards and a plan of Action-Security Governance Principles, components and 

Approach-Information Risk Management-Asset Identification-Threat Identification-Vulnerability 

Identification-Risk Assessment Approaches-Likelihood and Impact Assessment-Risk Determination, 

Evaluation and Treatment-Security Management Function-Security Policy-Acceptable Use Policy-

Security Management Best Practices - Security Models: Bell La Padula model, Biba Integrity Model -

Chinese Wall model 

 

UNIT II SECURITY CONTROLS 9 

People Management-Human Resource Security-Security Awareness and Education-Information 

Management- Information Classification and handling-Privacy-Documents and Record Management-

Physical Asset Management-Office Equipment-Industrial Control Systems-Mobile Device Security- 

System Development-Incorporating Security into SDLC - Disaster management and Incident 

response planning. 

UNIT III CYBER SECURITY FOR BUSINESS APPLICATIONS AND 

NETWORKS 

9 

 

Business Application Management-Corporate Business Application Security-End user Developed 

Applications-System Access- Authentication Mechanisms-Access Control-System Management-

Virtual Servers-Network Storage Systems-Network Management Concepts-Firewall-IP Security-

Electronic Communications - Case study on OWASP vulnerabilities using OWASP ZAP tool. 

 

UNIT IV TECHNICAL SECURITY 9 

Supply Chain Management-Cloud Security-Security Architecture-Malware Protection-Intrusion 

Detection-Digital Rights Management-Cryptographic Techniques-Threat and Incident Management-

Vulnerability Management-Security Event Management-Forensic Investigations-Local Environment 

Management-Business Continuity.  

UNIT V SECURITY ASSESSMENT 9 

Security Monitoring and Improvement-Security Audit-Security Performance-Information Risk 

Reporting-Information Security Compliance Monitoring-Security Monitoring and Improvement Best 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 1 
 

    

UNIT I               PLANNING FOR CYBER SECURITY 

Best Practices-Standards and a plan of Action-Security Governance Principles, components 

and Approach-Information Risk Management-Asset Identification-Threat Identification-

Vulnerability Identification-Risk     Assessment     Approaches-Likelihood    and    Impact     

Assessment-Risk Determination, Evaluation and Treatment-Security Management 

Function-Security Policy- Acceptable Use Policy-Security Management Best Practices - 

Security Models: Bell La Padula model, Biba Integrity Model -Chinese Wall model 

Practices-Standards and a plan of Action 

Defining Cyberspace and Cyber security 

Cyberspace consists of artifacts based on or dependent on computer and 

communications technology; the information that these artifacts use, store, handle, 

or process; and the interconnections among these various elements. 

Cyber security 

 Cyber security is the collection of tools, policies, security concepts, security 

safeguards, guidelines, risk management approaches, actions, training, best 

practices, assurance and technologies that are used to protect the cyberspace 

environment and organization and user’s assets. 

Two related terms should be mentioned:  

Information security: Preservation of confidentiality, integrity, and availability of 

information. In addition, other properties—such as authenticity, accountability, 

non-repudiation, and reliability—can also be involved.  

Network security: Protection of networks and their services from unauthorized 

modification, destruction, or disclosure and provision of assurance that the network 

performs its critical functions correctly and that there are no harmful side effects. 

Cyber security encompasses information security, with respect to electronic 

information, and network security. Information security also is concerned with 

physical (for example, paper-based) information. However, in practice, the terms 

cyber security and information security are often used interchangeably. 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 2 
 

    

 

A more extensive list of cyber security objectives includes the following:  

Availability: The property of a system or a system resource being accessible or 

usable or operational upon demand, by an authorized system entity, according to 

performance specifications for the system; that is, a system is available if it provides 

services according to the system design whenever users request them.  

Integrity: The property that data has not been changed, destroyed, or lost in an 

unauthorized or accidental manner.  

Authenticity: The property of being genuine and being able to be verified and 

trusted. This means verifying that users are who they say they are and that each 

input arriving at the system came from a trusted source.  

Non-repudiation: Assurance that the sender of information is provided with proof 

of delivery and the recipient is provided with proof of the sender’s identity, so 

neither can later deny having processed the information. 

 Confidentiality: The property that data is not disclosed to system entities unless 

they have been authorized to know the data. 

 Accountability: The property of a system or system resource ensuring that the 

actions of a system entity may be traced uniquely to that entity, which can then be 

held responsible for its actions. 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 3 
 

    

The Value of Standards and Best Practices Documents 

 The development, implementation, and management of a cybersecurity 

system for an organization are extraordinarily complex and difficult. 

 A wide variety of technical approaches are involved, including cryptography, 

network security protocols, operating system mechanisms, database security 

schemes, and malware identification.  

 The areas of concern are broad, including stored data, data communications, 

human factors, physical asset and property security, and legal, regulatory, and 

contractual concerns.  

 And there is an ongoing need to maintain high confidence in the cyber 

security capability in the face of evolving IT systems, relationships with 

outside parties, personnel turnover, changes to the physical plant, and the 

ever-evolving threat landscape. 

 

 On the standards side, the most prominent player is the National Institute of 

Standards and Technology (NIST).  

 IST has a huge number of security publications, including nine Federal 

Information Processing Standards (FIPS) and well 100 active Special 

Publications (SP) that provide guidance on virtually all aspects of cyber 

security. 

  Other organization  that have produced cyber security standards and 

guidelines include the ITU-T, International Organization for Standardization 

(ISO), and the Internet Society (ISOC). 

  In addition, a number of professional and industry groups have produced 

best practices documents and guidelines. The most important such document 

is the Standard of Good Practice for Information Security, produced by the 

Information Security Forum (ISF).  

 This 300-plus-page document provides a wide range of best practices 

representing the consensus of industry and government organizations.  

 Other respected organizations, including the Information Systems Audit and 

Control Association (ISACA) and the Payment Card Industry (PCI), have 

produced a number of similar documents. 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 4 
 

    

 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 5 
 

    

 

The SGP is of particular interest to the following individuals:  

Chief information security officers (or equivalent): Responsible for developing 
policy and implementing sound information security governance and information 
security assurance.  

Information security managers (as well as security architects, local security 
coordinators, and information protection champions): Responsible for promoting or 
implementing an information security assurance program  

Business managers: Responsible for ensuring that critical business applications, 
processes, and local environments on which an organization’s success depends are 
effectively managed and controlled 

 IT managers and technical staff: Responsible for designing, planning, developing, 
deploying, and maintaining key business applications, information systems, or 
facilities security policy A set of rules and practices that specify or regulate how a 
system or organization provides security services to protect sensitive and critical 
system resources.  

Internal and external auditors: Responsible for conducting security audits  

IT service providers: Responsible for managing critical facilities (for example, 
computer installations, networks ) on behalf of the organization  

Procurement and vendor management teams: Responsible for defining 
appropriate information security requirements in contracts  



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 6 
 

    

 

 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 7 
 

    

 

It is informative to consider the 17 SGP categories as being organized into three 
principal activities (see Figure 1.3):  

1. Planning for cybersecurity: Developing approaches for managing and 
controlling the cybersecurity function(s); defining the requirements specific to a 
given IT environment; and developing policies and procedures for managing the 
security function  

2. Managing the cybersecurity function: Deploying and managing the security 
controls to satisfy the defined security requirements  

3. Security assessment: Assuring that the security management function enables 
business continuity; monitoring, assessing, and improving the suite of cybersecurity 
controls 

The ISO 27000 series deals with all aspects of an ISMS. It helps small, medium, and 
large businesses in any sector keep information assets secure. This growing 
collection of standards falls into four categories (see Figure 1.4):  

Overview and vocabulary: Provide an overview and relevant vocabulary for ISMS 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 8 
 

    

 Requirements: Discuss normative standards that define requirements for an ISMS 
and for those certifying such systems 

 Guidelines: Provide direct support and detailed guidance and/or interpretation for 
the overall process of establishing, implementing, maintaining, and improving an 
ISMS  

Sector-specific guidelines: Address sector-specific guidelines for an ISM 

 

Security Governance 

NIST SP 800-100, Information Security Handbook: A Guide for Managers, defines 
information security governance as follows:  

Information security governance  The process of establishing and maintaining a 
framework and supporting management structure and processes to provide 
assurance that information security strategies are aligned with and support 
business objectives, are consistent with applicable laws and regulations through 
adherence to policies and internal controls, and provide assignment of 
responsibility, all in an effort to manage risk. 

More generally, the term security governance encompasses governance concerns 
for cyber security, information security, and network security. 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 9 
 

    

Security Governance and Security Management 

To better understand the role of security governance, it is useful to distinguish 
between information security governance (previously defined), information 
security management, and information security implementation/operations. 

 ISO 27000 defines information security management as follows:  

The   supervision  and making of decisions necessary to achieve business objectives 
through the protection of the organization’s information assets.  

Management of information security is expressed through the formulation and use 
of information security policies, procedures and guidelines, which are then applied 
throughout the organization by all individuals associated with the organization. 

And information security implementation/operations can be defined in this fashion:  

The implementation, deployment and ongoing operation of security controls 
defined within a cyber security framework. 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 10 
 

    

Figure 2.1 illustrates the key responsibilities at each level. As indicated, there is 
interaction among the three layers in the ongoing evolution of the information 
security management system (ISMS). In addition, three supplemental factors play 
roles. 

 Internal security incident reports and global vulnerability reports from various 
sources help define the threat and level of risk that the organization faces in 
protecting its information assets. The numerous standards and best practices 
documents provide guidance on managing risk.  

User feedback comes from both internal users and external users who have access 
to the organization’s information assets. This feedback helps improve the 
effectiveness of policies, procedures, and technical mechanisms.  

Depending on the organization and its cybersecurity approach, each of the three 
factors plays a role to a greater or lesser extent at each level.  

Security Governance Principles 

Principles X.1054 provides concepts and guidance on principles and processes for 

information security governance, by which organizations evaluate, direct, and 

monitor the management of information security. X.1054 lays out as a key objective 

of information security governance the alignment of information security objectives 

and strategy with overall business objectives and strategy.  

X.1054 lists six principles for achieving this objective: 

 Establish organizationwide information security: Information security, or 

cybersecurity, concerns should permeate the organization’s structure and functions. 

Management at all levels should ensure that information security is integrated with 

information technology (IT) and other activities. Toplevel management should 

ensure that information security serves overall business objectives and should 

establish responsibility and accountability throughout the organization. 

 Adopt a risk-based approach:. Security governance, including allocation of 

resources and budgets, should be based on the risk appetite of an organization, 

considering loss of competitive advantage, compliance and liability risks, 

operational disruptions, reputational harm, and financial loss.  



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 11 
 

    

Set the direction of investment decisions: Information security investments are 

intended to support organizational objectives. Security governance entails ensuring 

that information security is integrated with existing organization processes for 

capital and operational expenditure, for legal and regulatory compliance, and for 

risk reporting.  

Ensure conformance with internal and external requirements.:External 

requirements include mandatory legislation and regulations, standards leading to 

certification, and contractual requirements. Internal requirements comprise 

broader organizational goals and objectives. Independent security audits are the 

accepted means of determining and monitoring conformance. 

 Foster a security-positive environment for all stakeholders:Security 

governance should be responsive to stakeholder expectations, keeping in mind that 

various stakeholders can have different values and needs. The governing body 

should take the lead in promoting a positive information security culture, which 

includes requiring and supporting security education, training, and awareness 

programs. 

Security Governance Components 

The following key activities, or components that constitute effective security 
governances  
 Strategic planning 
 Organizational structure 
 Establishment of roles and responsibilities 
 Integration with the enterprise architecture 
 Documentation of security objectives in policies and guidance 

The following sections examine each of these components in turn. 
 
Strategic Planning 
It is useful for this discussion to define three hierarchically related aspects of 
strategic planning (see Figure 2.2): 
 Enterprise strategic planning 
 Information technology (IT) strategic planning 

 Cybersecurity or information security strategic planning 
 
 

javascript:popUp('/content/images/chap2_9780134772806/elementLinks/02fig02_alt.jpg')


MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 12 
 

    

 

Enterprise strategic planning involves defining long-term goals and objectives for an 

organization (for example, business enterprise, government agency, or nonprofit 

organization) and the development of plans to achieve these goals and objectives.  

The management activity involved in enterprise strategic planning is described in 

the Strategic Management Group’s Strategic Planning Basics [SMG17] as an activity 

used to set priorities, focus energy and resources, strengthen operations, ensure 

that employees and other stakeholders are working toward common goals, establish 

agreement around intended outcomes/results, and assess and adjust the 

organization’s direction in response to a changing environment. It involves the 

development of a strategic plan and the ongoing oversight of the implementation of 

that plan. 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 13 
 

    

 

 

The six phases are as follows: 

1. Two- to five-year business and technology outlook: At the beginning of the 

year, the planning team takes as input an overall vision and mission statement 

developed at the enterprise level. During this phase, the team reviews the 

enterprise strategies, technology trends, employee trends, and so on to better 

understand the future environment that will shape the IT organization and its 

deliverables. IT subject matter experts from throughout the organization are 

recruited to help define the major trends that may be critical in shaping the 

organization and its decision making in the next few years. 

2. Strategic deep dive: The team identifies a small number of high-impact areas 

that require more in-depth analysis to inform the overall strategic planning 

process. Depending on circumstances at a given point in time, these may include 

IoT, social media trends, and changing regulatory compliance rules. 

3. Current-state assessment: The planning team analyzes the current state of all 

the IT-related systems and policies and compares these with the long-range 

outlook, paying special attention to the key drivers developed in the preceding 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 14 
 

    

phase. The result is a set of recommendations for adjustments to IT’s focus 

areas and spending plans. 

4. Imperatives, roadmaps, and finances: The next phase is the development of a 

strategic plan for IT. The plan includes a discussion of strategic objectives and a 

budget and investment plan. The plan reflects IT’s highest-priority items and 

provides an outcome framework for defining success. Each item includes a 

roadmap that can influence budget and organization decisions in the upcoming 

year. 

5. Governance process and decision making: Once the annual budget is 

approved, the information from the preceding phases is used to guide the 

governance process and the many decisions made across the organization to 

implement the strategic plan and one-year strategic objectives. These decisions 

include project chartering, supplier selection, sourcing, investment trade-off 

decisions, and so on. 

6. Regular reviews: Monthly reviews based on a wide variety of input help 

ensure that the strategic plan and governance decisions are followed. This 

culminates in a year-end assessment. Reviews continue into the following year 

until a new strategic plan and new governance decisions provide input for 

modifying the review process. 

Information security strategic planning: is alignment of information security 

management and operation with enterprise and IT strategic planning. The pervasive 

use and value of IT within organizations has resulted in an expanded notion of IT’s 

delivery of value to the organization to include mitigation of the organization’s risk 

[ZIA15]. Accordingly, IT security is a concern at all levels of an organization’s 

governance and decision-making processes, and information security strategic 

planning is an essential component of strategic planning. 

TABLE 2.1 Elements of a Strategic Plan Document 

Section Description 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 15 
 

    

Section Description 

Definition 

Mission, 

vision, and 

objectives 

Defines the strategy for aligning the information security program 

with organizational goals and objectives, including the role of 

individual security projects in enabling specific strategic initiatives. 

Priorities Describes factors that determine strategy and the priorities of 

objectives. 

Success 

criteria 

Defines success criteria for the information security program. 

Includes risk management, resilience, and protection against 

adverse business impacts. 

Integration Strategy for integrating the security program with the 

organization’s business and IT strategy. 

Threat 

defense 

Describes how the security program will help the organization 

defend against security threats. 

Execution 

Operations 

plan 

An annual plan to achieve agreed objectives that involves agreeing 

on budgets, resources, tools, policies, and initiatives. This plan (a) 

can be used for monitoring progress and communicating with 

stakeholders and (b) ensures that information security is included 

from the outset in each relevant project. 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 16 
 

    

Section Description 

Monitoring 

plan 

This plan involves planning and maintaining a stakeholder 

feedback loop, measuring progress against objectives, and ensuring 

that strategic objectives remain valid and in line with business 

needs. 

Adjustment 

plan 

This plan involves ensuring that strategic objectives remain valid 

and in line with business needs as well as procedures to 

communicate the value. 

Review 

Review plan This plan describes procedures and individuals/committees 

involved in regular review of the information security strategy. 

Organizational Structure 

The organizational structure to deal with cybersecurity depends, in large part, on 

the size of the organization, its type (for example, government agency, business, 

nonprofit), and the organization’s degree of dependence on IT. But the essential 

security governance functions to be performed are in essence the same across 

organizations. Figure 2.4, which is based on a figure in X.1054, illustrates these basic 

functions within a broader context. 

javascript:popUp('/content/images/chap2_9780134772806/elementLinks/02fig04_alt.jpg')


MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 17 
 

    

 

 

The basic security governance functions are as follows: 
 Direct: Guiding security management from the point of view of enterprise 

strategies and risk management. This function involves developing an 
information security policy. 

 Monitor: Monitoring the performance of security management with 
measurable indicators. 

 Evaluate: Assessing and verifying the results of security performance 
monitoring in order to ensure that objectives are met and to determine future 
changes to the ISMS and its management. 

 Communicate: Reporting enterprise security status to stakeholders and 
evaluating stakeholder requirements. 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 18 
 

    

 
 

Security Governance Approach 
 
Security Governance Framework The definition, monitoring, and maintenance of a 
security governance framework entails a number of tasks:  
 

 Appoint a single executive to be ultimately responsible for security 
governance, whose duties including implementing the framework and 
developing and monitoring an information security strategy and security 
assurance program.  

 
 Decide and communicate to top executives the objectives of the security 

governance framework, including ensuring alignment with overall 
organization policies and goals, enhancing business value, and adequately 
managing risk.  

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 19 
 

    

 Ensure integration of the security architecture with the enterprise 
architecture.  

 
 Include a process that enables the governing body to evaluate the operation 

of the information security strategy to ensure that it aligns with business 
needs the organization’s current risk appetite. 

 
 Regularly review the organization’s risk appetite to ensure that it is 

appropriate for the current environment in which the organization operates.  
 

Information Risk Management 
 

 

  

Management implies someone proactively, deliberately, explicitly and 
systematically identifying, assessing, evaluating and dealing with risks on an 
ongoing basis (coping with any changes), along with related governance 
aspects such as direction, control, authorization and resourcing of the 
process, risk treatments etc.; 

 Risk, in this context, is the possibility, the potential occurrence of events or 
incidents that might materially harm the organisation’s interests or interfere 
with the realisation of business objectives; 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 20 
 

    

 Information is the valuable meaning, knowledge and insight deriving from 
raw data such as the content of computer files, paperwork, conversations, 
expertise, intellectual property, art, concepts and so forth. 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 21 
 

    

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 22 
 

    

 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 23 
 

    

 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 24 
 

    

 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 25 
 

    

 

 

 

Asset Identification  



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 26 
 

    

 identification is the identification of the assets, threats, existing controls, 

vulnerabilities, and impacts relevant to the organization and that serve as 

inputs 

 A first step in risk assessment is to document and determine values for the 

organization’s assets. An asset is anything of value to the business that 

requires protection, including hardware, software, information, and business 

assets.  

 Many assets of various types can be identified, and the challenge is to develop 

a uniform way of documenting the assets, the security implications of each, 

and the costs associated with security incidents related to each. 

  Asset valuation relates directly to business needs. Accordingly, the input for 

asset valuation needs to be provided by owners and custodians of assets, not 

by members of the risk assessment team. 

Hardware Assets  

 Hardware assets include servers, workstations, laptops, mobile devices, 

removable media, networking and telecommunications equipment, and 

peripheral equipment. Key concerns are loss of a device, through theft or 

damage, and lack of availability of the device for an extended period.  

 Another concern is device malfunction, due to deliberate malfunction or other 

causes. Asset valuation needs to take into account the replacement cost of the 

hardware, disruption losses, and recovery expenses.  

Software Assets 

 Software assets include applications, operating systems and other system software, 

virtual machine and container virtualization software, software for software-

defined networking (SDN) and network function virtualization (NFV), database 

management systems, file systems, and client and server software. Availability is a 

key consideration here, and asset valuation must take account of disruption losses 

and recovery expenses. 

Information Assets  



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 27 
 

    

Information assets comprise the information stored in databases and file systems, 

both on-premises and remotely in the cloud.  

As an example, ITU-T X.1055 lists the following as types of information assets in a 

telecommunications or network environment:  

 

  

 

Business Assets  



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 28 
 

    

The business assets category includes organization assets that don’t fit into the 

other categories, including human resources, business processes, and physical plant. 

This category also includes intangible assets, such as organization control, know-

how, reputation, and image of the organization.  

Asset Register  

In order to effectively protect assets, an organization needs to provide a systematic 

method of documenting assets and their security implications. This is done in an 

asset register that documents important security-related information for each asset. 

Examples of items that may be included for each asset are as follows: 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 29 
 

    

 

 

 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 30 
 

    

 

 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 31 
 

    

 Risk assessment 

A risk assessment is a process to identify potential hazards and analyze what could 

happen if a hazard occurs. A business impact analysis (BIA) is the process for 

determining the potential impacts resulting from the interruption of time sensitive 

or critical business processes. 

Quantitative Versus Qualitative Risk Assessment 

 Two factors of risk assessment can be treated either quantitatively or qualitatively: 

impact and likelihood. 

 For impact, if it seems feasible to assign a specific monetary cost to each of 

the impact areas, then the overall impact can be expressed as a monetary 

cost. Otherwise, qualitative terms, such as low, moderate, and high, are used.  

 Similarly, the likelihood of a security incident may be determined 

quantitatively or qualitatively. The quantitative version of likelihood is simply 

a probability value, and again the qualitative likelihood can be expressed in 

such categories as low, medium, and high. 

https://www.ready.gov/business-impact-analysis


MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 32 
 

    

 

 

An organization needs some clearly defined categories of impact, threat, and 

vulnerability. For impact, FIPS 199, Standards for Security Categorization of Federal 

Information and Information Systems, defines three security categories based on 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 33 
 

    

the potential impact on an organization should certain events occur that jeopardize 

the IT assets needed by the organization to accomplish its assigned mission, protect 

its assets, fulfill its legal responsibilities, maintain its day-to-day functions, and 

protect individuals.  

 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 34 
 

    

 

Security Management Function  

 

What is Security Management? 
 Security management covers all aspects of protecting an organization’s assets 

– including computers, people, buildings, and other assets – against risk.  
 

 A security management strategy begins by identifying these assets, 
developing and implementing policies and procedures for protecting them, 
and maintaining and maturing these programs over time. 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 35 
 

    

Below, we discuss what security management means to organizations, types of 
security management, and review some considerations for security management 
when choosing a cyber security solution. 
 
Purpose of Security Management 

 The goal of security management procedures is to provide a foundation for an 

organization’s cybersecurity strategy.  

 The information and procedures developed as part of security management 

processes will be used for data classification, risk management, and threat 

detection and response. 

 These procedures enable an organization to effectively identify potential 

threats to the organization’s assets, classify and categorize assets based on 

their importance to the organization, and to rate vulnerabilities based on 

their probability of exploitation and the potential impact to the organization. 

Types of Security Management :Security management can come in various 

different forms. Three common types of security management strategies include 

information, network, and cyber security management. 

1. Information Security Management 

 Information security management includes implementing security best 

practices and standards designed to mitigate threats to data like those found 

in the ISO/IEC 27000 family of standards. 

 Information security management programs should ensure the 

confidentiality, integrity, and availability of data. 

 Many organizations have internal policies for managing access to data, but 

some industries have external standards and regulations as well.  

The following as areas of responsibility: 
 Application information security Infrastructure 
 information security 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 36 
 

    

 Access management 
 Threat and incident management 
 Risk management 
 Awareness program  
 Metrics  
 Vendor assessments 

 

 For example, healthcare organizations are governed by the Health Insurance 

Portability and Accessibility Act (HIPAA), and the Payment Card Industry 

Data Security Standard (PCI DSS) protects payment card information. 

2. Network Security Management 

 Network security management is a vital component of a network 

management strategy. The network is the vector by which most cyber attacks 

reach an organization’s systems and its first line of defense against cyber 

threats.  

 Network security management includes deploying network monitoring and 

defense solutions, implementing network segmentation, and controlling 

access to the network and the devices connected to it. 

3. Cyber security Management 

 Cyber security management refers to a more general approach to protecting 

an organization and its IT assets against cyber threats.  

 This form of security management includes protecting all aspects of an 

organization’s IT infrastructure, including the network, cloud infrastructure, 

mobile devices, Internet of Things (IoT) devices, and applications and APIs. 

 NISTIR 7359, Information Security Guide for Government Executives, 

provides a useful summary of the tasks that comprise information security 

management Although addressed to government executives, NISTIR 7359 

discusses the general functional areas of an information security or 

https://www.checkpoint.com/cyber-hub/network-security/what-is-network-security/what-is-network-management/
https://www.checkpoint.com/cyber-hub/network-security/what-is-network-security/what-is-network-management/
https://www.checkpoint.com/cyber-hub/network-security/what-is-network-security/what-is-network-management/


MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 37 
 

    

cybersecurity program that should be the responsibility of the CISO in any 

organization.  

The key security program areas include the following:  

Security planning: Security planning includes strategic security planning, But it 

also includes more detailed planning for the organization, coordination, and 

implementation of security. Key actors within the organization, such as department 

heads and project managers, need to be consulted and brought into the ongoing 

process of planning.  

Capital planning :Capital planning is designed to facilitate and control the 
expenditure of the organization’s funds. Part of the planning process, and part of the 
CISO’s responsibility, is to prioritize potential IT security investments for allocating 
available funding. 

Awareness and training: Awareness and training programs ensure that personnel 
at all levels of the organization understand their information security 
responsibilities to properly use and protect the information resources entrusted to 
them.  

Information security governance: The CISO should advise C-level executives and 
the board concerning the development  

System development life cycle: This is the overall process of developing, 
implementing, and retiring information systems.  

Security products and services acquisition: Management supervision of the 
acquisition of security-related products and services includes considering the costs 
involved, the underlying security requirements, and the impact on the 
organizational mission, operations, strategic functions, personnel, and service-
provider arrangements. 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 38 
 

    

Risk management 

Configuration management: The CISO should employ configuration management 
to ensure adequate consideration of the potential security impacts due to specific 
changes to an information system or its surrounding environment. 

Incident response: Incident response, which occurs after the detection of a security 
event, seeks to minimize the damage of the event and facilitate rapid recovery. 

Contingency planning: Information system contingency planning involves 
management policies and procedures designed to maintain or restore business 
operations, including computer operations, possibly at an alternate location, in the 
event of emergencies, system failures, or disasters. 

 

Performance measures:  

The CISO should ensure that an organizationwide performance measures are 
defined and used. Performance measures are a key feedback mechanism for an 
effective information security program. 

Support function: The CISO should: 

 Act as a clearing house for security advice, making experts available to 

business unit managers and project managers, as needed  

 Promote security awareness throughout the organization 

 Develop standard terms and agreements in contracts to ensure that suppliers 

and other external relationships meet the security standards of the 

organization 

 Evaluate the security implications of new business initiatives 

 Oversee the risk assessment process  

 Set standards for use of cryptographic algorithms and security protocols 

Monitor function: The CISO should monitor trends and developments to be aware 

of how they may affect the organization’s security strategy and implementation, 

including in the area of business trends, new technical developments, security 

solutions, standards, legislation, and regulation.  



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 39 
 

    

Projects function: The CISO should be responsible for overseeing security-related 

projects.  

External requirements function: The CISO should manage the implications of 

laws, regulations, and contracts. 

 

security plan 

 Security plan is to provide an overview of the security requirements of the 

system and describe the controls in place or planned for meeting those 

requirements.  

 The system security plan also delineates responsibilities and expected 

behavior of all individuals who access the system. The system security plan is 

basically documentation of the structured process of planning adequate, cost-

effective security protection for a system. 

information system in an organization have a separate plan document with 

the following elements:  

Information system name/identifier: A name or identifier uniquely assigned to 

each system. Assignment of a unique identifier supports the organization’s ability to 

easily collect information and security metrics specific to the system as well as 

facilitate complete traceability to all requirements related to system 

implementation and performance. The identifier should remain the same 

throughout the life of the system and retained in audit logs related to system use.  

Information system owner: The person responsible for managing this asset. 

Authorizing individual: The senior management official or executive with the 

authority to formally assume responsibility for operating an information system at 

an acceptable level of risk to agency operations, agency assets, or individuals.  

Assignment of security responsibility: The individual responsible for the security 

of the information system.  

Security categorization: Using the FIPS 199, Standards for Security Categorization 

of Federal Information and Information Systems, categories, the acceptable level of 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 40 
 

    

risk (low, moderate, or high) for confidentiality, integrity, and availability (for each 

distinct element of the system, if necessary).  

Information system operational status: Status, such as operational, under 

development, or undergoing major modification.  

Information system type: Type, such as major application or support system.  

Description/purpose: A brief description (one to three paragraphs) of the function 

and purpose of the system. 

Existing security controls: Description of each control.  

Planned security controls: Description of each control plus implementation plan.  

Information system security plan completion date: The target date.  

Information system security plan approval date: The data plan approved date. 

 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 41 
 

    

This process involves three steps, each of which has goals, objectives, implementing 

activities, and output products for formal inclusion in agency enterprise 

architecture and capital planning processes:  

1. Identify: Encompasses the research and documentation activities necessary to 

identify security and privacy requirements in support of the mission objectives so 

that they can be incorporated into the enterprise architecture. 

 2. Analyze: Involves an analysis of organization security and privacy requirements 

and the existing or planned capabilities that support security and privacy.  

3. Select: Involves an enterprise evaluation of the solutions proposed in the 

preceding phase and the selection of major investments. 

Step 1 refers to three types of requirements, defined as follows:  

External requirements: These are security requirements imposed from outside the 

organization, such as laws, regulations, and contractual commitments.  

Internal requirements: These are security requirements developed as part of the 

security policy, such as the acceptable degree of risk and confidentiality, integrity, 

availability, and privacy guidelines.  

Business requirements: This refers to requirements other than security 

requirements that are related to the overall business mission. Examples include 

finance, accounting, and audit requirements. In general, these requirements refer to 

the organization’s need to discharge business responsibilities. 

Capital Planning 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 42 
 

    

 

The Select/Control/Evaluate framework defines a cyclical process consisting 

of three steps for deciding which projects to pursue or which investments to 

make:  

1. Select: Identify and analyze each project’s risks and returns before committing 

significant funds to any project. The organization then selects the IT projects that 

best support its mission needs. The organization repeats this process each time 

funds are allocated to projects.  

2. Control: Ensure that as projects develops and investment expenditures continue, 

the project continues to meet mission needs at the expected levels of cost and risk. If 

the project is not meeting expectations or if problems have arisen, steps must be 

quickly taken to address the deficiencies. If mission needs have changed, the 

organization needs to adjust its objectives for the project and appropriately modify 

expected project outcomes. 

 3. Evaluate: Compare actual results and expected results after a project was fully 

implemented. This is done for the following reasons: To assess the project’s impact 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 43 
 

    

on mission performance To identify any necessary changes or modifications to the 

project To revise the investment management process based on lessons learned  

Security Policy 

Information security policy is an aggregate of directives, rules, and practices that 

prescribes how an organization manages, protects, and distributes information. 

 It is helpful to distinguish four types of documents before proceeding: 

 Information security strategic plan: Relates to the long-term goals for 

maintaining security for assets.  

 Security plan: Relates to security controls in place and planned to meet 

strategic security objectives.  

 Security policy: Relates to the rules and practices that enforce security.  

 Acceptable use policy: Relates to how users are allowed to use assets. 

 Security-Related Documents 

  



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 44 
 

    

  

Security Policy Categories 

 Access control policy: How information is accessed 

 Contingency planning policy: How availability of data is provided 24/7 

 Data classification policy: How data are classified  

 Change control policy: How changes are made to directories or the file 

server 

 Wireless policy: How wireless infrastructure devices need to be configured 

  Incident response policy: How incidents are reported and investigated  

 Termination of access policy: How employee access to organization assets 

is handled during termination 

  Backup policy: How data is backed up 

  Virus policy: How virus infections need to be dealt with  

 Retention policy: How data can be stored  

 Physical access policy: How access to the physical area is obtained  

 Security awareness policy: How security awareness is carried out 

  Audit trail policy: How audit trails are analyzed Firewall policy: How  

  firewalls are named, configured, and so on  

 Network security policy: How network systems are secured  

 Encryption policy: How data are encrypted, the encryption method used,  

and so on  

 BYOD policy: What devices an employee may use both on premises and off to 

access organization assets  



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 45 
 

    

 Cloud computing policy: Security aspects of using cloud computing 

resources and service 

Security Policy Document Content  

Whether a single document or a set of documents, each security policy 

document should include the following sections: 

 Overview: Background information on what issue the policy addresses  

 Purpose: Why the policy was created  

 Scope: What areas the policy covers  

 Targeted audience: To whom the policy is  

 applicable Policy: A complete but concise description of the policy 

  Noncompliance: Consequences for violating the policy 

  Definitions: Technical terms used in the document  

 Version: Version number to keep track of the changes made to the document 

Management Guidelines for Security Policies The SGP provides a useful set of 

guidelines for the creation, content, and use of security policy documents, 

which can be categorized as follows 

Responsibilities: Identify the following:  

 Those responsible for ratifying policy document (for example, the board)  

 Responsibilities of all relevant individuals to comply with the policy 

 Individuals responsible for protecting specific assets  

 That all individuals must confirm the understanding of, acceptance of, and 

compliance with relevant policies and understand that disciplinary action will 

follow policy violation 

Principles: Specify the following: 

 All relevant assets to be identified and classified by value/importance  

 All assets protected with respect to CIA (confidentiality, integrity, and 

availability) and other security requirements  

 All laws, regulations, and standards complied with 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 46 
 

    

Actions: Specify the following:  

 That all individuals are made aware of the security policy and their 

responsibilities  

 That all assets are subject to risk assessment periodically and before a major 

change  

 That all breaches are reported in a systematic fashion  

 That auditing occurs periodically and as needed  

 That policy documents are reviewed regularly and as needed 

Acceptable use: Policies that include the following: 

 Documentation of what behaviors are required, acceptable, and prohibited 

with Respect various assets  

 Responsibility for establishing, approving, and monitoring acceptable use 

policies. 

Acceptable Use Policy 

 An acceptable use policy (AUP) is a type of security policy targeted at all 

employees who have access to one or more organization assets.  

 It defines what behaviors are acceptable and what behaviors are not 

acceptable. The policy should be clear and concise, and it should be a 

condition of employment for each employee to sign a form indicating that he 

or she has read and understood the policy and agrees to abide by its 

conditions. 

suggests the following process for developing an AUP: 

1. Conduct a risk assessment to identify areas of concern.:As part of the risk 

assessment process, identify the elements that need to go into an AUP.  

2. Create the policy: The policy should be tailored to the specific risks identified, 

including liability costs. For example, the organization is exposed to liability if 

customer data is exposed. If the failure to protect the data is due to an employee’s 

action or inaction, and if this behavior violates the AUP, and if this policy is clear and 

enforced, then this may mitigate the liability of the organization.  



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 47 
 

    

3. Distribute the AUP: This includes educating employees on why an AUP is 

necessary.  

4. Monitor complianc .:A procedure is needed to monitor and report on AUP 

compliance.  

5. Enforce the policy: The AUP must be enforced consistently and fairly when it is 

breached. 

The document is the policy section, which covers the following areas: 

General use and ownership: Key points in this section include:  

 Employees must ensure that proprietary information is protected.  

 Access to sensitive information is allowed only to the extent authorized and 

necessary to fulfill duties.  

 Employees must exercise good judgment regarding the reasonableness of 

personal use. 

Security and proprietary information: Key points in this section include:  

 Mobile devices must comply with the company’s BYOD policies.  

 System- and user-level passwords must comply with the company’s password 

policy.  

 Employees must use extreme caution when opening email attachments. 

Unacceptable use—system and network activities: Key points in this section 

include:  

 Unauthorized copying of copyrighted material  

 The prohibition against accessing data, a server, or an account for any 

purpose other than conducting company business, even with authorized 

access  

 Revealing your account password to others or allowing use of your account 

by others  

 Making statements about warranty unless it is a part of normal job duties  



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 48 
 

    

 Circumventing user authentication or security of any host, network, or 

account 

  Providing information about, or lists of, company employees to outside 

parties. 

Unacceptable use—email and communication activities: Key points in this 

section include:  

 Any form of harassment  

 Any form of spamming  

 Unauthorized use, or forging, of email header information  

Unacceptable use—blogging and social media: Key points in this section 

include:  

 Blogging is acceptable, provided that it is done in a professional and 

responsible manner, does not otherwise violate company policy, is not 

detrimental to company’s best interests, and does not interfere with an 

employee’s regular work duties. 

 Any blogging that may harm or tarnish the image, reputation, and/or 

goodwill of company and/or any of its employees is prohibited.  

 Employees may not attribute personal statements, opinions, or beliefs to the 

company. 

Security Management Best Practices  

The SGP breaks down the best practices in the security management category into 

two areas and five topics and provides detailed checklists for each topic. The areas 

and topics are as follows: 

Security policy management: Discusses a specialist information security function, 

led by a sufficiently senior manager (e.g., a CISO), that is assigned adequate 

authority and resources to run information securityrelated projects; promote 

information security throughout the organization; and manage the implications of 

relevant laws, regulations and contracts. 



MC4205                                                                                                 CYBER SECURITY 

 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 49 
 

    

 Information security policy: Documents the governing body’s 

direction on and commitment to information security and 

communicate it to all relevant individuals.               

 Acceptable use policies: Lists recommended actions for 

establishing AUPs, which define the organization’s rules on how 

each individual (for example, an employee, a contractor) may use 

information and systems, including software, computer 

equipment, and connectivity. 

Information security management: Provides guidance for developing a 

comprehensive, approved information security policy (including supporting 

policies, standards, and procedures) and communicating it to all individuals who 

have access to the organization’s information and systems.                        

 Information security function: Ensures that good practice in 

information security is applied effectively and consistently 

throughout the organization. 

 Information security projects: Lists recommended actions for 

ensuring that all information security projects apply common 

project management practices, meet security requirements, and 

are aligned with the organization’s business objectives. 

 Legal and regulatory compliance: Describes a process that 

should be established to identify and interpret the information 

security implications of relevant laws and regulations. 



MC4205                                                                                                                       CYBER SECURITY 
 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
  

Information security management: 

 Provides guidance for developing a comprehensive, approved information 

security policy. 

– Information security function 

– Information security projects 

– Legal and regulatory compliance 

 
5. SECURITY MODEL 

 A model describes the system 

o e.g., a high level specification or an abstract machine description of what 

the system does . 

 A security policy 

o defines the security requirements for a given system 

o  Verification techniques that can be used to show that a policy is satisfied 

by a system 

 System Model + Security Policy = Security Model 

 
 BELL-LAPADULA MODEL 

• Bell-LaPadula model is  a security  method created for the US government to 

preserve the confidentiality of information 

The BLP Security Model 

• A computer system is modeled as a state-transition system 

– There is a set of subjects; some are designated as trusted. 

–  Each state has objects, an access matrix, and the current access 

information. 

–  There are state transition rules describing how a system can go from one 

state to another 

–  Each subject s has a maximal security level Lm(s), and a current security 

level Lc(s) 

– Each object has a classification level 

• Example of security levels 

– Top Secret 

– Secret 

– Confidential 

– Unclassified 



MC4205                                                                                                                       CYBER SECURITY 
 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
  

Bell-LaPadula is a form of multilevel security 
 
 

 
 
The Bell-LaPadula model is defined by the following properties 

 

• If a system is initially in a secure state, and every transition of the system 

satisfies the simple security condition, and the * property, then every state of the 

system is secure 

• Example 



MC4205                                                                                                                       CYBER SECURITY 
 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
  

Bell-LaPadula model has two major limitations: 

– It provides confidentiality only. (no integrity, authentication ,etc.) 

– It provides no method for management of classifications 

 
 BIBA MODEL 

 

• The Biba integrity model was published in 1977 at the Mitre Corporation, one 

year after the Bell La-Padula model was published. 

• The Biba model supports the access control of both subjects and objects. 

–  Subjects are the active elements in the system that can access information 

(processes acting on behalf of the users). 

–  Objects are the passive system elements for which access can be 

requested (files, programs, etc.). 

 
Access Modes 

• The Biba model consists of the following access modes: 

 Modify 
o This mode is similar to the write mode in other models. 

 Observe 
o The observe right allows a subject to read an object. 

 Invoke 
o The invoke right allows a subject to communicate with another subject. 

 Execute 
o The execute right allows a subject to execute an object 

Biba Policies 

• The model supports both mandatory and discretionary policies 

• The Mandatory Policies: 

• Strict Integrity Policy 

• Low-Watermark Policy for Subjects 

• Low-Watermark Policy for Objects 

• The Discretionary Policies: 

• Access Control Lists 

• Object Hierarchy 

• Ring 

• Strict Integrity Policy The Strict Integrity Policy is the first part of the Biba 

model. The policy consists of: 



MC4205                                                                                                                       CYBER SECURITY 
 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
  

• 1. Simple Integrity Condition: s ∈ S can observe o∈ O if and only if i(s) ≤ 

i(o) (―no read-down‖). That means high integrity subject cannot read low 

integrity objects. 

• 2. Integrity Star Property: s ∈ S can modify o∈ O if and only if i(o) ≤ i(s) 

(―no write-up‖). Subject cannot move low integrity data to high integrity 

environment. 

• 3. Invocation Property: s₁ ∈ S can invoke s₂ ∈ S if and only if i(s₂) ≤ i(s₁). 

That means a subject at one integrity level is prohibited from invoking or 

calling up a subject at higher level of integrity. 

Low-Watermark Policy for Subjects 

– The low-watermark policy for subjects is a relaxed no read-down 

Low-Watermark Policy for Objects 

– The low-watermark policy for objects is a relaxed no write-down. 

Ring Policy 

 Any subject can observe any object, regardless of integrity levels 

Advantages: 

o The Biba model is it simple and easy to implement. 

o The Biba model provides a number of different policies that can be 

selected based on need. 

Disadvantages: 

o  The model does nothing to enforce confidentiality. The Biba model 

doesn‘t support the granting and revocation of authorization. 

o To use this model all computers in the system must support the labeling of 

integrity for both subjects and objects 



MC4205                                                                                                                       CYBER SECURITY 
 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
  

5.3 CHINESE WALL MODEL 
 

 Chinese Wall Model which addresses a conflicts of interest problem. 

 Strictly speaking, this is not an integrity policy, but an access control 

confidentiality policy. 

 The main idea is that you are able to access any information you want from any 

company but once you access that information, you are no longer allowed to 

access information from another company within that class of companies. 

 The security policy builds on three levels of abstraction. 

o Objects such as files. Objects contain information about only one 

company. 

o Company groups collect all objects concerning a particular company. 

o Conflict classes cluster the groups of objects for competing companies. 

That means contain the CDs of companies in competition 

 
 For example, consider the following conflict classes: 

 
{ Dialog, Mobitel, Airtel } 

{ Central Bank, HNB, HSBC } 

{ Microsoft } 

• For example, if you access a file from Dialog, you subsequently will 

be blocked from accessing any files from Mobitel or Airtel 

• Chinese wall model is mainly focus on conflicts of interest (COI) COI- conflict 

classes contains CDs of competitive companies 

 
•  Principle: Users should not access the confidential information of both a client 

organization and one or more of its competitors. 

• How it works 

– Users have no ―wall initially. 

–  Once any given file is accessed, files with competitor information become 

inaccessible. 

– Unlike other models, access control rules change with user behavior 



MC4205                                                                                                                       CYBER SECURITY 
 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
  

 

 

 Simple security rule: 

 
– Access is only granted if the object requested: 

• is in the same company dataset as an object already accessed by 

that subject, i.e. within the Wall, or 

• belongs to an entirely different conflict of interest class 

 
• *-property rule: 

– Write access is only permitted if 

• access is permitted by the simple security rule, and 

• no object can be read which is in a different company dataset to the 

one for which write access 

 
 

 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

UNIT II                         SECURITY CONTROLS  

People Management -Human Resource Security-Security Awareness and 

Education-Information Management- Information Classification and handling-

Privacy-Documents and Record Management-Physical Asset Management-Office 

Equipment-Industrial Control Systems-Mobile Device Security- System 

Development-Incorporating Security into SDLC - Disaster management and 

Incident response planning. 

People Management 

 The Information Security Forum’s (ISF’s) Standard of Good Practice for 

Information Security (SGP) uses the term people management to refer to all 

aspects of security related to the behavior of employees and others who have 

access to the organization’s information and systems. 

 As many security experts have pointed out, superb technical solutions for 

ensuring security are bound to fail if employees do not understand their security 

responsibilities and are trained and motivated to fulfill those responsibilities. 

Human Resource Security 

 Human Resource Management (HRM) is an operation in companies designed to 

maximize employee performance in order to meet the employer's strategic goals 

and objectives. More precisely, HRM focuses on management of people within 

companies, emphasizing on policies and systems. 

 Sound security practice dictates that information security requirements be 

embedded into each stage of the employment life cycle, specifying security-

related actions required during the induction of each individual, the employee’s 

ongoing management, and termination of his or her employment. 

– Hiring new employees 

– Training employees 

– Monitoring employee behavior 

– Handling employee departure/termination 

Especially important is the management of personnel with privileged user access to 

information and IT assets. 

General guidelines for checking applicants include the following: 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 

 

1) Security in the Hiring Process 

 ISO 27002, Code of Practice for Information Security Controls, lists the 

following security objective of the hiring process: to ensure that employees 

and contractors understand their responsibilities and are suitable for the 

roles for which they are considered. 

o Background Checks and Screening 

o Employment Agreements 

o Job Descriptions 

 

 

Security-Related Tasks by Job Description 

2) During Employment 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 ISO 27002 lists the following security objective with respect to current 

employees: to ensure that employees and contractors are aware of and fulfill 

their information security responsibilities. 

o Least privilege 

o Separation of duties 

o Limited reliance on key employees 

o Dual operator policy 

3) Termination of Employment 

 ISO 27002 lists the following security objective with respect to termination of 

employment: to protect the organization’s interests as part of the process of 

changing or terminating employment. 

o Removing the person’s name from all lists of authorized access to 

applications and systems 

o For IT personnel, ensuring that no rogue admin accounts were created 

o Explicitly informing guards that the ex-employee is not allowed into the 

building without special authorization by named employees 

o Removing all personal access codes 

o Recovering all assets, including employee ID, disks, documents, and 

equipment 

o Notifying, by memo or email, appropriate departments so that they are 

aware of the change in employment status 

 

Security Awareness and Education 

 A critical element of an information security program is the security awareness 

and training program.  

 It is the means for disseminating security information to all employees, including 

IT staff, IT security staff, and management, as well as IT users and other 

employees.  

 A workforce that has a high level of security awareness and appropriate security 

training for each individual’s role is as important as, if not more important than, 

any other security countermeasure or control. 

 Two key National Institute of Standards and Technology (NIST) publications, 

SP 800-16. 

 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 A Role-Based Model for Federal Information Technology/Cyber security 

Training. SP 800-50, Building an Information Technology Security 

Awareness and Training Program. 

 

 

1. Security Awareness 

 All employees have security responsibilities; all employees must have 

suitable awareness training. Awareness seeks to focus an individual’s 

attention on an issue or a set of issues 

o security awareness 

o security culture 

o negligent behavior 

o accidental behavior 

o malicious behavior 

o change management 

 Change management is designed to minimize resistance to 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

organizational change through involvement of key players and 

stakeholders. 

 Plan, assess, and design 

 Execute and manage 

 Evaluate and adjust 

Awareness Program Communication Materials 

 An awareness training program are the communication materials and 

methods used to convey security awareness. 

o Use in-house materials 

o Use externally obtained materials 

 In-house materials that are effectively used include the following: 

o Brochures, leaflets, and fact sheets 

o Security handbook: 

o Regular email or newsletter: 

o Distance learning: 

o Workshop and training sessions: 

o Formal classes 

o Video: 

o Website 

o Emphasizing the difference between critical information and sensitive 

information, which must be treated differently. 

 Critical information -Information that needs to be available 

and have integrity 

 Sensitive information -Information that can be disclosed only 

to authorized individual 

Awareness Program Evaluation 

o Number of security incidents due to human behavior 

o Audit findings 

o Results of staff surveys 

o Tests of whether staff follow correct procedures 

o Number of staff completing training 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

2. Cyber security Essentials Program 

 Its principal function is to target users of IT systems and applications, 

including company-supplied mobile devices and bring your own device 

(BYOD) policies, and develop sound security practices for these employees. 

 Secondarily, it provides the foundation for subsequent specialized or role-

based training by providing a universal baseline of key security terms and 

concepts. 

 

Bring your own device (BYOD) 

 An IT strategy in which employees, business partners, and others use their 

personally selected and purchased client devices to execute enterprise 

applications and access data and the corporate network. 

 Key topics that should be covered include: 

o Technical underpinnings of cybersecurity and its taxonomy, 

terminology, and challenges 

o Common information and computer system security vulnerabilities 

o Common cyberattack mechanisms, their consequences, and 

motivations for use 

o Different types of cryptographic algorithms 

o Firewalls and other means of intrusion prevention 

o Fundamental security design principles and their role in limiting 

points of vulnerability 

3. Role-Based Training 

 Role-based training is targeted at individuals who have functional rather 

than user roles with respect to IT systems and applications. 

– Manage 

– Design 

– Implement 

– Evaluate 

4. Education and Certification 

 An education and certification program is targeted at those who have 

specific security responsibilities, as opposed to IT workers who have 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

some other. 

 Global Information Assurance Certification (GIAC) Security 

Essentials (GSEC) 

 Systems Security Certified Practitioner (SSCP): 

 Information Systems Audit and Control Association (ISACA) 

Certified Information Security Manager (CISM) 

 SANS computer security training and certification 

 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 

Security Awareness Processes 

                                       



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 

INFORMATION MANAGEMENT 

The area of information management, according to the Information Security Forum’s 

(ISF’s) Standard of Good Practice for Information Security (SGP), encompasses four 

topics,  

 Information classification and handling: Deals with methods of classifying and 

protecting an organization’s 

 information assets Privacy : Is concerned with threat, controls, and policies 

related to the privacy of personally identifiable information . 

 Document and records management: Is concerned with the protection and 

handling of the documents and records maintained by an organization Sensitive  



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 physical information: Covers specific issues related to the security of 

information assets in physical form. 

INFORMATION CLASSIFICATION AND HANDLING 

 A necessary preliminary step to the development of security controls and 

policies for protecting information is that all the information assets of the 

organization must be classified according to their importance and 

according to the impact of security breaches involving the information. 

 Classification of information 

 Labeling of information: 

 Handling of assets: 

1. Information Classification 

 It is useful to view information classification and handling in the 

overall context of risk management. 

 Categorize 

 Select 

 Implement 

 Assess 

 Authorize 

 Monitor 

• That are essential to information classification: 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

– Information type 

– Security objective 

– Impact 

– Security classification 

2. Information Labeling 

 A label needs to be associated with each instance of an information 

type so that its classification is clearly and unambiguously known. 

 Methods are needed to ensure that a label is not separated from the 

information and that the content of the label is secure from 

unauthorized modification. 

Radio-frequency identification (RFID) 

 A data collection technology that uses electronic tags attached to items 

to allow the items to be identified and tracked with a remote system. 

The tag consists of an RFID chip attached to an antenna. 

3. Information Handling 

 Information handling refers to processing, storing, communicating, or 

otherwise handling information consistent with its classification.ISO 

27002 lists the following relevant considerations: 

 Access restrictions supporting the protection requirements for each 

level of classification 

o Maintenance of a formal record of the authorized recipients of 
assets 

o Protection of temporary or permanent copies of information to 

a level consistent with the protection of the original information 

o Storage of IT assets in accordance with manufacturers’ 
specifications 

 An organization can also take advantage of broader information 

management tools, such as a document management system (DMS) or a 

records management system (RMS) 

Data Loss Prevention (DLP) 

 The automated tools should facilitate integration with other security tools, 

such as encryption and digital signature modules and data loss prevention 

(DLP) packages. 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 A set of technologies and inspection techniques used to classify information 

content contained within an object—such as a file, an email, a packet, an 

application, or a data store—while at rest (in storage), in use (during an 

operation), or in transit (across a network). 

PRIVACY 

 The term privacy usually refers to making ostensibly private information 

about an individual unavailable to parties who should not have that 

information. 

 Privacy interests attach to the gathering, control, protection, and use of 

information about individual. 

 Examples 

o Personal identification number (PIN), such as Social Security number 

(SSN), passport number, driver’s license number, taxpayer 

identification number, patient identification number, or financial 

account or credit card number 

o Telephone numbers, including mobile, business, and personal numbers 

Relationship between Information Security and Privacy 

1. Privacy Threats 

 To understand the requirements for privacy, the threats must 

first be identified 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 

 Information collection is not necessarily harmful but can in some cases 

constitute a privacy threat. 

– Surveillance 

– Interrogation 

– Information processing refers to the use, storage, and manipulation 

of data that have been collected. 

 Aggregation 

 Identification 

 Insecurity 

 Secondary use 

 The area of information dissemination encompasses the revelation of 

personal information or the threat of such revelation. 

– Disclosure 

– Breach of confidentiality 

– Exposure 

– Blackmail 

– Appropriation 

 The fourth area of privacy threats is referred to as invasions, and it 

involves impingements directly on the individual 

– Intrusion 

– Decisional interference 

Privacy Principles and Policies 

 A number of international organizations and national governments have 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

introduced standards, laws, and regulations intended to protect individual 

privacy. 

ISO 29100 

 ISO 29100, Privacy Framework, lists the following 11 privacy principles that 

form the bases of this international standard 

European Union’s GDPR 

 One of the most comprehensive initiatives is European Union’s (EU’s) 

General Data Protection Regulation (GDPR), approved by the European 

Parliament in 2016, 

U.S. Privacy Laws and Regulations 

 There is no single law or regulation covering privacy in the United States. 

Rather, a collection of federal privacy laws cover various aspects of privacy; 

 

U.S. Privacy Laws and Regulations 

 There is no single law or regulation covering privacy in the United States. 

Rather, a collection of federal privacy laws cover various aspects of privacy; 

 

2. Privacy Controls 

 To counter privacy threats and comply with government laws and 

regulations, organizations need a set privacy controls that encompass their 

privacy requirements and that respond to legal requirements 

– Authority and purpose: 

– Accountability, audit, and risk management 

– Data quality and integrity 

– Data minimization and retention: 

– Individual participation and redress 

– Security: 

– Transparency 

– Use limitation 

  



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 DOCUMENT AND RECORDS MANAGEMENT 
 

 A specific class of information consists of documents and records. 

 Document: A set of information pertaining to a topic, structured for human 

comprehension, represented by a variety of symbols, and stored and handled 

as a unit. A document may be modified. 

 Record: A subclass of documents that clearly delineates terms and 

conditions, statements, or claims or that provides an official record. Generally 

a record, once created, is not modified. 

• Document management system: Software that manages documents for 

electronic publishing. It generally supports a large variety of document 

formats and provides extensive access control and searching capabilities 

across networks. 

• Records management system: Software that provides tools for and aids in 

records management. 

1. Document Management 

 Document management is a key business function because of the 

importance of documents to the operation of an organization. 

– To record or to document contracts and agreements 
– To record policies, standards, and procedures 
– To represent a view of reality at a point in time 
– To create an image or impression 
– To generate revenue as a product 

Document Management Life Cycle 

2. Records Management 

 Records management is a vital business function that requires stronger 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

security measures than those for document management. 

  

 

 The Information Security Guide developed by the Higher Education 

Information Security Council (HEISC). 

o Establish a strategic planning group that includes top 
managers/executives to support the program. 

o Identify a records manager to oversee all aspects of the program, 
including ongoing management and use of internal personnel or 
outside consultants. 

o Complete a records inventory. 
o Develop a records management manual with defined policies and 

procedures. 
o Make records management a high priority. 

 A key aspect of records management is the retention and disposition 
policy. 

o Active 
o Semi-active 
o Inactive 
o  

Physical Asset Management 

The Information Security Forum’s (ISF’s) Standard of Good Practice for Information 

Security (SGP) uses the term physical asset to refer to all information and 

communications technology (ICT) hardware, including systems and network equipment; 

office equipment (such as, network printers and multifunction devices); mobile devices; 

and specialist equipment (for example, industrial control systems). 

 OFFICE EQUIPMENT 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 

 Office equipment includes printers, photocopiers, facsimile machines, 

scanners, and multifunction devices (MFDs). 

 Office equipment often contains the same components as a server (e.g., 

operating system, hard disk drives, and network interface cards) and runs 

services such as web, mail, and ftp. 

 A multifunction device (MFD) is generally defined as a network-attached 

document production device that combines two or more of these functions: 

copy, print, scan, and fax. 

1. Threats and Vulnerabilities 

There are numerous potential threats to office equipment 

1. Network Services 

– Management protocols: 

– Services protocols: 

2. Information Disclosure 

– Print, fax, and copy/scan logs 

– Address books 

– Mailboxes 

3.Denial-of-Service 

Attacks 

– Physical Security 

– Operating System Security 

2. Security Controls 

 A useful checklist of security measures an organization can take to protect 

MFDs is provided in the SANS. 

o Network protocols and services 

o Management 

o Security updates 

o Physical security 

o The choice of measures should depend on the organization’s risk 

assessment relative to a particular office device asset. 

 Physical device management 

 Remote device management: 

 Job access and processing 

 Application development platforms 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 User management: 

 Logging and monitoring 

 Miscellaneous 

3. Equipment Disposal 

 The SGP recommends that sensitive information stored on office 

equipment be securely destroyed. 

 Three increasingly secure actions for sanitization are defined: 

o Clear 

o Purge 

 Self-Encrypting Drive (SED) 

o A hard drive with a circuit built into the disk drive controller chip 

that encrypts all data to the magnetic media and decrypts all the 

data from the media automatically. 

 
 INDUSTRIAL CONTROL SYSTEMS 

 An industrial control system (ICS) is used to control industrial processes such 

as manufacturing, product handling, production, and distribution. 

  Industrial control systems include supervisory control and data acquisition 

(SCADA) systems used to control geographically dispersed assets, as well as 

distributed control systems (DCSs) and smaller control systems, using 

programmable logic controllers to control localized processes. 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 
 Sensor: A sensor measures some parameter of a physical, chemical, or biological 

entity and delivers an electronic signal proportional to the observed 

characteristic, either in the form of an analog voltage level or a digital signal. In 

both cases, the sensor output is typically input to a microcontroller or other 

management element.  

 Actuator: An actuator receives an electronic signal from a controller and 

responds by interacting with its environment to produce an effect on some 

parameter of a physical, chemical, or biological entity.  

 Controller: The controller interprets the signals and generates corresponding 

manipulated variables, based on a control algorithm and target set points, which 

it transmits to the actuators. The controller may have very limited intelligence 

and may rely on the human–machine interface for direction. But typically, a 

controller adjusts the directives given to actuators automatically, based on sensor 

input.  

 Human–machine interface: Operators and engineers use human interfaces to 

monitor and configure set points, control algorithms, and adjust and establish 

parameters in the controller.  



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 The human interface also displays process status information and historical 

information. Remote diagnostics and maintenance: Diagnostics and maintenance 

utilities are used to prevent, identify, and recover from abnormal operation or 

failures. 

 

Differences Between IT Systems and Industrial Control Systems 
 

IT Systems ICSs 

Response must be consistent Response is time-critical. 

Responses such as rebooting are 
acceptable 

Responses such as rebooting may not be 
acceptable because of process availability 
requirements 

Manage data. Control physical world 

Systems are specified with enough 
resources to support the addition of 
third- party applications such as security 
solutions 

Systems are designed to support the 
intended industrial process and may not 
have enough memory and computing 
resources to support the addition of 
security capabilities. 

Standard communications protocols are 
used. 

Many proprietary and standard 
communication protocols are used 

Component lifetime is on the order of 3 
to 5 years 

Component lifetime is on the order of 10 
to 15 years. 

ICS Security 

 The Department of Homeland Security’s (DHS’s) Recommended 

Practice: Improving Industrial Control System Cyber security with 

Defense-in-Depth Strategies. 

  

IT Systems ICSs 

Easily deployed and updated Ability to protect legacy systems with after-
market solutions 

Multiple vendors Usually the same vendor over time 

Modern methods Modern methods possibly inappropriate 

Regular and scheduled Strategic scheduling 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

Integral part of the 
development process 

Historically not an integral part of the 
development process 

 

 

Typical Security Threats to ICSs 

 Blocked or delayed flow of information through ICS networks, which could 

disrupt ICS operation. 

 Unauthorized changes to instructions, commands, or alarm thresholds, 

which could damage, disable, or shut down equipment 

 Inaccurate information sent to system operators. 

 ICS software or configuration settings modified, or ICS software 

infected with malware, which could have various negative effects. 

Key Security Measures 

• The DHS has offered these recommendations for protecting ICSs. 

– Implement application white listing: 

– Ensure configuration management and patch management 

– Reduce attack surface areas 

Attack surface 

• The reachable and exploitable vulnerabilities in a system. 

• Build a defendable environment 

• Manage authentication 

• multifactor authentication (MFA) 

Resources for ICS Security 

– Recommended Practice: Improving Industrial Control System 

Cyber security with Defense-in-Depth Strategies 

– Cyber Security Assessments of Industrial Control Systems 

– SP 800-82, Guide to Industrial Control Systems Security 

– Catalog of Control Systems Security: Recommendations for 

Standards Developers 

 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 MOBILE DEVICE SECURITY 

 A mobile device as a “portable computing and communications device 

with information storage capability”. 

o Growing use of new devices 

o Cloud-based applications 

o External business requirements 

 

Growing use of new devices: Organizations are experiencing significant growth in 

employee use of mobile devices. In many cases, employees are allowed to use a 

combination of endpoint devices as part of their day-to-day activities. 

 

Cloud-based applications: Applications no longer run solely on physical servers in 

corporate data centers. Today applications can run anywhere—on traditional physical 

servers, on mobile virtual servers, or in the cloud. In addition, end users can now take 

advantage of a wide variety of cloudbased applications and IT services for personal and 

professional use. 

External business requirements: An enterprise must also provide guests, third-party 

contractors, and business partners network access using various devices from a 

multitude of locations 

Mobile Device Technology 

Providing enterprise security for mobile devices is extraordinarily complex, both 

because of the technology of these devices and the ecosystem in which they operate. 

Hardware:  

The base layer of the technology stack is the device hardware. This includes an 

application processor, with the ARM family of processors being the most common. There 

is also a separate processor that runs the cellular network processor, typically referred 

to as the baseband processor. 

 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

Firmware: The firmware necessary to boot the mobile operating system (that is, boot 

loader) may verify additional device initialization code, device drivers used for 

peripherals, and portions of the mobile operating system— all before a user can use the 

device. I 

 

Mobile operating system: The most common operating systems for mobile 

devices are Android and iOS. An operating system includes a sandbox facility for 

isolating third-party applications in some manner to prevent unexpected or 

unwanted interaction between the system, its applications, and applications’ 

respective data (including user data). 

Application: The application layer includes third-party applications, various 

apps and services provided by the mobile device vendor, and facilities for 

defining permissions 

 

 

1. Mobile Ecosystem 

 The execution of mobile applications on a mobile device may involve 

communication across a number of networks and interaction with a number 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

of systems owned and operated by a variety of parties. 

 This ecosystem makes the achievement of effective security challenging. 

o Cellular and Wi-Fi infrastructure: 

o Public application stores 

o Private application stores 

o Device and OS vendor infrastructure: 

o Enterprise mobility management systems 

o Enterprise mobile services 

o app store 
 Cellular and Wi-Fi infrastructure: Modern mobile devices are typically 

equipped with the capability to use cellular and Wi-Fi networks to access the 

Internet and to place telephone calls. Cellular network cores also rely on 

authentication servers to use and store customer authentication information.  

 Public application stores (public app store): Public app stores include native 

app stores, which are digital distribution services operated and developed by 

mobile operating system vendors. For Android, the official app store is Google 

Play, and for iOS, it is simply called the App Store.  

 Device and OS vendor infrastructure: Mobile device and operating system 

vendors host servers to provide updates and patches to operating systems and 

apps. Other cloud-based services may be offered, such as storing user data and 

wiping missing devices.  

 Enterprise mobility management systems: Enterprise mobility management 

(EMM) is a general term that refers to everything involved in managing mobile 

devices and related components (such as wireless networks). EMM is much 

broader than just information security; it includes mobile application 

management, inventory management, and cost management.  

 Enterprise mobile services: These back-end services are accessible from 

authorized users’ mobile devices, including email, file sharing, and other 

applications 



MC4205                                                                                                                CYBER SECURITY 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 

 

 

Mobile Eco system



                                                                      MC4205 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 
 

 

 

2. Vulnerabilities 

 Mobile devices need additional specialized protection measures beyond those 

implemented for other client devices, such as desktop and laptop devices that 

are used only within the organization’s facilities and on the organization’s 

networks. 

– Lack of Physical Security Controls 

– Use of Untrusted Mobile Devices 

– Use of Untrusted Networks 

– Use of Applications Created by Unknown Parties 

– Use of Untrusted Content 

– Use of Location Services 

3. Mobile Device Security Strategy 

 The recent DHS report Study on Mobile Device Security groups security 

threats and defenses into five primary components of the mobile ecosystem 

and their associated attack surface: the mobile device technology stack, 

mobile applications, mobile network protocols and services, physical access 

to the device, and enterprise mobile infrastructure. 

– Rooting 

– Side loading 

Common Mobile Device Threats 

– Mobile device technology stack 

– Mobile applications 

– Mobile networks 

– Device physical systems 

– Mobile enterprise 

4. Resources for Mobile Device Security 

 A number of documents for U.S. agencies are valuable resources for any 

organization. 

– Study on Mobile Device Security 

– Assessing Threats to Mobile Devices & Infrastructure 

– Guidelines for Managing and Securing Mobile Devices in the Enterprise 

– Test the Security of Mobile Applications: 



                                                                      MC4205 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 
 

 

– Guidelines on Hardware-Rooted Security in Mobile Devices 

– Mobile Device Security: Cloud and Hybrid Builds 

 

System Development 

 The system development life cycle (SDLC) is the overall process of developing, 

implementing, and retiring information systems. Various SDLC models have 

been developed to guide the processes involved, and some methods work 

better than others for specific types of projects. 

 

INCORPORATING SECURITY INTO THE SDLC 

 Enterprise security considerations dictate that security-focused activities and 

deliverables be a part of every phase of the SDLC in order to ensure that the 

developed system is able to withstand malicious attacks. 

 Whatever SDLC methodology is used, an enterprise should make sure both 

that the SDLC methodology lends itself to a comprehensive security 

component and that security policies and procedures are well defined for 

each phase. 

 The following elements in defining the security considerations applied during 

each phase: 

o Major security activities 

o Expected outputs 

o Synchronization 

o Control gates 

1. Initiation Phase 

 The relationships among five key security-related activities that comprise the 

initiation phase. During this initial phase, the security focus is on identifying 

and assessing risks. 



                                                                      MC4205 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 
 

 

 

 

• Initiating Project Security Planning 

– system owner 

– Categorizing Information Systems and Assessing Impact 

 Ensuring Secure System Development 

 Secure concept of operations: 

 Standards and processes 

 Security training for development team 

 Quality management: 

 source code repository 

 Control Gates 

 Determine acquisition strategy 

 System concept review 

 Performance specification review 

 Financial review 

 Risk management review 

 



                                                                      MC4205 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 
 

 

2. Development/Acquisition Phase 

 The relationships among six key security-related activities that 

comprise the development/acquisition phase. 

 A key security activity in this phase is conducting a risk assessment and 

using the results to supplement the baseline security controls. 

 

 

 Assessing Risks and Selecting Controls 

 Developing, Testing, and Documenting Security Controls and Features 

o functional testing 

o penetration testing 

o user testing 

 Control Gates 

o Architecture/design review: 

o Performance review 

o Functional test review: 

o Risk management review 

 

 

3. Implementation/Assessment Phase 



                                                                      MC4205 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 
 

 

 The relationship among four key security-related activities that comprise 

the implementation/assessment phase. 

 

 

 Creating a Detailed Plan for C&A 

o Certification and Accreditation (C&A) 

 Integrating Security with Environments or Systems 

 Assessing System Security 

 Authorizing Information System 

 Control Gates 

o System test readiness review 

o Deployment readiness review 

o Certification and accreditation (C&A) review 



                                                                      MC4205 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 
 

 

o Authorization decision 

o Final project status and financial review 

 

 

 

4. Operations and Maintenance Phase 

 

 The relationship among three key security-related activities that comprise 

the operations and maintenance phase. 

 

 Reviewing Operational Readiness 

 Ensuring Configuration Management and Control 

 change control 

 change control board (CCB) 

 Conducting Monitoring Continuously 

 Control Gates 

o Operational readiness review: 

o Change control board 

o Authorization decision 

 



                                                                      MC4205 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 
 

 

5. Disposal Phase 

 The disposal phase is the process of preserving (if applicable) and discarding 

system information, hardware, and software. During this phase, information, 

hardware, and software are moved to another system, archived, discarded, or 

destroyed. 

 The disposal phase involves the following control gates: 

• System closure review 

• Change control board 

• Security review of closure 

•  

 

 The following key activities: 

o Create a disposal/transition plan 

o Ensure information protection 

o Dispose of hardware and software 

o Close system 



                                                                      MC4205 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 
 

 

  
DISASTER MANAGEMENT 
 

• Disaster recovery is generally a planning process and it produces a 

document which ensures businesses to solve critical events that affect their 

activities. 

• Such events can be a natural disaster (earthquakes, flood, etc.), cyber–attack 

or hardware failure like servers or routers. 

Cyber attack in disaster management 

• Cyber attacks aim to disable, disrupt, destroy or control computer 

systems or to alter, block, delete, manipulate or steal the data held within 

these systems. 

• A cyber attack can be launched from anywhere by any individual or 

group using one or more various attack strategies. 

Steps to creating a disaster recovery plan 

• Identify representatives from each area of the business 

• Document your risks 

• Specify which data, technologies, and tools are most critical 

• Maintain an inventory of physical assets 

• Determine where and how critical business information will be backed up 

• Protection for every computer 

• Taps the benefits of cloud backup 

• Runs automatically 

• Prioritizes easy recovery 

Cyber security Disaster Recovery Plan 

• Requirements to Have a Disaster Recovery Plan 

• Disaster recovery starts with an inventory of all assets like computers, 

network equipment, server 

 

Example 



                                                                      MC4205 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 
 

 

 

Preventive steps to be taken for Disaster Recovery 

• The server room should have an authorized level. For example: only IT 

personnel should enter at any given point of time. 

• In the server room there should be a fire alarm, humidity sensor, flood 

sensor and a temperature sensor. 

• At the server level, RAID systems should always be used and there should 

always be a spare Hard Disk in the server room. 

• You should have backups in place, this is generally recommended for local 

and off- site backup, so a NAS should be in your server room. 

• Backup should be done periodically. 
 

 INCIDENT RESPONSE PLANNING 

• An incident response plan is a set of written instructions that outline your 

organization's response to data breaches, data leaks, cyber attacks and 

security incidents. 

• Incident response planning contains specific directions for specific attack 

scenarios, avoiding further damages, reducing recovery time and mitigating 

cyber security risk. 



                                                                      MC4205 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 
 

 

• Incident response procedures focus on planning for security breaches and 

how organizations will recover from them. 

 

Responsible for Incident Response Planning 

• Organizations should form a computer security incident response team 

(CSIRT) who is responsible for analyzing, categorizing and responding to 

security incidents. 

• Incident response manager 

• Security analysts 

• Threat researchers 

Different Types of Security Incidents 

• Types of malware 

• Man-in-the-middle attacks 

• Social engineering 

• Data breaches 

• Data leaks 

• Email spoofing 

• Domain hijacking 

• Denial of service (DoS) 

Tools are Available for Incident Response 

• There are tools and industry standards that can be helpful to incident 

response teams. 

• Tools can be split into three categories: 

• Prevention 

• Detection 

• Response 

What is the Industry Standard for Incident Response? 

• There are two frameworks that have become industry standard, the 

NIST Incident Response Process and the SANS Incident Response 

Process. 



                                                                      MC4205 

      PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING  
 
 

 

• The NIST Incident Response Process is four steps: 

• Preparation 

• Detection and analysis 

• Containment, eradication and recovery 

• Post-incident activity 

• The SANS Incident Response Process is six: 

• Preparation 

• Identification 

• Containment 

• Eradication 

• Recovery 

• Lessons learned 
 

 
 

 

 

 

 

 

 

 

 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 1 
 

 

UNIT III    CYBER SECURITY FOR BUSINESS APPLICATIONS AND NETWORKS 

Business Application Management-Corporate Business Application Security- 

End user Developed Applications-System Access- 

 Authentication Mechanisms-Access Control-System Management- Virtual Servers-Network 

Storage Systems- 

Network Management Concepts-Firewall-IP Security- Electronic Communications  

- Case study on OWASP vulnerabilities using OWASP ZAP tool. 

Business Application Management 

 Business application management and security is a complex field. 

Applications encompass purpose-built applications developed in-house or by 

contractors, applications supplied by application and operating system 

vendors, and open source application software. Applications may operate on 

a variety of platforms, including workstations, PCs, mobile devices, and web 

based. They may also need to access and generate a wide variety of data files 

and databases. 

CORPORATE BUSINESS APPLICATION SECURITY 

Application security overlaps with many of the topics covered in other chapters but 

needs to be considered as a separate security concern as well.  

The aim of web application security is to identify the following: 

– Critical assets of the organization 

– Genuine users who may access the data 

– The level of access provided to each user 

– Various vulnerabilities that may exist in the application 

– Data criticality and risk analysis on data exposure 

– Appropriate remediation measures 

Application security 

• The use of software, hardware, and procedural solutions to protect 

applications from external threats. 

• This includes adding features or functionality to application software to 

prevent a range of different threats. 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 2 
 

 

•  It also includes security features outside the application, such as firewalls, 

antivirus software, and access control methods. 

1. Business Application Register 

• Application portfolio management, there should be an inventory, or 

register, of all applications, with details concerning the application, 

including security- related aspects. 

 

 
Commercial-off-the-shelf (COTS) software 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 3 
 

 

• Software that is commercially available, leased, licensed, or sold to the 

general public and that requires no special modification or maintenance 

over the life cycle of the product to meet the needs of the procuring agency. 

 

2. Business Application Protection 

• The business assets, sound security architecture principles should be 

applied to business applications. 

• The considerations are somewhat different for two categories: internally 

developed applications and externally-developed applications. 

 

Internal Application Security 

 

For any application that is developed within the organization, it is essential to 

incorporate security into all stages of the SDLC 

• Document security requirements. 

• Develop standardized procedures for evaluating application security 

products and services. 

• Enforce compliance with government and industry standards and 

regulations. 

• Develop a policy for pre-deployment application testing and validation 

• Construct a policy for documentation of application code review. 

 

External Application Security 

• The external environment, including the host operating system or virtual 

operating system, the hardware platform, and network connections 

– Protection against unauthorized access using access control 

measures at the operating system level 

– Enforcement of virtual platform security 

– Encryption of network traffic using Transport Layer Security (TLS) 

or Internet Protocol Security (IPsec) 

3. Browser-Based Application Protection 

• As enterprises move applications online, both for internal use and for 

external users, such as customers and vendors, web application security 

becomes an increasing concern. 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 4 
 

 

• Web Application Security Risks 

– Injection 

– Broken authentication 

– Sensitive data exposure 

– Security  misconfiguration 

– XML external entity 

– Insecure  deserialization 

– Broken access control 

– Using components with known vulnerabilities 

– Cross-site scripting (XSS) 

– Insufficient logging and monitoring  

Web Application Firewall 

• The most important tool in countering web application threats is a web 

application firewall (WAF), a firewall that monitors, filters, or blocks data 

packets as they travel to and from a web application. 

 

 

 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 5 
 

 

Context for a Web Application Firewall 

• There are a number of hosting options for WAFs, including the following: 

– Network-based 

– Local hardware: 

– Local software 

Network-based:  

 A network-based firewall is a hardware firewall incorporated with a router at 

the edge of an enterprise network, acting as a filter to all traffic to and from 

network devices, including web-based application servers.  

 Because there may be a variety of web applications on a number of servers, 

this approach can be complex to maintain. In addition, a network-based 

firewall may not be placed so as to catch internal traffic.  

Local hardware:  

 A local hardware firewall is placed between the application server and its 

network connection or connections.  

 This type of firewall is much simpler than a network-based firewall because it 

only has to have logic for filtering traffic specific to the local server.  

Local software:  

 A local software firewall is built on the server host operating system or 

virtual machine operating system.  

 This approach can be as effective as a local hardware firewall and is easier to 

configure and modify 

Key features 

• Real-time application security monitoring and access control: 

• Virtual patching 

• Full HTTP traffic logging 

• Web application hardening 

 

Real-time application security monitoring and access control:  

 All HTTP traffic in both directions passes through Mod Security, where it can 

be inspected and filtered. Mod Security also has a persistent storage 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 6 
 

 

mechanism, which enables tracking of events over time to perform event 

correlation.  

Virtual patching:  

 This is the ability to apply web application patching without making changes 

directly to the application.  

 Virtual patching is applicable to applications that use any communication 

protocol, but it is particularly useful with HTTP because the traffic can 

generally be well understood by an intermediary device.  

Full HTTP traffic logging:  

 Web servers traditionally do very little when it comes to logging for security 

purposes. Mod Security gives you the ability to log events, including raw 

transaction data, which is essential for forensics.  

 In addition, the system manager gets to choose which transactions are logged, 

which parts of a transaction are logged, and which parts are sanitized. 

 Web application hardening:  

This is a method of attack surface reduction in which the system manager 

selectively narrows down the HTTP features that will be accepted (for example, 

request methods, request headers, and content types). 

Web Application Security Policy 

• The European Union Agency for Network and Information Security 

(ENISA’). 

• Data Breach Investigations Report web application vulnerabilities 

account for the largest portion of attack vectors after malware. 

 

END USER-DEVELOPED APPLICATIONS (EUDAS) 

• Some business processes are supported by user-developed applications referred 

to as EUDAs that are outside the formal systems supported by the IT organization 

• Examples of activities by end user programmers include: 

– Using spreadsheets for accounting 

– Using Mat Lab for analysis 

– Creating a web page 

– Recording macros in Word 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 7 
 

 

– Automating office tasks 

– Creating business software (SAP programming) 

1. Benefits of EUDAs 

– Convenience and ease of use 

– Powerful tools and technology-aware end users 

– Demand for information 

 

Benefit of EUDAs include the following:  

Convenience and ease of use:  

EUDAs can be developed easily and quickly by non-IT staff. Business users 

frequently become frustrated with the amount of time taken by the IT department 

to service their requests.  

They therefore often resort to developing their own solutions, using applications 

such as Microsoft Excel to meet their reporting needs. EUDAs allow businesses and 

users to quickly deploy solutions in response to shifting market and economic 

conditions, industry changes, or evolving regulations. 

 Powerful tools and technology-aware end users:  

End-user tools offer rich functionality, including the ability to connect to corporate 

data sources.  

As a result, technology-savvy users can perform powerful data processing from their 

desktops. This can help plug functionality gaps for business systems.  

Demand for information:  

Traditionally, managers were often constrained by standard reports in IT systems 

that failed to meet all management information and reporting requirements.  

The lack of flexibility in these systems and increasing demand for different views of 

the data have resulted in an increase in the level of end-user computing in 

organizations. 

2. Risks of EUDAs 

• User-developed and user-controlled applications are generally not 

subject to the same development, monitoring, and reporting rigor and 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 8 
 

 

control as traditional applications. 

• Errors 

• Poor version and change control 

• Poor documentation 

• Lack of security 

• Lack of an audit trail 

• Regulatory and compliance violations: 

• Risk of the unknown 

 

This leads to a number of disadvantages and risks related to EUDAs, including 

the following:  

Errors:  

 Errors can occur at data entry, in formulas, in application logic, or with links 

to other applications or data sources.  

 Without a sound SDLC discipline, such errors are bound to occur. This could 

result in poor decision making or inaccurate financial reporting.  

Poor version and change control:  

 EUDAs can be more difficult to control than traditional IT-developed 

applications.  

 Even where change control policies exist, they can be difficult to enforce.  

Poor documentation:  

 Files that have not been properly documented may be used incorrectly after a 
change in ownership of the EUDA, or they may just be used improperly in 
general.  

 Again, this can lead to unintended and undetected errors. 

 Lack of security:  

 Unsecured files may be easily traded among users, which introduces the risk 

of changes to portions of data that should remain constant.  

 This can lead to increased errors or might allow sensitive and confidential 

information to be seen by unauthorized users. An EUDA could possibly be 

used to perpetrate fraud or hide losses.  



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 9 
 

 

Lack of an audit trail:  

 The ability to audit and control changes to key data is essential both for 

internal governance and for compliance with external regulation.  

 For critical applications, managing this risk effectively is crucial, and in many 

instances, it requires monitoring and controlling changes at a detailed level.  

Regulatory and compliance violations:  

 A host of regulations deal with security and privacy for which an enterprise is 
responsible. 

Risk of the unknown:  

 The greatest operational risk with EUDA usage is in not knowing the size of 

the potential problem.  

 The use of EUDAs is so widespread that it may be extremely difficult to assess 

just how many EUDAs exist, how many are used in critical business 

applications, how they are linked together, and where data is fed into or 

extracted from other IT applications.  

 To quantify this risk, it is necessary to carry out a full inventory of EUDA 

usage and a detailed risk assessment of all businesscritical spreadsheets. 

Opportunity cost:  

 Scarce resources (money or employee time) may be wasted on developing 
these applications. 

3. EUDA Security Framework 

• To deal with the many risks associated with the use of EUDAs, enterprises 

need a comprehensive security framework that formalizes procedures for 

managing EUDAs and clarifies organizational policy. 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 10 
 

 

 

Governance 

• The first set of considerations is in the area of governance. Senior 

executives must define what constitutes an EUDA. This involves 

distinguishing EUDAs from IT-developed and supported applications and 

specifying which types of EUDAs should be placed under management 

control. 

People 

• Proper management and control of EUDAs requires identifying the key 

stakeholders in the EUDA management program. Once the key 

stakeholders are identified, the next step is to establish the roles and 

responsibilities. 

Process 

• Management’s top concerns with respect to EUDAs are the potential risks 

of any given application. 

– Version control 

– Change control 

– Data integrity control 

– Access control 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 11 
 

 

For each EUDA, based on its risk and impact assessment, the EUDA owner should 

select the appropriate controls, which should include the following:  

 Version control: Helps ensure that the latest and approved version of an 

EUDA is used throughout the organization  

 Change control: Helps ensure that the changes to EUDAs are appropriately 

tracked and reviewed  

 Data integrity control: Helps ensure data integrity Access control: Helps 

ensure that only authorized users can access EUDAs and in what manner (for 

example, view, change, delete)  

 Availability control: Helps ensure that EUDAs are available in the event of 

disaster, accidental deletion, and so on 

Technology 

• The organization should perform an assessment to see what sorts of tools 

and enablers exist or should be acquired to support the development of 

EUDAs. 

• Specific EUDA management software tools can be deployed, or native 

functionality (such as Microsoft SharePoint) can be used, with various 

degrees of functionality available. 

Authentication Mechanisms 

System Access 
System access is the capability that restricts access to business applications, mobile 

devices, systems, and networks to authorized individuals for specific business 

purposes. System access comprises three distinct functions: 

Authentication: Verifying the identity of a user, process, or device, often as a 

prerequisite to allowing access to resources in an information system. This 

function is often referred to as user authentication, to distinguish it from message 

authentication or data authentication.  

Authorization: In the context of system access, authorization is the granting of 

access or other rights to a user, program, or process to access system resources. 

Authorization defines what an individual or program can do after successful 

authentication.  

Access control: The process of granting or denying specific requests for accessing 

and using information and related information processing services and for entering 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 12 
 

 

specific physical facilities. Access control ensures that access to assets is authorized 

and restricted based on business and security requirements. 

 

 

Authorization: 

 A designated security administrator is responsible for creating and maintaining 

the authorization database. The administrator sets these authorizations on the 

basis of the security policy of the organization and the roles and responsibilities of 

individual employees.  

The process for authorizing users should include the following:  

 Associating access privileges with uniquely defined individuals, for example 

by using unique identifiers, such as user IDs.  

 Maintaining a central record of access rights granted to a user ID to access 

information systems and services. 

 Obtaining authorization from the owner of the information system or service 

for the use of the information system or service. Separate approval for 

access rights from management may also be appropriate. 

 Applying the principle of least privilege to give each person the minimum 

access necessary to do his or her job.  



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 13 
 

 

 Assigning individual access privileges for resources based on information 

security levels and classification of information.  

 Specifying the networks and networked services to be accessed, such as files 

and databases.  

 Defining requirements for expiration of privileged access rights.  

 Ensuring that identifiers are not reused. This means deleting authorizations 

associated with a user ID when the individual assigned that user ID changes 

roles or leaves the organization. 

User Authentication  

 User authentication is one of the most complex and challenging security 

functions. There are a wide variety of methods of authentication, with 

associated threats, risks, and countermeasures. This section provides an 

overview of them.  

 The following three sections look at the three general authentication 

factors: password, hardware token, and biometric. 

The following three sections look at the three general authentication 

factors:  

In most computer security contexts, user authentication is a fundamental 

building block and the primary line of defense. User authentication is the basis 

for most types of access control and for user accountability.   

User authentication encompasses two functions:  

                  Identification step: This step involves presenting an identifier to the 

security        system. (Assign identifiers carefully because authenticated 

identities are the basis for other security services, such as access control 

service.)  

                    Verification step: This step involves presenting or generating 

authentication information that corroborates the binding between the entity 

and the identifier. 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 14 
 

 

 

Three concepts are important in understanding this model:  

Digital identity: The digital identity is the unique representation of a subject 

engaged in an online transaction. The representation consists of an attribute or set 

of attributes that uniquely describe a subject within a given context of a digital 

service but does not necessarily uniquely identify the subject in all contexts.  

Identity proofing: This process establishes that a subject is who he or she claims 

to be to a stated level of certitude. This process involves collecting, validating, and 

verifying information about a person.  

Digital authentication: This process involves determining the validity of one or 

more authenticators used to claim a digital identity. Authentication establishes that 

a subject attempting to access a digital service is in control of the technologies used 

to authenticate.  

Successful authentication provides reasonable risk-based assurances that the 

subject accessing the service today is the same as the subject that previously 

accessed the service. 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 15 
 

 

Six entities are defined in Figure 10.2:  

Credential service provider (CSP): A trusted entity that issues or registers 

subscriber authenticators. For this purpose, the CSP establishes a digital credential 

for each subscriber and issues electronic credentials to subscribers. A CSP may be 

an independent third party or may issue credentials for its own use.  

Verifier: An entity that verifies the claimant’s identity by verifying the claimant’s 

possession and control of one or two authenticators, using an authentication 

protocol. To do this, the verifier may also need to validate credentials that link the 

authenticator(s) to the subscriber’s identifier and check their status.  

Relying party (RP): An entity that relies upon the subscriber’s authenticator(s) 

and credentials or a verifier’s assertion of a claimant’s identity, typically to process 

a transaction or grant access to information or a system.  

Applicant: A subject undergoing the processes of enrollment and identity proofing.  

Claimant: A subject whose identity is to be verified using one or more 

authentication protocols.  

Subscriber: A party who has received a credential or authenticator from a CSP. 

 

Multifactor Authentication : 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 16 
 

 

Multifactor authentication refers to the use of more than one of the authentication 

means in the preceding list (see Figure 10.3). The strength of an authentication 

system is largely determined by the number of factors incorporated by the system. 

A system that requires two factors is generally stronger than a system requiring a 

single factor, assuming that the individual factors are reasonably strong. 

 

Password-Based Authentication :What you know is a widely used line of defense 

against intruders is a password system. Virtually all multiuser systems, network-

based servers, web-based ecommerce sites, and other similar services require that a 

user provide not only a name or identifier (ID) but also a password.  

 The system compares the password to a previously stored password for that 

user ID, maintained in a system password file. The password serves to 

authenticate the ID of the individual logging on to the system.  

 In turn, the ID provides security in the following ways: The ID determines 

whether the user is authorized to gain access to a system. In some systems, 

only those who already have an ID filed on the system are allowed to gain 

access. 

 The ID determines the privileges accorded to the user. A few users may have 

supervisory or “superuser” status that enables them to read files and perform 

functions that are especially protected by the operating system. Some 

systems have guest or anonymous accounts, and users of these accounts have 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 17 
 

 

more limited privileges than others. 

 The ID is used in what is referred to as discretionary access control. For 

example, by listing the IDs of the other users, a user may grant permission to 

them to read files owned by that user. 

Possession-Based Authentication :Objects that a user possesses for the purpose of 

user authentication are sometimes called hardware tokens  

 

Types of Cards Used as Possession Factor 

eID Functions 

 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 18 
 

 

Biometric Authentication : 

A biometric authentication system attempts to authenticate an individual based on 

his or her unique physical characteristics.  

These include both static characteristics (for example, fingerprints, hand geometry, 

facial characteristics, retinal and iris patterns) and dynamic characteristics (for 

example, voiceprint, signature). 

 

Access Control  

This section provides an overview of important aspects of access control. It is useful 

to begin by defining the following terms:  

Access: Ability and means to communicate with or otherwise interact with a 

system, to use system resources to handle information, to gain knowledge of the 

information the system contains, or to control system components and functions.  



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 19 
 

 

Access control: The process of granting or denying specific requests for obtaining 

and using information and related information processing services to enter specific 

physical facilities.  

Access control mechanism: Security safeguards (that is, hardware and software 

features, physical controls, operating procedures, management procedures, and 

various combinations of these) designed to detect and deny unauthorized access 

and permit authorized access to an information system.  

Access control service: A security service that protects against a system entity 

using a system resource in a way not authorized by the system’s security policy.  

Basic access control systems typically define three classes of subject, with different 

access rights for each class:  

 Owner: This can be the creator of a resource, such as a file. For system 
resources, ownership can belong to a system administrator. For project 
resources, a project administrator or leader can be assigned ownership. 

 Group:  In addition to the privileges assigned to an owner, a named group of 
users can also be granted access rights, such that membership in the group is 
sufficient to exercise these access rights. In most schemes, a user may belong 
to multiple groups. 

 World:  The least amount of access is granted to users who are able to access 
the system but are not included in the categories owner and group for this 
resource. 

 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 20 
 

 

 

 

Examples of Access Control Structures 

Access Control Policies 

Access Control Policies An access control policy dictates what types of access are 

permitted, under what circumstances, and by whom. Access control policies are 

generally grouped into the following categories: 

Access control policies are generally grouped into the following categories: 

Discretionary access control (DAC): Access control based on the identity of the 

requestor and on access rules (authorizations) stating what requestors are (or are 

not) allowed to do. The controls are discretionary in the sense that a subject with a 

certain access permission is capable of passing that permission (perhaps indirectly) 

on to any other subject.  

Mandatory access control (MAC): Access control based on comparing security 

labels (which indicate how sensitive or critical system resources are) with security 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 21 
 

 

clearances (which indicate system entities are eligible to access certain resources). 

This policy is termed mandatory because an entity that has clearance to access a 

resource may not, just by its own volition, enable another entity to access that 

resource.  

Role-based access control (RBAC): Access control based on user roles (that is, a 

collection of access authorizations a user receives based on an explicit or implicit 

assumption of a given role). Role permissions can be inherited through a role 

hierarchy and typically reflect the permissions needed to perform defined functions 

within an organization. A given role can apply to a single individual or to several 

individuals.  

  

Attribute-based access control (ABAC): Access control based on attributes 

associated with and about subjects, objects, targets, initiators, resources, or the 

environment. An access control rule set defines the combination of attributes under 

which an access takes place. 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 22 
 

 

 

 

Virtual Servers 

 Virtualization refers to a technology that provides an abstraction of the 
computing resources used by some software, which thus runs in a simulated 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 23 
 

 

environment called a virtual machine (VM).  

 Benefits arising from using virtualization include better efficiency in the use 
of the physical system resources than is typically seen using a single 
operating system instance.  

 This is particularly evident in the provision of virtualized server systems. 

 Virtualization also provides support for multiple distinct operating systems 
and associated applications on the one physical system. This is more 
commonly seen on client systems. 

Virtualization Alternatives : 

 A hypervisor is software that sits between hardware and VMs and acts as a 
resource broker. It allows multiple VMs to safely coexist on a single physical 
server host and share that host’s resources. 

 The virtualizing software provides abstraction of all physical resources (such 
as processor, memory, network, and storage resources) and thus enables 
multiple computing stacks, called VMs, to be run on a single physical host. 

A hypervisor performs the following functions:  

Execution management of VMs: This includes scheduling VMs for execution, 

virtual memory management to ensure VM isolation from other VMs, and context 

switching between various processor states. It also includes isolation of VMs to 

prevent conflicts in resource usage and emulation of timer and interrupt 

mechanisms.  

Devices emulation and access control: A hypervisor emulates all network and 

storage (block) devices that different native drivers in VMs are expecting, mediating 

access to physical devices by different VMs.  

Execution of privileged operations by hypervisor for guest VMs: Instead of 

being executed directly by the host hardware, certain operations invoked by guest 

operating systems, may have to be executed on its behalf by the hypervisor because 

of their privileged nature.  

Management of VMs (also called VM life cycle management): A hypervisor 

configures guest VMs and controls VM states (for example Start, Pause, Stop).  



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 24 
 

 

Administration of hypervisor platform and hypervisor software: This involves 

setting parameters for user interactions with the hypervisor host as well as 

hypervisor software. 

 

 

There are two types of hypervisors, distinguished by whether there is an 

operating system between the hypervisor and the host.  

A type 1 hypervisor (see Figure 11.2a) is loaded as a software layer directly onto a 

physical server, much as an operating system is loaded; this is referred to as native 

virtualization.  

The type 1 hypervisor directly controls the physical resources of the host. Once it 

is installed and configured, the server is then capable of supporting virtual machines 

as guests. 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 25 
 

 

A type 2 hypervisor exploits the resources and functions of a host operating 

system and runs as a software module on top of the operating system (see Figure 

11.2b); this is referred to as hosted virtualization, or nested virtualization.  

A type 2 hypervisor relies on the operating system to handle all the hardware 

interactions on the hypervisor’s behalf. 

Virtualization Security Issues 

 A number of security concerns that result from the use of virtualized systems, 
including the following: Guest operating system isolation:  

 It is important to ensure that programs executing within a guest operating 
system can only access and use the resources allocated to it and cannot 
covertly interact with programs or data in either of the guest operating 
system’s or in the hypervisor.  

Guest operating system monitoring by the hypervisor: The hypervisor has 

privileged access to the programs and data in each guest operating system and must 

be trusted as secure from subversion and compromised use of this access. 

 Virtualized environment security: It is important to ensure security of the 

environment, particularly in regard to image and snapshot management, which 

attackers can attempt to view or modify. 

Securing Virtualization Systems  

SP 800-125, which provides guidance for appropriate security in virtualized 

systems, states that organizations using virtualization should do the following:  

 Plan the security of the virtualized system carefully.  

 Secure all elements of a full virtualization solution, including the hypervisor, 
guest operating systems, and virtualized infrastructure—and also maintain 
their security  

 Ensure that the hypervisor is properly secured  

 Restrict and protect administrator access to the virtualization solution 

Network Storage Systems : 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 26 
 

 

 Organizations make use of two broad categories of computer storage for 

files, databases, and other data: local and networked.  

 Local storage, commonly called direct access storage (DAS), is a dedicated 

digital storage device attached directly to a server or PC via a cable or 

residing as an internal drive. 

 Most users’ computers and most servers have DAS. DAS creates data 

islands because data cannot be easily shared with other servers. 

 Networked storage is a term used to describe a storage device (usually 

many devices paired together) that is available over a network. This kind 

of storage maintains copies of data across high-speed local area network 

(LAN) connections and is designed to back up files, databases, and other 

data to a central location that can be easily accessed via standard network 

protocols and tools.  

Networked storage comes in the following topologies: 

Storage area network (SAN):  

 A SAN is a dedicated network that provides access to various types of storage 
devices, including tape libraries, optical jukeboxes, and disk arrays. To 
servers and other devices in the network, a SAN’s storage devices look like 
locally attached devices.  

 A disk block– based storage technology, SAN is probably the most pervasive 
form of storage for very large data centers and is a de facto staple for 
database intensive applications. These applications require shareable storage, 
large bandwidth, and support for the distances from rack to rack within the 
data center. 

Network attached storage (NAS): 

 NAS systems are networked appliances that contain one or more hard drives 
that are shared with multiple, heterogeneous computers. Their specialized 
role in networks is to store and serve files. 

 NAS disk drives typically support built-in data protection mechanisms, 
including redundant storage containers or redundant arrays of independent 
disks (RAID). NAS enables file serving responsibilities to be separated from 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 27 
 

 

other servers on the network and typically provides faster data access than 
traditional file servers. 

 

 

 

The SGP recommends the following security measures:  

 Follow the system development and configuration security policies for design 

and configuration of network storage systems.  

 Be sure that SANs and NASs are subject to standard security practices (for 

example, configuration, malware protection, change management, patch 

management). 

 Ensure that the IT facility provides protection of network storage 

management consoles and administration interfaces.  



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 28 
 

 

 Store encryption information on network storage systems. 

 Allow for additional security arrangements specific to NAS and SAN. Security 

arrangements specific to NAS and SAN depend on the type of server 

configuration, whether virtualization is used, and network configuration. 

Network Management Concepts: Fiewall -IP Security  

o This section provides an overview of network management. Let’s begin by 
looking at the requirements for network management. 

o This will provide an idea of the scope of the task to be accomplished. To 
manage a network, it is fundamental to know something about the current 
status and behavior of that network.  

o Effective management requires a network management system that includes 
a comprehensive set of data gathering and control tools and that is integrated 
with the network hardware and software.  

Let’s look at the general architecture of a network management system. 

 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 29 
 

 

 

Firewalls  

 The firewall is an important complement to host-based security services such 

as intrusion detection systems. Typically, a firewall is inserted between the 

premises network and the Internet to establish a controlled link and to erect 

an outer security wall or perimeter.  

 The aim of this perimeter is to protect the premises network from Internet-

based attacks and to provide a single choke point where security and auditing 

are imposed. 

 Firewalls are also deployed internally in an enterprise network to segregate 

portions of the network.  

 A firewall provides an additional layer of defense, insulating internal systems 

from external networks or other parts of the internal network.  



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 30 
 

 

 This follows the classic military doctrine of “defense in depth,” which is 

applicable to IT security. 

Firewall Characteristics “Network Firewalls” [BELL94] lists the following design 

goals for a firewall:  

 All traffic from inside to outside, and vice versa , must pass through the 

firewall. This is achieved by physically blocking all access to the local network 

except via the firewall. Various configurations are possible, as explained later 

in this chapter.  

 Only authorized traffic, as defined by the local security policy, is allowed to 

pass. Various types of firewalls are used, and they implement various types of 

security policies, as explained later in this chapter. The firewall itself is 

immune to penetration. 

 This implies the use of a hardened system with a secured operating system. 

Trusted computer systems are suitable for hosting a firewall and often 

required in government applications. 

Originally, firewalls focused primarily on service control, but they have 

since evolved to provide all four techniques: 

Service control: Determines the types of Internet services that can be 

accessed—inbound or outbound. The firewall can filter traffic on the basis of IP 

address, protocol, or port number; provide proxy software that receives and 

interprets each service request before passing it on; or host the server software 

itself, such as a web or mail service. 

Direction control: Determines the direction in which particular service requests 

are initiated and allowed to flow through the firewall. 

User control: Controls access to a service according to which user is attempting 

to access it. This feature is typically applied to users inside the firewall perimeter 

(local users). It can also be applied to incoming traffic from external users, 

though this requires some form of secure authentication technology, such as that 

provided in IP Security (IPsec).  



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 31 
 

 

Behavior control: Controls how particular services are used. For example, the 

firewall can filter email to eliminate spam or enable external access to only a 

portion of the information on a local web serve. 

Firewalls have limitations, including the following:  

o Firewalls cannot stop users from accessing malicious websites, making it 

vulnerable to internal threats or attacks. 

o Firewalls cannot protect against the transfer of virus-infected files or software. 

o Firewalls cannot prevent misuse of passwords. 

o Firewalls cannot protect if security rules are misconfigured. 

o Firewalls cannot protect against non-technical security risks, such as social 

engineering. 

o Firewalls cannot stop or prevent attackers with modems from dialing in to or out 

of the internal network. 

o Firewalls cannot secure the system which is already infected. 

Types of Firewalls 

o Three types of firewalls, such as  software firewalls, hardware firewalls, or 
both, depending on their structure. Each type of firewall has different 
functionality but the same purpose. However, it is best practice to have both 
to achieve maximum possible protection. 

o A hardware firewall is a physical device that attaches between a computer 
network and a gateway. For example- a broadband router. A hardware 
firewall is sometimes referred to as an Appliance Firewall.  

o On the other hand, a software firewall is a simple program installed on a 
computer that works through port numbers and other installed software. 
This type of firewall is also called a Host Firewall. 

The following are types of firewall techniques that can be implemented as 

software or hardware: 

o Packet-filtering Firewalls 

o Circuit-level Gateways 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 32 
 

 

o Application-level Gateways (Proxy Firewalls) 

o Stateful Multi-layer Inspection (SMLI) Firewalls 

o Next-generation Firewalls (NGFW) 

o Threat-focused NGFW 

o Network Address Translation (NAT) Firewalls 

o Cloud Firewalls 

o Unified Threat Management (UTM) Firewalls 

o  

Packet-filtering Firewalls 

A packet filtering firewall is the most basic type of firewall. It acts like a 
management program that monitors network traffic and filters incoming packets 
based on configured security rules. These firewalls are designed to block network 
traffic  IP Protocols, an IP address, and a port number if a data packet does not 
match the established rule-set. 

 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 33 
 

 

 

While packet-filtering firewalls can be considered a fast solution without many 
resource requirements, they also have some limitations. Because these types of 
firewalls do not prevent web-based attacks, they are not the safest. 

Circuit-level Gateways 

Circuit-level gateways are another simplified type of firewall that can be easily 
configured to allow or block traffic without consuming significant computing 
resources. These types of firewalls typically operate at the session-level of the OSI 
model by verifying TCP (Transmission Control Protocol) 

 

Application-level Gateways (Proxy Firewalls) 

Proxy firewalls operate at the application layer as an intermediate device to filter 

incoming traffic between two end systems (e.g., network and traffic systems). That 

is why these firewalls are called 'Application-level Gateways'. 

https://www.javatpoint.com/tcp
https://www.javatpoint.com/tcp
https://www.javatpoint.com/tcp


MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 34 
 

 

 

Stateful Multi-layer Inspection (SMLI) Firewalls 

o Stateful multi-layer inspection firewalls include both packet inspection 

technology and  TCP handshake verification, making SMLI firewalls superior 

to packet-filtering firewalls or circuit-level gateways. Additionally, these 

types of firewalls keep track of the status of established connections. 

o In simple words, when a user establishes a connection and requests data, the 

SMLI firewall creates a database (state table). The database is used to store 

session information such as source IP address, port number, destination IP 

address, destination port number, etc.  

 

Next-generation Firewalls (NGFW) 

o Many of the latest released firewalls are usually defined as 'next-generation 

firewalls'. However, there is no specific definition for next-generation 

firewalls. This type of firewall is usually defined as a security device 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 35 
 

 

combining the features and functionalities of other firewalls. These firewalls 

include deep-packet inspection (DPI), surface-level packet inspection, and 

TCP handshake testing, etc. 

o In simple words, when a user establishes a connection and requests data, the 

SMLI firewall creates a database (state table). The database is used to store 

session information such as source IP address, port number, destination IP 

address, destination port number, etc.  

o Connection information is stored for each session in the state table. Using 

stateful inspection technology, these firewalls create security rules to allow 

anticipated traffic. 

Network Address Translation (NAT) Firewalls 

o Network address translation or NAT firewalls are primarily designed to 

access Internet traffic and block all unwanted connections.  

o These types of firewalls usually hide the IP addresses of our devices, making 

it safe from attackers. 

Cloud Firewalls 

o Whenever a firewall is designed using a cloud solution, it is known as a cloud 

firewall or FaaS (firewall-as-service). Cloud firewalls are typically 

maintained and run on the Internet by third-party vendors. 

o This type of firewall is considered similar to a proxy firewall. The reason for 

this is the use of cloud firewalls as proxy servers. However, they are 

configured based on requirements. 

Unified Threat Management (UTM) Firewalls 

o UTM firewalls are a special type of device that includes features of a stateful 

inspection firewall with anti-virus and intrusion prevention support.  

o Such firewalls are designed to provide simplicity and ease of use. These 

firewalls can also add many other services, such as cloud management, etc. 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 36 
 

 

. 

 

In this type of configuration, internal firewalls serve three purposes 

 An internal firewall adds more stringent filtering capability, compared to 

the external firewall, in order to protect enterprise servers and 

workstations from external attack.  

 An internal firewall provides two-way protection with respect to the DMZ. 

First, the internal firewall protects the remainder of the network from 

attacks launched from DMZ systems. Such attacks might originate from 

worms, rootkits, bots, or other malware lodged in a DMZ system. Second, 

an internal firewall protects the DMZ(demilitarized zone) systems from 

attack from the internal protected network. 

 Multiple internal firewalls are used to protect portions of the internal 

network from each other. For example, firewalls are configured so that 

internal servers are protected from internal workstations and vice versa. 

A common practice is to place the DMZ on a different network interface on 

the external firewall from that used to access the internal networks. 

IPSECURITY 

 IPsec is a set of Internet standards that augment both versions of IP that are 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 37 
 

 

in current use (IPv4 and IPv6) with security features. 

 The principal feature of IPsec is that it encrypts and/or authenticates all 
traffic at the IP level. Thus, all distributed applications—including remote 
logon, client/server, email, file transfer, web access, and so on—are secured. 

IPsec provides three main facilities:  

 An authentication-only function referred to as Authentication Header (AH),  

 a combined authentication/encryption function called Encapsulating Security 
Payload (ESP), and  

 a key exchange function. 

 

 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 38 
 

 

 

 Figure 12.6a shows a simplified packet format for an IPsec option known as 

tunnel mode, using ESP and a key exchange function.  

 Figure 12.6b shows a typical IPsec usage scenario. An organization maintains 

local area networks (LANs) at dispersed locations. Insecure IP traffic is 

conducted on each LAN.  

 For traffic offsite, through some sort of private or public WAN, IPsec protocols 

are used. These protocols operate in networking devices, such as a router or 

firewall, that connect each LAN to the outside world.  

 The IP sec networking device Typically encrypts and compresses all traffic 

going into the WAN and decrypts and decompresses traffic coming from the 

WAN; these operations are transparent to workstations and servers on the 

LAN.  

 Secure transmission is also possible with individual users who dial in to the 

WAN. Such user workstations must implement the IPsec protocols to provide 

security. 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 39 
 

 

 Electronic Communications Often the focus of enterprise security is 

protecting stored information and server facilities, as well as client/server 

communication from the wide variety of threats on the landscape.  

 It is important not to overlook security related to electronic communications 

that may not involve server or database access but that is between 

individuals.  

Electronic communications 

Often the focus of enterprise security is protecting stored information and server 

facilities, as well as client/server communication from the wide variety of threats on 

the landscape. 

 It is important not to overlook security related to electronic communications that 

may not involve server or database access but that is between individuals.  

Email:  

 It is useful to have a basic grasp of the Internet mail architecture, as defined 

in RFC 5598, Internet Mail Architecture. At its most fundamental level, the 

Internet mail architecture consists of a user world, in the form of message 

user agents (MUAs), and a transfer world, in the form of the Message 

Handling System (MHS), which is composed of message transfer agents 

(MTAs). 

This section looks at four types of electronic communications that need to be 

protected. 



MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 40 
 

 

 

OWASP 

What is OWASP? 

 The Open Web Application Security Project (OWASP) is an open, online 

community that creates methodologies, tools, technologies and guidance on 

how to deliver secure web applications.  

 It is an international collaborative initiative comprised of both individuals 

and corporations.  

 The project aims to standardise security approaches in web development and 

spread associated knowledge. 

OWASP ZAP 

https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project


MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 41 
 

 

What is OWASP ZAP? 

OWASP ZAP (ZAP) is one of the world’s most popular free security tools and is 

actively maintained by hundreds of international volunteers. It can help to find 

security vulnerabilities in web applications. It’s also a great tool for experienced pen 

testers  and beginners. 

ZAP can scan through the web application and detect issues related to: 

 SQL injection 

 Broken Authentication 

 Sensitive data exposure 

 Broken Access control 

 Security misconfiguration 

 Cross Site Scripting (XSS) 

 Insecure Deserialization 

 Components with known vulnerabilities 

 Missing security headers 

Why we chose OWASP ZAP? 

 As it is designed to be used by people with a wide range of pen testing 

experience, it was ideal for our team who were new to penetration testing. 

 ZAP is a free open-source tool which is easy to setup and use. As it is used by 

the wider community, there is a lot of help available online through the ZAP 

blog and other articles to help you setup and use the tool. 

 ZAP is cross platform i.e. you can install it in Windows, Linux or Mac OS. 

 ZAP can be run in a Docker container, which suited our project tech stack. 

Also, its functionality is scalable with many diverse extensions published 

on GitHub. 

https://github.com/zaproxy/zaproxy
https://zaproxy.blogspot.com/
https://zaproxy.blogspot.com/
https://zaproxy.blogspot.com/
https://hub.docker.com/r/owasp/zap2docker-stable/
https://github.com/zaproxy/zaproxy/wiki/DevExtending


MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 42 
 

 

 ZAP Jenkins plugin can be setup to run the scans as part of CI / CD pipelines. 

How to Use the OWASP ZAP Vulnerability Scanner to Plan A Vulnerability 

Test? 

 

The OWASP ZAP tool captures the request just before hitting the network, which 

allows to analyze the various parameters, header values in the request. It then 

explores and attacks it to find security issues that need redressal. In the process, it 

records the requests and responses on every page and sends out alerts when it 

encounters an issue. 

Below are the steps on how to initiate the OWASP ZAP penetration testing 

using a Windows system: 

1. Starting the OWASP ZAP UI 

To start a vulnerability test using the OWASP ZAP web application scanner, you 

need to download the tool and install it.  

It is platform agnostic and hence you can set it up on either Windows, Mac OS, or 

Linux. However, if you are using Windows or Linux, you should also have Java 8+ 

already installed on your system.  

After installation, click on the OWASP ZAP icon on your desktop. Now, click on the 

‘start’ button on the start-up dialog box, to launch the ZAP UI. 

Upon running the interface, a pop-up window will ask if you want to save the 

session. For a new session, choose the default option ‘No, I do not want to persist 

the session’. 

2. Initiating a Scan 

 You can start scanning your web application by using the QuickStart 

automated scan. With QuickStart, you can scan an application just by 

entering its URL and pushing the ‘attack’ button, which makes it quite 

simple to execute. 

 You can use passive scanning as well, which is one of the most interesting 

features of the OWASP ZAP scanner. The tool records all the requests 

received by the application and its responses.  

https://wiki.jenkins.io/display/JENKINS/zap+plugin
https://www.indusface.com/web-application-scanning.php


MC4205                                                                                                              CYBER SECURITY 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 43 
 

 

 It then issues an alert if any anomaly is observed with either the request or 

the response. However, it cannot detect an issue such as an SQL 

injection attack. 

  Instead, you can use the active scanning feature to find out the 

vulnerabilities not found through passive scanning.  

 During an active scan, ZAP can simulate a real attack against some specific 

areas of your application to understand the response. 

Additionally, the ZAP scanner can be used in different modes like: 

 The standard mode which allows you to use every feature of the tool 

 You can also use attack mode to run active scans. 

 The safe mode turns off the harmful features while the protected mode lets 

you scan chosen websites within a defined scope. 

 

 

  

 

https://www.indusface.com/learning/what-is-sql-injection/
https://www.indusface.com/learning/what-is-sql-injection/
https://www.indusface.com/learning/what-is-sql-injection/


MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 1 
 

UNIT VI                                    TECHNICAL SECURITY 

Supply ChainManagement -Cloud Security-Security Architecture-Malware Protection-

Intrusion Detection-Digital Rights Management-Cryptographic Techniques-Threat and 

Incident Management-Vulnerability Management-Security Event Management-Forensic 

Investigations- Local Environment Management -Business Continuity. 

Supply ChainManagement 

 A supply chain was defined as the network of all the individuals, 

organizations, resources, activities, and technology involved in the creation 

and sale of a product, from the delivery of source materials from the supplier 

to the manufacturer, through to its eventual delivery to the end user. 

 In this traditional use, the term applies to the entire chain of production and 

use of physical products. The chain can link a number of entities, beginning 

with raw materials suppliers, through manufacturers, wholesalers, retailers, 

and consumers. 

 More recently the term supply chain has been used in connection with 

information and communications technology (ICT). 

 

 
 

An enterprise procures the following from external sources: 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 2 
 

 Services: Examples include cloud computing services, data center 

services, network services, and external auditing services.  

 Software/data: Examples include operating system and application 

software and databases of information, such as threat information.  

 Hardware/products: Examples include computer and networking 

equipment. 

 

Indicates three types of flows associated with a supply chain:  

 Product/service flow: A key requirement is a smooth flow of an item from 

the provider to the enterprise and then on to the internal user or external 

customer. The quicker the flow, the better it is for the enterprise, as it 

minimizes the cash cycle. 

 Information flow: Information flow comprises the request for quotation, 

purchase order, monthly schedules, engineering change requests, quality 

complaints, and reports on supplier performance from the customer side to 

the supplier. From the producer’s side to the consumer’s side, the information 

flow consists of the presentation of the company, offer, confirmation of 

purchase order, reports on action taken on deviation, dispatch details, report 

on inventory, invoices, and so on. 

 Money flow: On the basis of the invoice raised by the producer, the clients 

examine the order for correctness. If the claims are correct, money flows from 

the clients to the respective producer. Flow of money is also observed from 

the producer side to the clients in the form of debit notes. 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 3 
 

l 

The �0068==xyz.xcements of supply chain management include the following:  

 Demand management: This function recognizes all demands for goods and 

services to support the marketplace. It involves prioritizing demand when 

supply is lacking. Proper demand management facilitates the planning and 

use of resources for profitable business results.  

 Supplier qualification: This function provides an appropriate level of 

confidence that suppliers, vendors, and contractors are able to supply 

consistent quality of materials, components, and services in compliance with 

customer and regulatory requirements. An integrated supplier qualification 

process should also identify and mitigate the associated risks of materials, 

components, and services.  

 Supplier negotiation: In this process of formal communication, two or more 

people come together to seek mutual agreement on an issue or issues. 

Negotiation is particularly appropriate when issues besides price are 

important for the buyer or when competitive bidding does not satisfy the 

buyer’s requirements on those issues.  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 4 
 

 Sourcing, procurement, and contract management: Sourcing refers to the 

selection of a supplier or suppliers. Procurement is the formal process of 

purchasing goods or services. 

 Logistics and inventory control: In this context, logistics refers to the 

process of strategically managing the procurement, movement, and storage of 

materials, parts, and finished inventory (and the related information flows) 

through the organization and its marketing channels. Inventory control is the 

tracking and accounting of procured items. 

  Invoice, reconciliation, and payment: This is the process of paying for 

goods and services.  

 

 Supplier performance monitoring: This function includes the methods and 

techniques for collecting information to be used to measure, rate, or rank 

supplier performance on a continuous basis. Performance refers to the ability 

of the supplier to meet stated contractual commitments and enterprise 

objectives. 

 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 5 
 

  

 

The external risks are as follows:  

 

 Demand: Refers to disturbances to the flow of product, information, or cash 

from within the supply chain between the organization and its market. For 

example, disruptions in the cash resource within the supply chain needed to 

pay the organization can have a major impact on the operating capability of 

organizations.  

 

 Supply: The upstream equivalent of demand risk; it relates to potential or 

actual disturbances to the flow of product or information from within the 

supply chain between the organization and its suppliers. In a similar way to 

demand risk, the disruption of key resources coming into the organization 

can have a significant impact on the organization’s ability to perform  

 

 Environmental: The risk associated with external and, from the firm’s 

perspective, uncontrollable events. The risks can impact the firm directly or 

through the firm’s suppliers and customers. Environmental risk is broader 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 6 
 

than just natural events like earthquakes or storms. It also includes, for 

example, changes created by governing bodies such as changes in legislation 

or customs procedures, as well as changes in the competitive climate. 

 

The internal risks are as follows:  

 Processes: The sequences of value-adding and managerial activities 

undertaken by the firm. Process risk relates to disruptions to key business 

processes that enable the organization to operate. Some processes are key to 

maintaining the organization’s competitive advantage, while others can 

underpin the organization’s activities. 

 Controls: The rules, systems, and procedures that govern how an 

organization exerts control over processes and resources. In terms of the 

supply chain, controls may relate to order quantities, batch sizes, safety stock 

policies, and so on, plus the policies and procedures that govern asset and 

transportation management. Control risk is therefore the risk arising from the 

application or misapplication of these rules.  

 Contingency: The existence of a prepared plan and the identification of 

resources that are mobilized in the event of a risk being identified. 

Contingency plans may encompass inventory, capacity, dual sourcing, 

distribution and logistics alternatives, and backup arrangements. 

cloud security 

What is cloud security? 

Cloud security is the set of control-based security measures and technology 

protection, designed to protect online stored resources from leakage, theft, 

and data loss. Protection includes data from cloud infrastructure, applications, 

and threats. Security applications uses a software the same as SaaS (Software as a 

Service) 

https://www.javatpoint.com/software-as-a-service
https://www.javatpoint.com/software-as-a-service
https://www.javatpoint.com/software-as-a-service


MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 7 
 

model. 

Security Considerations for Cloud Computing  

The following key issues that need to be addressed when an organization 

moves data and/or applications into the cloud:  

Confidentiality and privacy: An organization has commitments to its employees 

and customers in the areas of data confidentiality and privacy. Further, any breach 

of confidentiality or privacy can have adverse business impacts. Finally, regulations 

and legal restrictions apply. Placing data in the cloud introduces new risks that must 

be assessed.  

Data breach responsibilities: Placing data and services in the cloud amplifies 

concerns about data breaches, yet security is not under the direct control of the 

customer.  

The following are some issues in this regard:  

 Responsibility for notifying: Data breach generally carries with it an 

obligation to notify. Who is responsible for notification (customer, vendor, 

third party) and how quickly? 

 Risks to intellectual property: Risks include authorization, terms and 

conditions that (inappropriately) assert ownership over intellectual property 

held by third parties, and weakening of ability for organizations to assert 

“work made for hire” for creations that are developed “without use of 

organizational resources. 

 Export controls: Does the vendor house data at foreign sites? Are the 

systems managed by foreign nationals? 

E-discovery: Institutions and their legal counsel can be obligated to keep records 

needed for legal discovery. But these records are not under direct organizational 

control; the organization no longer has the record in the same way that it formerly 

did. How does one handle discovery in this externalized infrastructure?  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 8 
 

Risk assessment: To perform effective risk assessment, the customer must have 

considerable information about the security policies and controls in effect at the 

cloud service provider.  

Business continuity: Plans are needed to deal with the suspension or termination 

of the cloud service. The customer needs to have the portability capability to move 

data to a different cloud service provider.  

Legal issues: Legal risks and obligations must be clarified and documented. 

Threats for Cloud Service Users 

The use of cloud services and resources introduces a novel set of threats to 

enterprise cybers ecurity 

Responsibility ambiguity: The enterprise-owned system relies on services from 

the cloud provider. The level of the service provided (SaaS, PaaS, IaaS) determines 

the magnitude of resources that are offloaded from IT systems on to the cloud 

systems. Regardless of the level of service, it is difficult to define precisely the 

security responsibilities of the customer and those of the cloud service provider. If 

there is any ambiguity, this complicates risk assessment, security control design, 

and incident response.  

Loss of governance: The migration of a part of the enterprises IT resources to the 

cloud infrastructure gives partial management control to the cloud service provider. 

The degree of loss of governance depends on the cloud service model (SaaS, PaaS, 

IaaS). In any case, the enterprise no longer has complete governance and control of 

IT operations.  

Loss of trust: It is sometimes difficult for a cloud service user to assess the 

provider’s trust level due to the black-box feature of the cloud service. There is no 

way to obtain and share the provider’s security level in a formalized manner.  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 9 
 

Service provider lock-in: A consequence of the loss of governance could be a lack 

of freedom in terms of how to replace one cloud provider with another. An example 

of a difficulty in transitioning is if a cloud provider relies on nonstandard 

hypervisors or virtual machine image format and does not provide tools to convert 

virtual machines to a standardized format.  

Nonsecure cloud service user access: As most of the resource deliveries are 

through remote connections, unprotected application programming interfaces 

(APIs) (mostly management APIs and PaaS services) are among the easiest attack 

vectors. Attack methods such as phishing, fraud, and exploitation of software 

vulnerabilities pose significant threats.  

Lack of asset management: The cloud service user may have difficulty in assessing 

and monitoring asset management by the cloud service provider. Key elements of 

interest include location of sensitive asset/information, degree of physical control 

for data storage, reliability of data backup (data retention issues), and 

countermeasures for business continuity and disaster. 

Data loss and leakage: This threat can be strongly related to the preceding item. 

However, loss of an encryption key or a privileged access code brings serious 

problems to cloud service users.  

Risk Evaluation  

It is useful to have a detailed questionnaire for performing risk evaluation for cloud 

services. The Information Security Council developed a template to be used for this 

purpose. The template includes the questions in the following areas: 

 High-level description  

 Authentication Authorization-logical access  

 control Data security  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 10 
 

 Recoverability  

 Operational controls  

 Incident response  

 Application security  

 Testing and validation 

Malware Protection Activities; 

Activities Malicious software (malware) is perhaps the most significant security 

threat to organizations 

What is Malware? 

As software designed to interfere with a computer's normal functioning, malware is 

a blanket term for viruses, trojans, and other destructive computer programs threat 

actors use to infect systems and networks in order to gain access to sensitive 

information. 

Malware Definition 

 Malware (short for “malicious software”) is a file or code, typically delivered 

over a network, that infects, explores, steals or conducts virtually any 

behavior an attacker wants. And because malware comes in so many variants, 

there are numerous methods to infect computer systems.  

Though varied in type and capabilities, malware usually has one of the 

following objectives: 

 Provide remote control for an attacker to use an infected machine. 

 Send spam from the infected machine to unsuspecting targets. 

 Investigate the infected user’s local network. 

 Steal sensitive data. 

 

Types of Malware: 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 11 
 

 Although the terminology related to malware is not consistent, the following list 

provides a useful guide to the various types of malware:  

 Adware: Advertising that is integrated into software. It can result in pop-up 

ads or redirection of a browser to a commercial site. 

 Auto-rooter: A malicious hacker tool used to break in to new machines 

remotely. Backdoor (trapdoor): Any mechanisms that bypasses a normal 

security check; it may allow unauthorized access to functionality.  

 Exploit: Code specific to a single vulnerability or set of vulnerabilities. 

Downloader: A program that installs other items on a machine that is under 

attack. Usually, a downloader is sent in an email message.  

 Dropper: A malware installer that surreptitiously carries viruses, backdoors, 

and other malicious software to be executed on the compromised machine. 

Droppers don’t cause harm directly but deliver a malware payload onto a 

target machine without detection. 

 Polymorphic dropper: Also called a polymorphic packer, a software exploit 

tool that bundles several types of malware into a single package, such as an 

email attachment, and can force its “signature” to mutate over time, making it 

difficult to detect and remove.  

 Flooder: A tool used to attack networked computer systems with a large 

volume of traffic to carry out a denial-of-service (DoS) attack.  

 Keyloggers: A software tool that captures keystrokes on a compromised 

system. Kit (virus generator): A set of tools for generating new viruses 

automatically. 

 Logic bomb: A program inserted into software by an intruder. A logic bomb 

lies dormant until a predefined condition is met, at which point the program 

triggers an unauthorized act. 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 12 
 

 Malware as a Service (MaaS): A web-based provider of malware. MaaS may 

provide access to botnets, support hotlines, and servers that regularly update 

and test malware strains for efficacy. Mobile code: Software (for example, 

script, macro, or other portable instructions) that can be shipped unchanged 

to a heterogeneous collection of platforms and execute with identical 

semantics.  

 Potentially unwanted program (PUP): A program that may be unwanted, 

despite the possibility that users consented to download it. PUPs include 

spyware, adware, and dialers and are often downloaded in conjunction with 

programs that users actually want.  

 Ransomware: A type of malware in which the data on a victim’s computer is 

locked, typically by encryption, and payment is demanded before the 

ransomed data is decrypted and access returned to the victim.  

 Remote access Trojan (RAT): A malware program that includes a backdoor 

for administrative control over the target computer. RATs are usually 

downloaded invisibly with user-requested programs—such as games—or 

sent as email attachments.  

 Rootkit: A set of hacker tools used after attacker has broken into a computer 

system and gained root-level access.  

 Scraper: A simple program that searches a computer’s memory for 

sequences of data that match particular patterns, such as credit card 

numbers. 

 Point-of-sale terminals and other computers usually encrypt payment card 

data when storing and transmitting it, and attackers often use scrapers to 

locate card numbers in memory before they are encrypted or after they are 

decrypted for processing 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 13 
 

 Spammer programs: Programs used to send large volumes of unwanted 

email. Spyware: Software that collects information from a computer and 

transmits it to another system.  

 Trojan horse: A computer program that appears to have a useful function 

but also has a hidden and potentially malicious function that evades security 

mechanisms, sometimes by exploiting legitimate authorizations of a system 

entity that invokes the Trojan horse program. 

 Virus: Malware that, when executed, tries to replicate itself into other 

executable code; when it succeeds, the code is infected. When the infected 

code is executed, the virus also executes. Web drive-by: An attack that infects 

a user system when the user visits a web page.  

 Worm: A computer program that runs independently and propagates a 

complete working version of itself onto other hosts on a network.  

 Zombie, bot: A program that is activated on an infected machine to launch 

attacks on other machines. 

How to Prevent Malware: 
 

 A variety of security solutions are used to detect and prevent malware. 

These include firewalls, next-generation firewalls, network intrusion 

prevention systems (IPS), deep packet inspection (DPI) capabilities, unified 

threat management systems, antivirus and anti-spam gateways, virtual 

private networks, content filtering and data leak prevention systems. In order 

to prevent malware, all security solutions should be tested using a wide range 

of malware-based attacks to ensure they are working properly. 

 A robust, up-to-date library of malware signatures must be used to ensure 

testing is completed against the latest attacks 

https://docs.paloaltonetworks.com/pan-os/8-0/pan-os-admin/threat-prevention


MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 14 
 

 The Cortex XDR agent combines multiple methods of prevention at critical 

phases within the attack lifecycle to halt the execution of malicious programs 

and stop the exploitation of legitimate applications, regardless of operating 

system, the endpoint’s online or offline status, and whether it is connected to 

an organization’s network or roaming.  

 Because the Cortex XDR agent does not depend on signatures, it can prevent 

zero-day malware and unknown exploits through a combination of 

prevention methods. 

Malware Detection: 

 Advanced malware analysis and detection tools exist such as firewalls, 

Intrusion Prevention Systems (IPS), and sandboxing solutions.  

 Some malware types are easier to detect, such as ransomware, which makes 

itself known immediately upon encrypting your files. Other malware like 

spyware, may remain on a target system silently to allow an adversary to 

maintain access to the system. 

 Regardless of the malware type or malware meaning, its detectability or the 

person deploying it, the intent of malware use is always malicious. 

 When you enable behavioral threat protection in your endpoint security 

policy, the Cortex XDR agent can also continuously monitor endpoint activity 

for malicious event chains identified by Palo Alto Networks. 

Malware Removal: 

 Antivirus software can remove most standard infection types and many 

options exist for off-the-shelf solutions. 

 Cortex XDR enables remediation on the endpoint following an alert or 

investigation giving administrators the option to begin a variety of mitigation 

steps starting with isolating endpoints by disabling all network access on 

compromised endpoints except for traffic to the Cortex XDR console, 

terminating processes to stop any running malware from continuing to 

perform malicious activity on the endpoint, and blocking additional 

https://www.paloaltonetworks.com/resources/whitepapers/cortex-xdr-endpoint-protection-overview
https://www.paloaltonetworks.com/cyberpedia/what-is-ransomware


MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 15 
 

executions, before quarantining malicious files and removing them from their 

working directories if the Cortex XDR agent has not already done so. 

Malware Protection: 

 To protect your organization against malware, you need a holistic, enterprise-

wide malware protection strategy.  

 Commodity threats are exploits that are less sophisticated and more easily 

detected and prevented using a combination of antivirus, anti-spyware, and 

vulnerability protection features along with URL filtering and Application 

identification capabilities on the firewall. 

 

 

 

 

Intrusion Detection 

Intrusion Detection It is useful to begin by defining the following terms: 

 Intrusion: Violations of security policy, usually characterized as attempts to affect 

the confidentiality, integrity, or availability of a computer or network. These 

violations come from attackers accessing systems from the Internet or from 

https://www.paloaltonetworks.com/cyberpedia/what-is-malware-protection


MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 16 
 

authorized users of the systems attempting to overstep their legitimate 

authorization levels or using their legitimate access to the system to conduct 

unauthorized activity.  

Intrusion detection: The process of collecting information about events occurring 

in a computer system or network and analyzing them for signs of intrusions.  

Intrusion detection system (IDS): Hardware or software products that gather and 

analyze information from various areas within a computer or a network for the 

purpose of finding and providing real-time or near-real-time warning of attempts to 

access system resources in an unauthorized manner. 

Intrusion detection systems employ two detection methods − 

 Signature-based detection matches data activity to a signature or pattern in 

a signatures database. A new harmful behavior that is not in the database, for 

example, is overlooked when using signature-based detection. 

 

 Unlike signature-based detection, behavior-based detection recognizes any 

abnormality and issues alarms, making it capable of identifying new sorts of 

threats. It's referred to as an expert system since it learns what regular 

behavior looks like in your system. 

Any of the following can be considered an intrusion − 

 Malware, sometimes known as ransomware, is a type of computer virus. 

 Attempts to obtain unauthorized access to a system 

 DDOS (Distributed Denial of Service) attacks 

 Destruction of cyber-enabled equipment 

 Employee security breaches that are unintentional (like moving a secure file 

into a shared folder) 

 Untrustworthy users, both within and external to your company 

 Phishing campaigns and other methods of deceiving consumers with 

ostensibly genuine communication are examples of social engineering 

assaults. 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 17 
 

Network Intrusion Attack Techniques 

 When it comes to compromising networks, attackers are increasingly relying 

on existing tools and procedures as well as stolen credentials.  

 Operating system utilities, commercial productivity software, and scripting 

languages, for example, are clearly not malware and have a wide range 

of lawful applications. 

 Asymmetric Routing − Attackers will typically employ several routes to gain 
access to the targeted device or network if the network allows for asymmetric 
routing. 

 Buffer Overwriting − Attackers can substitute regular data in specified parts 
of computer memory on a network device with a barrage of commands that 
can subsequently be utilized as a part of a network incursion by overwriting 
certain memory locations. 

 Covert CGI Scripts − The Common Gateway Interface (CGI), which allows 
servers to relay user requests to appropriate programs and get data back to 
then forward to users, unfortunately, provides an easy mechanism for 
attackers to gain access to network system files. 

 Enormous traffic loads − Attackers can cause chaos and congestion in 
network settings by producing traffic loads that are too enormous for systems 
to fully filter, allowing them to carry out assaults without being discovered. 

 Worms − The typical, isolated computer virus, or worm, is one of the easiest 
and most dangerous network penetration tools. Worms, which are commonly 
distributed by email attachments or instant messaging, use a considerable 
amount of network resources, preventing permitted activities from taking 
place. 

 

Approaches to Intrusion Detection 
 
Intrusion detection assumes that the behavior of the intruder differs from that of a 
legitimate user in ways that are quantifiable..  
 
There are two general approaches to intrusion detection: misuse detection 
and anomaly detection  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 18 
 

 

1) Misuse detection : is based on rules that specify system events, sequences of 

events, or observable properties of a system that are believed to be symptomatic of 

security incidents.  

Misuse detectors use various pattern-matching algorithms, operating on large 

databases of attack patterns, or signatures. 

 Advantage of misuse detection: is that it is accurate and generates few false 

alarms. 

 Disadvantage of misuse detection :it that it cannot detect novel or 

unknown attacks. 

2) Anomaly detection : involves searching for activity that is different from the 

normal behavior of system entities and system resources. 

 Advantage of anomaly detection is that it is able to detect previously 

unknown attacks based on an audit of activity.  

 Disadvantage of anomaly detection :is that there is a significant trade-off 

between false positives and false negatives.  

Network-Based Intrusion Detection Systems; 

 A network-based IDS (NIDS) monitors the traffic on the network segment as a 

data source.  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 19 
 

 This is generally accomplished by placing the network interface card in 

promiscuous mode to capture all network traffic that crosses its network 

segment.  

 Network traffic on other segments and traffic on other means of 

communication (such as phone lines) can’t be monitored by a single NIDS. 

NIDS Sensor Deployment Example 

There are four types of locations for the sensors:  

Outside the main enterprise firewall: This placement is useful for establishing the 

level of threat for a given enterprise network. Those responsible for winning 

management support for security efforts find this placement valuable. In the 

network demilitarized zone (DMZ), inside the main firewall but outside  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 20 
 

internal firewalls: This location monitors for penetration attempts that target web 

and other services that are generally open to outsiders.  

Behind internal firewalls: A sensor can be positioned to monitor major backbone 

networks, such as those that support internal servers and database resources.  

Behind internal firewalls: A sensor can be positioned to monitor LANs that 

support user workstations and servers specific to single departments. Figure NSD 

EXAMPLE can monitor for more specific attacks at network segments, as well as 

attacks originating from inside the organization.  

Digital Rights Management 

 The use of technology to limit and manage access to intellectual material is 

known as digital rights management(DRM).  

 Another definition of DRM is giving over control of digital content to a 

computer program rather than the person who owns it.  

 DRM protects the copyright holder’s rights by preventing unlawful distribution 

and alteration of content.  

 In simple words, DRM is a method of safeguarding copyrights in digital 

material. This strategy entails employing technologies that restrict the copying 

and use of copyrighted content as well as proprietary software.  

 As digital material expands via peer-to-peer file sharing, torrent sites, and 

online piracy, DRM is becoming more significant.  

 It assists entertainment and media enterprises in addressing cybersecurity 

issues that all businesses confront, such as securing consumer data, assuring 

and showing compliance, improving operational efficiency, and avoiding 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 21 
 

downtime. Authors, musicians, filmmakers, and other content creators can 

use DRM to specify and limit what users can and cannot do with their work.  

 It also enables them to preserve their copyrighted content protect the creative 

and financial commitment they make in their work, and prevent their media 

from being stolen or redistributed unlawfully.  

 They can, for example, block users from accessing certain assets, avoiding any 

legal difficulties that may arise from illicit use. This is critical for copyright and 

intellectual property protection. 

Benefits of Digital Rights Management 

Apart from protecting copyright holders and content creators against piracy, DRM has 

a number of additional advantages. 

 Provides Privacy: Businesses may use DRM technology to encrypt critical 

documents ranging from contracts and strategic plans to secret personnel 

information. It allows users to restrict access to files and trace who has 

accessed them, as well as prohibit them from being changed, saved, 

duplicated, or printed. 

 Securing ownership: DRM is significant for authors and writers who want 

to safeguard their work. They can utilize technology to keep control of 

their material and prevent it from being changed or rebranded. This is also 

beneficial to scientists who wish to safeguard their discoveries and 

innovations. 

 Prevent unauthorized, unintended usage.: DRM technology aids 

material buyers in adhering to the license information that governs how, 

when, and even where they can use it and avoids financial penalties. 

 Ensuring appropriate content access: DRM limits content to targeted 

audiences and restricts it to certain audiences. Content aimed at those 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 22 
 

above the age of 18 will, for example, be restricted to adults who can prove 

their age. 

 File privacy: DRM facilitates companies in securing sensitive files and 

safeguarding their privacy. Intruders are unable to access or view 

confidential or sensitive information as a consequence of this. 

DRM Structure and Components :DRM is best understood in terms of the key 

components of a DRM system and their interconnections.  

 

The principal users of DRM systems are as follows:  

Content provider: Holds the digital rights to the content and wants to protect these 

rights. Examples are a music record label and a movie studio.  

Distributor: Provides distribution channels, such as an online shop or a web 

retailer. For example, an online distributor receives the digital content from the 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 23 
 

content provider and creates a web catalog presenting the content and rights 

metadata for the content promotion.  

Consumer: Uses the system to access the digital content by retrieving 

downloadable or streaming content through the distribution channel and then 

paying for the digital license. The player/viewer application used by the consumer 

takes charge of initiating license request to the clearinghouse and enforcing the 

content usage rights.  

Clearinghouse: Handles the financial transaction for issuing the digital license to 

the consumer and pays royalty fees to the content provider and distribution fees to 

the distributor accordingly. The clearinghouse is also responsible for logging license 

consumptions for the individual consumers. 

DRM SYSTEM ARCHITECTURE 

 The system is access by parties in three roles. Rights holders are the content 

providers, who either created the content or have acquired rights to the 

content. Service providers include distributors and clearinghouses. 

Consumers are those who purchase the right to access to content for specific 

uses. 

 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 24 
 

The following services are provided by a DRM system:  

Identity management: Mechanisms to uniquely identify entities, such as parties 

and content  

Content management: Processes and functions needed to manage the content 

lifestyle 

 Rights management: Processes and functions needed to manage rights, rights 

holders, and associated requirements. 

Cryptographic Solutions 

Definition(s): 

  The generic term for a cryptographic device, COMSEC equipment, or combination 

of such devices/equipment containing either a classified algorithm or an 

unclassified algorithm. 

Four uses for cryptography predominate: 

 Data encryption: Data encryption is a powerful and cost-effective means of 

providing data confidentiality and integrity. Once data are encrypted, the ciphertext 

does not have to be protected against disclosure. Further, if ciphertext is modified, it 

does not decrypt correctly. Data encryption is especially useful for transmitting data 

over the Internet or other network outside the control of the enterprise and also for 

storage in the cloud.  

Data integrity: Cryptographic algorithms provide an effective way to determine 

whether a block of data (for example, email text, message, file, database record) was 

altered in an unauthorized manner.  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 25 
 

Digital signature: The digital signature, or electronic signature, is the electronic 

equivalent of a written signature that is recognized as having the same legal status 

as a written signature. In addition to ensuring data integrity, digital signature 

algorithms provide a means of linking a document with a particular entity, as is 

done with a written signature.  

User authentication: Cryptography is the basis for several advanced authentication 

methods. Instead of communicating passwords over an open network, 

authentication involves demonstrating knowledge of a cryptographic key. Using 

such a method, a one-time password that is not susceptible to eavesdropping is 

used. 

Cryptographic Algorithms : Cryptographic algorithms fall into three broad 

categories: encryption/decryption algorithms, secure hash algorithms, and digital 

signature algorithms. 

Symmetric Encryption: Symmetric encryption, also referred to as conventional 

encryption, is a cryptographic scheme in which encryption and decryption are 

performed using the same key. 

Plaintext: This is the original message or data block that is fed into the algorithm as 

input. Encryption algorithm: The encryption algorithm performs various 

substitutions and transformations on the plaintext.  

Secret key: The secret key is also input to the encryption algorithm. The exact 

substitutions and transformations performed by the algorithm depend on the key.  

Cipher  text: This is the scrambled message produced as output. It depends on the 

plaintext and the secret key. For a given data block, two different keys will produce 

two different cipher texts.  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 26 
 

Decryption algorithm: This is the inverse of the encryption algorithm. It takes the 

ciphertext and the secret key and produces the original plaintext. 

Public Key Encryption 

Public key cryptography, also called asymmetric cryptography, involves the use of 

two separate keys, in contrast to symmetric encryption, which uses only one key. 

The use of two keys has profound consequences in the areas of confidentiality, key 

distribution, and authentication.  

A public key encryption scheme has several ingredients:  

 Plaintext: This is the readable message or data block that is fed into the algorithm 

as input. 

 Encryption algorithm: The encryption algorithm performs various 

transformations on the plaintext.  

Public key and private key: This is a pair of keys that were selected so that if one is 

used for encryption, the other is used for decryption. The exact transformations 

performed by the encryption algorithm depend on the public or private key that is 

provided as input.  

Ciphertext: This is the scrambled block produced as output. It depends on the 

plaintext and the key. For a given message, two different keys produce two different 

ciphertexts.  

Decryption algorithm: This algorithm accepts the ciphertext and the matching key 

and produces the original plaintext. 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 27 
 

L7L7ll

 

Threat and Incident Management : 

Technical Vulnerability Management: usually referred to simply as vulnerability 

management, is a security practice specifically designed to proactively mitigate or 

prevent the exploitation of technical vulnerabilities that exist in a system or an 

organization. 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 28 
 

 The process involves the identification, classification, remediation, and mitigation 

of various vulnerabilities in a system. It is an integral part of cybersecurity and is 

practiced together with risk management as well as other security practices.  

 technical vulnerability: A hardware, firmware, communication, or software 

flaw that leaves an information processing system open to potential 

exploitation either externally or internally, resulting in risk for the system. 

  

five key steps involved in vulnerability management 

 

1)Plan Vulnerability Management 

 Effective management of technical vulnerabilities begins with planning. 

 Key aspects of the planning process include the following:  

 Risk and process integration: Technical vulnerability review is an 

operational aspect of an overall information security risk management 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 29 
 

strategy. A vulnerability analysis must consider the relative risk impacts, 

including those related to the potential for operational disruption. These risks 

must also have a clear reporting path that allows for appropriate 

management awareness of risk factors and exposure. Vulnerability 

management should also provide input into change management and incident 

management processes.  

 Integration with asset inventory: “Information Risk Assessment,” asset 

identification is an integral part of risk assessment. The resulting asset 

inventory allows for action to be taken once a technical vulnerability is 

reviewed and a mitigation strategy agreed on. By integrating the asset 

inventory with the vulnerability management system, an enterprise can 

prioritize high-risk systems where the impact of technical vulnerabilities can 

be greatest.  

 Establishment of clear authority to review vulnerabilities: Because 

probing a network for vulnerabilities can disrupt systems and expose private 

data, an enterprise needs to have in place a policy and buy-in from top 

management before performing vulnerability assessments. 

 System and application life cycle integration: The review of vulnerabilities 

must be integrated in system release and software development planning to 

ensure that potential weaknesses are identified early to both lower risks and 

manage costs of finding these issues prior to identified release dates.  

2)Discover Known Vulnerabilities 

The discover step involves monitoring sources of information about known 

vulnerabilities to hardware, software, and network equipment. Key sources of 

information include the following: 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 30 
 

 National Institute of Standards and Technology (NIST) National Vulnerability 

Database (NVDB) and Common Vulnerability Scoring System (CVSS) 

 Computer emergency response (or readiness) team (CERT): Such a team is a 

cooperative venture that collects information about system vulnerabilities 

and disseminates it to systems managers. 

 Packet Storm: Packet Storm provides around-the-clock information and 

tools to help mitigate both personal data and fiscal loss on a global scale. As 

new information surfaces, Packet Storm releases everything immediately 

through its RSS (Rich Site Summary) feeds, Twitter, and Facebook. 

 Security Focus : The SecurityFocus Vulnerability Database provides security 

professionals with up-to-date information on vulnerabilities for all platforms 

and services. 

 Internet Storm Center (ISC): Maintained by the SANS Technology Institute, 

the ISC provides a free analysis and warning service to thousands of Internet 

users and organizations and is actively working with Internet service 

providers to fight back against the most malicious attackers. 

3) Scan for Vulnerabilities: 

 Scanning can cause disruptions. The scanning process can impact 

performance. This is especially true with legacy systems, which can have 

problems even with simple network port scans. IT operations staff need to be 

in the loop. Make them aware of the importance and relevance of scans.  

 Also, timing needs to be resolved to ensure that scanning does not conflict 

with regular maintenance schedules.  

 Scanning can generate huge amounts of data and numerous false positives. 

Technical vulnerability management practices produce very large data sets. 

 Accordingly, use frequent follow-up evaluations to validate the findings. 

Reviewing all these vulnerabilities is infeasible.  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 31 
 

4) Log and Report : 

When a vulnerability scan is completed, the organization should log the results so 

that personnel can verify the activity of the regular vulnerability scanning tools. 

 An organization should rank discovered vulnerabilities, such as attaching a score to 

each vulnerability that reflects the following:  

 The skill required to exploit the vulnerability 

 The availability of the exploit to potential attackers  

 The privilege gained upon successful exploitation 

 The risk and impact of this vulnerability if exploitation is successful  

 The resulting vulnerability scoring and metrics provide a valuable guide in 

the remediation process. 

5) Remediate Vulnerabilities: 

An organization should deploy automated patch management tools and software 

update tools for operating system and software/applications on all systems for 

which such tools are available and safe. 

Security event management (SEM)  

 The process of identifying , gathering, monitoring, analyzing, and reporting 

security-related events. The objective of SEM is to extract from a large volume 

of security events those events that qualify as incidents.  

 SEM takes data input from all devices/nodes and other similar applications, 

such as log management software.  

 The collected events data is analyzed with security algorithms and statistical 

computations to trace out any vulnerability, threat, or risk. 

 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 32 
 

 

 

SEM Functions :The first phase of event management is the collection of event data 

in the form of logs, as discussed in the preceding section. As event data are 

generated, they are generally stored in logs local to the devices that generate them. 

 A number of steps need to be taken at this point: 

 1. Normalization: For effective management, the log data needs to be in a common 

format to enable further processing.  

2. Filtering: This step includes assigning priorities to various types of events. On the 

basis of priority, large number of events can be set aside and not subject to further 

analysis, or they can be archived in case there is a need to review them later.  

3. Aggregation: The IT facility of a large enterprise generates millions of events per 

day. It is possible to aggregate them by categories into a more manageable amount 

of data. For example, if a particular type of traffic is blocked a number of times, it is 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 33 
 

sufficient to record as a single aggregate event the type of traffic and the number of 

times it was blocked over a particular time frame. 

Analysis includes the following aspects:  

Pattern matching: It is important to look for data patterns within the fields of 

stored event records. A collection of events with a given pattern can signal a security 

incident.  

Scan detection: Often, an attack begins with a scan of IT resources by the attacker, 

such as port scans, vulnerability scans, or other types of pings. A substantial number 

of scans being found from a single source or a small number of sources can signal a 

security incident.  

Threshold detection: A straightforward form of analysis is the detection of a 

threshold being crossed. For example, if the number of occurrences of a type of 

event exceeds a given threshold in a certain time period, that constitutes an 

incident. 

 Event correlation: Correlation consists of using multiple events from a number of 

sources to determine that an attack or suspicious activity occurred. For example, if a 

particular type of attack proceeds in multiple stages, the separate events that record 

those multiple activities need to be correlated in order to see the attack. Another 

aspect of correlation is to correlate particular events with known system 

vulnerabilities, which might result in a high-priority incident. 

Forensic Investigations 

Forensic Techniques into Incident Response, defines computer forensics, or digital 

forensics, as the identification, collection, examination, and analysis of data while 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 34 
 

preserving the integrity of the information and maintaining a strict chain of custody 

for the data.  

Computer forensics seeks to answer several critical questions, including the 

following:  

 What happened?  

 When did the events occur?  

 In what order did the events occur? 

 What was the cause of these events? 

 Who caused these events to occur?  

 What enabled these events to take place? 

 What was affected?  

 How much was it affected? 

 

Phases of Digital Forensics Process 

Prepare : Preparation involves the planning and policy-making activities related to 

forensic investigation. A section of the security policy should deal with computer 

forensics. SP 800-86, Guide to Integrating Forensic Techniques into Incident 

Response, recommends the following considerations:  

 Ensure that policies contain clear statements addressing all major forensic 

considerations, such as contacting law enforcement, performing monitoring, 

and conducting regular reviews of forensic policies and procedures  

 Create and maintain procedures and guidelines for performing forensic tasks, 

based on the organization’s policies and all applicable laws and regulations  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 35 
 

 Ensure that policies and procedures support the reasonable and appropriate 

use of forensic tools  

 Ensure that IT professionals are prepared to participate in forensic activities. 

Key actions include the following:  

 Creating a file system baseline to help detect changes  

 Utilizing a central system log server  

 Maintaining network-level logging at key control points on the network  

 Synchronizing system clocks and log timestamps using central Network Time 

Protocol (NTP) servers for systems that generate logs. 

identification 

The identification : phase is initiated when there is a request for a forensic 

analysis. 

 This phase involves understanding the purpose of the request and the scope 

of the investigation, such as type of case, subjects involved, and system 

involved. 

 A forensic analyst must determine if a request contains sufficient information 

to start the process. If not, the analyst must coordinate with the requester to 

determine the next step. 

Collect  

 The data collection process includes one or more of the following, 

depending on the purpose of the forensic analysis: 

  Capturing data from system logs, event logs, and incident logs  

 Discovering data on computer systems  

 Recovering deleted, encrypted, or damaged file information  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 36 
 

 Monitoring online activity  

 Making a bit-image copy of an affected system’s hard drive  

 Detecting violations of corporate policy 

Preserve  

Preserve Several actions comprise the preservation of data process, including the 

following: 

 Creating a log that documents when, from where, how, and by whom data 

were collected 

 Storing the data in a secure fashion to prevent tampering or contamination  

 Logging each access to the data made for forensic analysis. 

Analyze  

Analysis depends on the specifics of each job. The examiner usually provides 

feedback to the client during analysis, and from this dialogue the analysis may take a 

different path or be narrowed to specific areas. Examples of analysis tasks include:  

 Checking for changes to the system such as new programs, files, services, 

and users  

 Looking at running processes and open ports for anomalous behavior  

 Checking for Trojan horse programs and toolkits 

 Checking for other malware  

 Looking for illegal content  

 Looking for indicators of compromise 

 Determining the who , when, where, what, and how details of a security 

incident. 

Report  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 37 
 

The nature of any report resulting from a forensic investigation depends on the 

original purpose of the investigation.  

 Alternative explanations: The available information may not provide a 

definitive explanation of the cause and nature of an incident.  

 Audience consideration: An incident requiring law enforcement 

involvement requires highly detailed reports of all information gathered and 

can also require copies of all evidentiary data obtained.  

 Actionable information: Reporting also includes identifying actionable 

information gained from data that allows an analyst to collect new sources of 

information.  

Local Environment Management 

 local environment In the context of cybersecurity, a physically distinct and 

separate area, which may be a single office space, building, or building 

complex. The local environment may have unique physical security, 

personnel security, and information security requirements that are distinct 

from those of the rest of the enterprise. 

The following are some of the factors that require the development of 

strategies tailored to the local environment: 

 Most organizations have many different end-user environments, often across 

physical locations and comprising individuals who use a wide range of 

technologies to handle information.  

 There are significant differences in the knowledge, behavior, and actions of 

end users in different environments.  

 End users employ a variety of corporate-issued and personally owned devices 

(in organizations that have bring your own device [BYOD] policies). 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 38 
 

 End users sometimes blur the boundaries between work and personal 

computing (for example, with mobile computing).  

 End users typically want to configure their own user environments and install 

personal software such as applications for social networking, instant 

messaging, peer-to-peer networking, and voice over IP (VoIP). 

Local Environment Profile :Security management and senior executives may 

not have a good grasp on the security issues in a local environment, such as the 

value of information that employees have access to and use, the threats this 

information is exposed to when not adequately protected, and the potential 

business impact if this information is compromised in the end-user environment. 

Key elements of the profile include: 

 Individuals: Each local environment should have one or more staff 

members with specific information security responsibilities, as discussed 

subsequently. The profile should detail the types of users at the location, 

in terms of their application and data usage, level of security awareness 

training, security privileges, and whether they use mobile devices and, if 

so, what type.  

 Business processes and information: This area includes the types of 

information used and whether any sensitive information is accessible. The 

profile should include descriptions of business processes that involve user 

information access, as well as descriptions of any external suppliers (for 

example, cloud service providers).  

 Technology use: This topic comprises the applications and IT equipment 

used. Location: The profile should provide a description of the location 

housing the users and equipment. The profile should indicate to what 

degree the location is accessible to the public or to others who are not part 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 39 
 

of the organization, whether the physical space is shared with other 

organizations . 

Local Security Coordination: An enterprise must manage the twofold concern of 

ensuring that the enterprise wide information security policy is applied in the local 

environment and that policy elements are adapted to the local profile. 

Information Security Coordinat: An information security coordinator is 

responsible for developing and maintaining information security in the local 

environment and coordinating this with the organization’s security executives and 

managers.  

The information security coordinator should be responsible for the following:  

 Developing the local environment profile  

 Determining the best way to implement enterprise security policy in the local 

environment 

 Providing oversight of implementation of the information security policy in 

the local environment Ensuring that physical security arrangements are in 

place and adequate  

 Assisting with communicating security policies and requirements to local end 

users and local management 

Business Continuity 

 A fundamental concern for all organizations is business continuity. An 

organization needs to perform essential functions during an emergency 

situation that disrupts normal operations and resume normal operations in a 

timely manner after the emergency has ended. 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 40 
 

The International Organization for Standardization (ISO) has published a 

family of standards for business continuity management that enterprise 

security managers should be familiar with:  

 ISO 22300, Security and Resilience—Vocabulary: Provides a glossary of 

relevant terms.  

 ISO 22301, Business Continuity Management Systems—Requirements: 

Specifies requirements for setting up and managing an effective business 

continuity management system (BCMS). This is the first international 

standard focused exclusively on business continuity.  

 ISO 22313, Business Continuity Management Systems—Guidance: Provides 

guidance, where appropriate, on the requirements specified in ISO 22301 and 

provides recommendations (“should”) and permissions (“may”) in 

relationship to them.  

 ISO 22317, Business Continuity Management Systems: Guidelines for 

Business Impact Analysis (BIA): Provides guidelines (based on good 

international practice) for performing a business impact analysis (BIA), which 

is a requirement of ISO 22301 .It provides guidance for establishing, 

implementing, and maintaining a formal and documented process for 

business impact analysis. It is applicable to all organizations, regardless of 

type, location, size, and nature of the organization.  

 ISO 22318, Business Continuity Management Systems: Guidelines for 

Business Impact Analysis (BIA): Provides guidelines for supply chain 

continuity. 

Two additional useful guidance documents are:  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 41 
 

 National Institute of Standards and Technology (NIST) SP 800-34, 

Contingency Planning Guide for Federal Information Systems: Provides a 

detailed description of the planning process. 

 European Union Agency for Network and Information Security’s (ENISA’s) IT 

Business Continuity Management: An Approach for Small and Medium Sized 

Organizations: Provides a detailed list of controls for implementing business 

continuity plans. 

  

 

 

Business Continuity Concepts This section provides an overview of business continuity.  



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 42 
 

 Business: For purposes of discussing business continuity, the operations and 

services performed by an organization in pursuit of its objectives, goals, or 

mission. As such, it is equally applicable to large, medium, and small 

organizations operating in industrial, commercial, public, and not-for-profit 

sectors.  

 Business continuity: The capability of an organization to continue delivering 

products or services at acceptable predefined levels following a disruptive 

incident. Business continuity embraces all the operations in a company, 

including how employees function in compromised situations.  

 Business continuity management (BCM): A holistic management process 

that identifies potential threats to an organization and the impacts to 

business operations those threats, if realized, might cause, and that provides a 

framework for building organizational resilience with the capability of an 

effective response that safeguards the interests of its key stakeholders, 

reputation, brand, and value-creating activities. 

 Business continuity management system (BCMS): Part of an overall 

management system that establishes, implements, operates, monitors, 

reviews, maintains, and improves business continuity. The management 

system includes organizational structure, policies, planning activities, 

responsibilities, procedures, processes, and resources. 

 Business continuity manager: An individual who manages, designs, 

oversees, and/or assesses an enterprise’s business continuity capability to 

ensure that the enterprise’s critical functions continue to operate following 

disruptive events.  

 Business continuity plan (BCP): The documentation of a predetermined set 

of instructions or procedures that describe how an organization’s 

mission/business processes will be sustained during and after a significant 

disruption. 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 43 
 

 Business continuity program: An ongoing management and governance 

process supported by top management and appropriately resourced to 

implement and maintain business continuity management. 

 

Business Continuity Objectives 

 Minimize loss of life, injury, and property damage.  

 Mitigate the duration, severity, or pervasiveness of disruptions that do occur. 

 Achieve timely and orderly resumption of essential functions and the return 

to normal operations. Protect essential facilities, equipment, records, and 

assets. Be executable with or without warning. 



MC4205                                                                                                             CYBER SECURITY 
 

        PREPARED BY  A.KAVINILAVU  MCA,MPHIL,.  DEPARTMENT OF MCA    MAM COLLEGE OF ENIGNEERING 44 
 

following key components that are essential to maintaining business 

continuity: 

 Management 

 Staff 

 CT systems 

 Buildings and equipment 



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 1 
 
 

UNIT-V                                          SECURITY ASSESSMENT 

 

Security Monitoring and Improvement- Security Audit-Security Performance-Information 

Risk Reporting-Information Security Compliance Monitoring-Security Monitoring and 

Improvement Best Practices. 

Security Monitoring and Improvement 

Two aspects of security monitoring that lead to improvement in 
organizational security:  
The security audit  and security performance. 
 
Security Audit 
 
 A security audit relates to security policies and the mechanisms and procedures 

used to enforce that policy.  

 A security audit trail is an important component of a security audit.  

security audit  trail 
 
 An independent review and examination of a system’s records and activities 

to determine the adequacy of system controls , ensure compliance with 
established security policy and procedures, detect breaches in security 
services, and recommend any changes that are indicated for 
countermeasures.  
 

security audit trail  
 
 A chronological record of system activities that is sufficient to enable the 

reconstruction and examination of the sequence of environments and 

activities surrounding or leading to an operation, procedure, or event in a 

security-relevant transaction from inception to final results. 

 
What is a security audit? 

A security audit is a systematic evaluation of the security of a company's 

information system by measuring how well it conforms to an established set of 

criteria. A thorough audit typically assesses the security of the system's physical 

configuration and environment, software, information handling processes and user 

practices. 

https://www.techtarget.com/searchsecurity/definition/security


     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 2 
 
 

Why are security audits important? 

There are several reasons to do a security audit. They include these six goals: 

1. Identify security problems and gaps, as well as system weaknesses. 

2. Establish a security baseline that future audits can be compared with. 

3. Comply with internal organization security policies. 

4. Comply with external regulatory requirements. 

5. Determine if security training is adequate. 

6. Identify unnecessary resources. 

Types of security audits 

Security audits come in two forms, internal and external audits , that involve the 

following procedures: 

 Internal audits: In these audits, a business uses its own resources and internal 

audit department.  

                             Internal audits are used when an organization wants to validate 

business systems for policy and procedure compliance. 
 
The objectives of an internal security audit include the following:  

 Identify security weaknesses  

 Provide an opportunity to improve the information security management 

system  

 Provide management with information about the status of security 

 Deliver information about the status of security to management 

 Review compliance of security systems with the information security policy 

of the organization  

 Find and resolve noncompliance  

 External audits: With these audits, an outside organization is brought in to 

conduct an audit.  

                                External audits are also conducted when an organization needs 

to confirm it is conforming to industry standards or government regulations. 



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 3 
 
 

 

The objectives of the external security include the following:  

 Assess the process of the internal audit  

 Determine the commonality and frequency of recurrence of various types of 

security violations 

 Identify the common causes of various types of security violations 

 Provide advisory and training inputs to tackle the neglect of procedures 

 Review and update the policy 

X.816, Security Audit and Alarms Framework, lists the following objectives for 

a security audit: 

 Allows the adequacy of the security policy to be evaluated 

 Aids in the detection of security violations 

 Facilitates making individuals accountable for their actions (or for actions by 

entities acting on their behalf) 

 Assists in the detection of misuse of resources  

 Acts as a deterrent to individuals who might attempt to damage the system 

Steps involved in a security audit 

These five steps are generally part of a security audit: 

1. Agree on goals. Include all stakeholders in discussions of what should be 

achieved with the audit. 

2. Define the scope of the audit. List all assets to be audited, including computer 

equipment, internal documentation and processed data. 

3. Conduct the audit and identify threats. List potential threats related to each 

Threats can include the loss of data, equipment or records through natural 

disasters, malware or unauthorized users. 

4. Evaluate security and risks. Assess the risk of each of the identified threats 

happening, and how well the organization can defend against them. 



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 4 
 
 

5. Determine the needed controls. Identify what security measures must be 

implemented or improved to minimize risks. 

Security Audit and Alarms Model  

X.816 has developed a model that shows the elements of the security auditing 

function and their relationships to security alarms 

 

Security Audit and Alarms Model 

The key elements of this model are as follows:  

Event discriminator: This logic embedded in the software of the system monitors 

system activity and detects security-related events that it was configured to detect. 

 Audit recorder: For each detected event, the event discriminator transmits the 

information to an audit recorder. The model depicts this transmission in the form of 

a message. The audit could also be done by recording the event in a shared memory 

area.  

Alarm processor:  



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 5 
 
 

Some of the events detected by the event discriminator are defined to be alarm 

events. For such events, an alarm is issued to an alarm processor. The alarm 

processor takes some action based on the alarm. This action is itself an auditable 

event and so is transmitted to the audit recorder.  

Security audit trail:  

The audit recorder creates a formatted record of each event and stores it in the 

security audit trail. 

 Audit analyzer:  

The security audit trail is available to the audit analyzer, which, based on a pattern 

of activity, may define a new auditable event that is sent to the audit recorder and 

may generate an alarm.  

Audit archiver: 

 This software module periodically extracts records from the audit trail to create a 

permanent archive of auditable events. 

 Archives:  

The audit archives are a permanent store of security-related events on this system. 

Audit provider: The audit provider is an application and/or user interface to the 

audit trail. 

 Audit trail examiner:  

The audit trail examiner is an application or a user who examines the audit trail and 

the audit archives for historical trends, for computer forensic purposes, and for 

other analyses.  

Security reports: The audit trail examiner prepares human-readable security 

reports. 

Data to Collect for Auditing 

 The choice of what data to collect should be based on a number of 

requirements. One issue is the amount of data to collect, which is determined 

by the range of areas of interest and by the granularity of data collection. 



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 6 
 
 

 The more data collected, the greater the performance penalty on the system. 

Larger amounts of data may also unnecessarily burden the various algorithms 

used to examine and analyze the data. Further, the presence of large amounts 

of data creates a temptation to generate security reports excessive in number 

or length. 

Security audit trail design is the selection of data items to capture, including 

the following: 

 Events related to the use of the auditing software  

 Events related to the security mechanisms on the system  

 Any events that are collected for use by the various security detection and 

prevention mechanisms, including items related to intrusion detection and 

items related to firewall operation  

 Events related to system management and operation 

 Events related to operating system access (for example, via system calls) 

Events related to application access for selected applications  

 Events related to remote access 

The following sections look at categories for audit trail design. System-Level 

Audit Trail 

System-Level Audit Trails : 

System-level audit trails are generally used to monitor and optimize system 

performance but serve a security audit function as well. The system enforces certain 

aspects of security policy, such as access to the system itself. 

Application-Level Audit Trails: 

 Application-level audit trails are used to detect security violations in an application 

or to detect flaws in the application’s interaction with the system. For critical 

applications, or those that deal with sensitive data, an application-level audit trail 

provides the desired level of detail to assess security threats and impacts. 

User-Level Audit Trails:  

A user-level audit trail traces the activity of an individual user over time. It is used to 

hold a user accountable for his or her actions. Such audit trails are also useful as 



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 7 
 
 

input to an analysis program that attempts to define normal versus anomalous 

behavior.  

A user-level audit trail records user interactions with the system, such as commands 

issued, identification and authentication attempts, and files and resources accessed. 

The audit trail also captures the user’s use of applications. 

Network-Level Audit Trails :  

Network-level audit trails encompass a wide variety of network activity. Enterprises 

use such audit trails to evaluate system performance and perform load balancing. 

These audit trails can also include security-related data, such as that generated by 

firewalls, virtual private network managers, and IPsec traffic. 

Physical Access Audit Trails :  

Physical access audit trails are generated by equipment that controls physical access 

and are then transmitted to a central host for subsequent storage and analysis. 

Examples are card-key systems and alarm systems. 

Security Performance 

 Security performance is the measurable result of security controls applied to 

information systems and supporting information security programs.  

 The Information Security Forum’s (ISF’s) Standard of Good Practice for 

Information Security (SGP) defines the security performance function as 

comprising three areas: 

Security monitoring and reporting: Consists of monitoring security performance 

regularly and reporting to specific audiences, such as executive management. 

Information risk reporting: Consists of producing reports relating to information 

risk and presenting reporting to executive management on a regular basis. 

 Information security compliance monitoring: Consists of information security 

controls derived from regulatory and legal drivers and contracts, used to monitor 

security compliance. 

Security Performance Measurement Two terms are relevant to this discussion: 

Security performance:  



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 8 
 
 

The measurable result of security controls applied to information systems and 

supporting information security programs.  

Security performance metric:  

A variable related to security performance to which a value is assigned as the result 

of measurement.  Also called a security performance  measure. 

National Institute of Standards and Technology (NIST) IR 7564, Directions in 

Security Metrics Research, lists the following as the main broad uses of 

security metrics:  

Strategic support: 

Assessments of security properties can be used to aid in different kinds of decision 

making, such as program planning, resource allocation, and product and service 

selection.  

Quality assurance:  

Security metrics can be used during the software development life cycle to eliminate 

vulnerabilities, particularly during code production, by performing functions such 

as measuring adherence to secure coding standards, identifying vulnerabilities that 

are likely to exist, and tracking and analyzing security flaws that are eventually 

discovered.  

Tactical oversight:  

Monitoring and reporting of the security status or posture of an IT system can be 

carried out to determine compliance with security requirements (for example, 

policies, procedures, regulations), gauge the effectiveness of security controls and 

manage risk, provide a basis for trend analysis, and identify specific areas for 

improvement. 

Sources of Security: 

Metrics A security officer or a group responsible for developing a set of metrics for 

security performance assessment draws on several authoritative sets, some of 

which are described here. 

Three processes comprise this domain:  



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 9 
 
 

Performance and conformance:  

Collect, validate, and evaluate business, IT, and process goals and metrics. Monitor 

to ensure that processes are performing against agreed-on performance and 

conformance goals and metrics and provide reporting that is systematic and timely.  

System of internal control:  

Continuously monitor and evaluate the control environment, including self-

assessments and independent assurance reviews. Enable management to identify 

control deficiencies and inefficiencies and to initiate improvement actions. Plan, 

organize, and maintain standards for internal control assessment and assurance 

activities.  

Compliance with external requirements: Evaluate whether IT processes and IT-

supported business processes are compliant with laws, regulations, and contractual 

requirements. Obtain assurance that the requirements were identified and complied 

with and integrate IT compliance with overall enterprise compliance. 

lists the metrics defined for these three processes. 



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 10 
 
 

 

 

 

 

Suggested Security Performance Metrics (COBIT 5 for Information Security) 



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 11 
 
 

 

Information Risk Reporting 

 Risk reporting is a process that produces information systems reports that 

address threats, capabilities, vulnerabilities, and inherent risk changes. Risk 

reporting describes any information security events that the institution faces 

and the effectiveness of management’s response to and resilience in the face 

of those events. An organization needs to have a method of disseminating 

those reports to appropriate members of management. T 

The Information Systems Audit and Control Association (ISACA) has developed 

useful guidance on information risk reporting, based on COBIT 5 [ISAC09].  

The guidance makes use of two key concepts in COBIT 5: 

Process: A collection of practices influenced by the enterprise’s policies and 

procedures that takes inputs from a number of sources (including other processes), 

manipulates the inputs, and produces outputs (for example, products, services). 



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 12 
 
 

Processes have clear business reasons for existing, accountable owners, clear roles 

and responsibilities around the execution of the process, and the means to measure 

performance.  

Activity: The main action taken to operate the process, which provides guidance to 

achieve management practices for successful governance and management of 

enterprise IT. 

 Activities: 

 Describe a set of necessary and sufficient action-oriented implementation 

steps to achieve a governance practice or management practice. 

 Consider the inputs and outputs of the process  

 Are based on generally accepted standards and good practices  

 Support establishment of clear roles and responsibilities 

  Are non prescriptive and need to be adapted and developed into specific 

procedures appropriate for the enterprise. 

  



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 13 
 
 

  

 

 

 

Information Security Compliance Monitoring 

 The objective of information security compliance monitoring is to ensure that 

information security controls are consistently prioritized and addressed 

according to information security obligations associated with legislation, 

regulations, contracts, industry standards, or organizational policies. 

 COBIT 5 Guidelines COBIT 5 provides specific guidance on security 

monitoring and reporting for compliance with external requirements.  

For the process of ensuring compliance with external requirements, COBIT 5 

defines the following steps: 

1.Identify external compliance requirements: On a continuous basis, identify and 

monitor for changes in local and international laws, regulations, and other external 

requirements that the organization must comply with from an IT perspective. 

 2. Optimize response to external requirements: Review and adjust policies, 

principles, standards, procedures, and methodologies to ensure that legal, 



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 14 
 
 

regulatory, and contractual requirements are addressed and communicated. 

Consider industry standards, codes of good practice, and good practice guidance for 

adoption and adaptation. 

 3. Confirm external compliance: Confirm compliance of policies, principles, 

standards, procedures, and methodologies with legal, regulatory, and contractual 

requirements. 

 4. Obtain assurance of external compliance: Obtain and report assurance of 

compliance and adherence with policies, principles, standards, procedures, and 

methodologies. Confirm that corrective actions to address compliance gaps are 

closed in a timely manner. 

Compliance Strategy 

The following steps constitute a general approach to information security 

compliance monitoring:  

1. Identify key stakeholders and/or partners across the organization who regularly 

deal with institutional compliance issues (for example, legal, risk management, 

privacy, audit).  

2. Identify key standards, regulations, contractual commitments, and other areas 

that address specific requirements for security and privacy. 

 3. Perform a high-level gap analysis of each compliance requirement that is 

applicable to determine where progress needs to be made. 

4. Develop a prioritized action plan that will help organize remedial efforts.  

5. Develop a compliance policy, standard, roles and responsibilities, and/or 

procedures in collaboration with other key stakeholders 

Security Monitoring and Improvement Best Practices  

The SGP breaks down the best practices in the security monitoring and 

improvement category into two areas and eight topics and provides detailed 

checklists for each topic. The areas and topics are as follows:  

 Security audit: This area provides guidance for conducting thorough, 

independent, and regular audits of the security status of target environments 



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 15 
 
 

(critical business environments, processes, applications, and supporting 

systems/networks).  

 Security audit management: The objective of this topic is to ensure that 

security controls have been implemented effectively and that risk is being 

adequately managed and to provide the owners of target environments and 

executive management with an independent assessment of their security 

status. 

 Security audit process—planning: Provides guidance on a 

methodology for security audits.  

 

 Security audit process—fieldwork: Provides a checklist of actions 

related to collecting relevant background material, performing security 

audit tests, and recording the results of the tests.  

 

 Security audit process—reporting: Provides a checklist of items that 

should be in the security audit report, as well as guidance on the 

reporting process.  

 

 Security audit process—monitoring: Provides a checklist of actions 

to ensure the risks identified during security audits are treated 

effectively , compliance requirements are being met, and agreed 

security controls are being implemented within agreed time scales. 

 Security performance:  

This area provides guidance for monitoring information risks; compliance 

with the security-related elements of legal, regulatory, and contractual 

requirements; and the overall information security condition of the 

organization on a regular basis, reporting the results to specific audiences, 

such as executive management.  

 Security monitoring and performance:  

The objective of this topic is to ensure that there is a reporting function that 

provides selected audiences with a relevant, accurate, comprehensive, and 

coherent assessment of information security performance.  

 Information risk reporting:  



     MC4205                                                                                                        CYBER SECURITY 

PREPARED BY  A.KAVINILAVU MCA,MPHIL,.. DEPARTMENT OF MCA  MAM COLLEGE OF ENIGNEERING 16 
 
 

The objective of this topic is to ensure that there is a reporting function that 

provides executive management with an accurate, comprehensive, and 

coherent view of information risk across the organization. 

 Information security compliance monitoring:  

This topic provides guidelines for a security management process that should 

be established, which comprises information security controls derived from 

regulatory and legal drivers and contracts. 

 

REFERENCE QUESTIONS 

1. Briefly define the terms security audit and security audit trail.  

2. What are the key elements of the X.816 security audit model’s relationship 

with security alarms?  

3. What are some of the auditable items suggested in the X.816 model of 

security audits and alarms?  

4. What are the four different types of audit trails?  

5. What are the key objectives of an external security audit?  

6. How does the SGP define the security performance function? 

 7. NIST IR 7564 defines three broad uses of security metrics. Enumerate them.  

8.What are the three key processes for the COBIT 5 Monitor, Evaluate, and 

Assess domain?  

9. What guidelines does COBIT 5 define for the performance and conformance 

process?  

10. Describe the monitoring and reporting function, as per SP 800-55.  

11. ISACA’s guidance on information risk reporting is based on which two 

concepts of COBIT 5? 

 12. What are the generic steps for security compliance monitoring? 



 

27 

 

4. Jiawei Han, Micheline Kamber, Jian Pei, “Data Mining: Concepts and Techniques”, Third 

Edition, Morgan Kaufmann, 2012. 

5. Brad Dayley, “Teach Yourself NoSQL with MongoDB in 24 Hours”, Sams Publishing, First 

Edition, 2014. 

6. C. J. Date, A. Kannan, S. Swamynathan, “An Introduction to Database Systems”, Eighth 

Edition, Pearson Education, 2006  

 

CO-PO Mapping 

CO POs 

PO1 PO2 PO3 PO4 PO5 PO6 

1 2 1 2 2 2 2 

2 2 1 3 2 2 2 

3 2 1 3 2 2 3 

4 2 1 3 2 3 3 

5 2 1 3 2 2 2 

Avg 2 1 2.8 2 2.2 2.4 

 

 

MC4203 CLOUD COMPUTING TECHNOLOGIES L  T  P C 

3  0  0  3 

COURSE OBJECTIVES: 

 To understand the basic concepts of Distributed systems. 

 To learn about the current trend and basics of Cloud computing. 

 To be familiar with various Cloud concepts. 

 To expose with the Server, Network and storage virtualization. 

 To be aware of Microservices and DevOps. 

 

UNIT I DISTRIBUTED SYSTEMS 9 

Introduction to Distributed Systems – Characterization of Distributed Systems – Distributed 

Architectural Models –Remote Invocation – Request-Reply Protocols – Remote Procedure Call – 

Remote Method Invocation – Group Communication – Coordination in Group Communication – 

Ordered Multicast – Time Ordering – Physical Clock Synchronization – Logical Time and Logical 

Clocks. 

 

UNIT II BASICS OF CLOUD COMPUTING 9 

Cloud Computing Basics – Desired features of Cloud Computing – Elasticity in Cloud – On 

demand provisioning - Applications – Benefits – Cloud Components: Clients, Datacenters & 

Distributed Servers – Characterization of Distributed Systems – Distributed Architectural Models - 

Principles of Parallel and Distributed computing - Applications of Cloud computing – Benefits – 

Cloud services – Open source Cloud Software: Eucalyptus, Open Nebula, Open stack, Aneka, 

Cloudsim. 

 

UNIT III CLOUD INFRASTRUCTURE 9 

Cloud Architecture and Design – Architectural design challenges – Technologies for Network 

based system - NIST Cloud computing Reference Architecture – Public, Private and Hybrid 



 

28 

 

clouds – Cloud Models : IaaS, PaaS and SaaS – Cloud storage providers - Enabling 

Technologies for the Internet of Things – Innovative Applications of the Internet of Things. 

 

UNIT IV CLOUD ENABLING TECHNOLOGIES 9 

Service Oriented Architecture – Web Services – Basics of Virtualization – Emulation – Types of 

Virtualization – Implementation levels of Virtualization – Virtualization structures – Tools & 

Mechanisms – Virtualization of CPU, Memory & I/O Devices – Desktop Virtualization – Server 

Virtualization – Google App Engine – Amazon AWS - Federation in the Cloud. 

 

UNIT V MICROSERVICES AND DEVOPS 9 

Defining Microservices - Emergence of Microservice Architecture – Design patterns of 

Microservices – The Mini web service architecture – Microservice dependency tree – Challenges 

with Microservices - SOA vs Microservice – Microservice and API – Deploying and maintaining 

Microservices – Reason for having DevOps – Overview of  DevOps – Core elements of DevOps – 

Life cycle of DevOps –Adoption of  DevOps - DevOps Tools – Build, Promotion and Deployment 

in DevOps. 

 

SUGGESTED ACTIVITIES: 

1. Write a client and server program to calculate the value of PI, in which server calls the 

remote procedure of the client side (C programming) 

2. Create an word document of your class time table and store locally and also on cloud and 

share it (use www.zoho.com , docs.google.com) 

3. Create your resume in a neat format using google and zoho cloud Programs on PaaS 

4. Discuss processor virtualization, memory virtualization, I/O virtualization in VMWare 

5. Set up Azure DevOps, Import Code and Create the Azure DevOps Build Pipeline 

 

COURSE OUTCOMES: 

Upon completion of the course, the students will be able to 

CO1:  Use Distributed systems in Cloud Environment. 

CO2:  Articulate the main concepts, key technologies, strengths and limitations of Cloud  

          computing. 

CO3:  Identify the Architecture, Infrastructure and delivery models of Cloud computing. 

CO4: Install, choose and use the appropriate current technology for the  implementation of   

          Cloud. 

CO5:  Adopt Microservices and DevOps in Cloud environments. 

TOTAL:45 PERIODS 

REFERENCES 

1. Kai Hwang, Geoffrey C. Fox & Jack J.Dongarra, "Distributed and Cloud Computing, From 

Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, First Edition, 

2012 

2. Andrew S. Tanenbaum & Maarten Van Steen,“Distributed Systems - Principles and  

Paradigms”, Third Edition, Pearson, 2017. 

3. Thomas Erl, Zaigham Mahood & Ricardo Puttini, “Cloud Computing, Concept, Technology 

& Architecture”, Prentice Hall, SecondEdition, 2013. 

4. Richard Rodger, “The Tao of Microservices”, ISBN 9781617293146, Manning Publications, 

First Edition, December 2017. 

5. Magnus Larsson, “Hands-On Microservices with Spring Boot and Spring Cloud: Build and 

deploy microservices using spring cloud, Istio and kubernetes”, Packt Publishing Ltd, First 

Edition, September 2019. 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 1 

 

 

 

 

UNIT I INTRODUCTION 

Introduction to Cloud Computing – Definition of Cloud – Evolution of Cloud Computing – 

Underlying Principles of Parallel and Distributed Computing – Cloud Characteristics – Elasticity 

in Cloud – On-demand Provisioning. 

 
 INTRODUCTION 

EVOLUTION OF DISTRIBUTED COMPUTING 

Grids enable access to shared computing power and storage capacity from your desktop. 

Clouds enable access to leased computing power and storage capacity from your desktop. 

• Grids are an open source technology. Resource users and providers alike can understand 

and contribute to the management of their grid 

• Clouds are a proprietary technology. Only the resource provider knows exactly how 

their cloud manages data, job queues, security requirements and so on. 

• The concept of grids was proposed in 1995. The Open science grid (OSG) started in 1995 

The EDG (European Data Grid) project began in 2001. 

• In the late 1990`s Oracle and EMC offered early private cloud solutions . However the 

term cloud computing didn't gain prominence until 2007. 

SCALABLE COMPUTING OVER THE INTERNET 

Instead of using a centralized computer to solve computational problems, a parallel and 

distributed computing system uses multiple computers to solve large-scale problems over the 

Internet. Thus, distributed computing becomes data-intensive and network-centric. 

The Age of Internet Computing 

o high-performance computing (HPC) applications is no longer optimal for measuring 

system performance 

o The emergence of computing clouds instead demands high-throughput computing (HTC) 

systems built with parallel and distributed computing technologies 

o We have to upgrade data centers using fast servers, storage systems, and high-bandwidth 

networks. 

The Platform Evolution 

o From 1950 to 1970, a handful of mainframes, including the IBM 360 and CDC 6400 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 2 

 

 

o From 1960 to 1980, lower-cost minicomputers such as the DEC PDP 11 and VAX 

Series 

o From 1970 to 1990, we saw widespread use of personal computers built with VLSI 

microprocessors. 

o From 1980 to 2000, massive numbers of portable computers and pervasive devices 

appeared in both wired and wireless applications 

o Since 1990, the use of both HPC and HTC systems hidden in clusters, grids, or 

Internet clouds has proliferated 

 
On the HPC side, supercomputers (massively parallel processors or MPPs) are 

gradually replaced by clusters of cooperative computers out of a desire to share 

computing resources. The cluster is often a collection of homogeneous compute 

nodes that are physically connected in close range to one another. 

On the HTC side, peer-to-peer (P2P) networks are formed for distributed file sharing 

and content delivery applications. A P2P system is built over many client machines (a 

concept we will discuss further in Chapter 5). Peer machines are globally distributed 

in nature. P2P, cloud computing, and web service platforms are more focused on 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Terms 

HTC applications than on HPC applications. Clustering and P2P technologies lead to 

the development of computational grids or data grids. 

For many years, HPC systems emphasize the raw speed performance. The speed of 

HPC systems has increased from Gflops in the early 1990s to now Pflops in 2010. 

The development of market-oriented high-end computing systems is undergoing a 

strategic change from an HPC paradigm to an HTC paradigm. This HTC paradigm 

pays more attention to high-flux computing. The main application for high-flux 

computing is in Internet searches and web services by millions or more users 

simultaneously. The performance goal thus shifts to measure high throughput or the 

number of tasks completed per unit of time. HTC technology needs to not only 

improve in terms of batch processing speed, but also address the acute problems of 

cost, energy savings, security, and reliability at many data and enterprise computing 

centers. 

Advances in virtualization make it possible to see the growth of Internet clouds as a 

new computing paradigm. The maturity of radio-frequency identification (RFID), 

Global Positioning System (GPS), and sensor technologies has triggered the 

development of the Internet of Things (IoT). These new paradigms are only briefly 

introduced here. 

The high-technology community has argued for many years about the precise 

definitions of centralized computing, parallel computing, distributed computing, and 

cloud computing. In general, distributed computing is the opposite of centralized 

computing. The field of parallel computing overlaps with distributed computing to a 

great extent, and cloud computing overlaps with distributed, centralized, and parallel 

computing. 

Centralized computing 

This is a computing paradigm by which all computer resources are centralized in 

one physical system. All resources (processors, memory, and storage) are fully shared and 

tightly coupled within one integrated OS. Many data centers and supercomputers are 

centralized systems, but they are used in parallel, distributed, and cloud computing 

applications. 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 4 

 

 

• Parallel computing 

In parallel computing, all processors are either tightly coupled with centralized 

shared memory or loosely coupled with distributed memory. Inter processor 

communication is accomplished through shared memory or via message passing. 

Acomputer system capable of parallel computing is commonly known as a parallel 

computer. Programs running in a parallel computer are called parallel programs. The 

process of writing parallel programs is often referred to as parallel programming. 

• Distributed computing This is a field of computer science/engineering that studies 

distributed systems. A distributed system consists of multiple autonomous computers, 

each having its own private memory, communicating through a computer network. 

Information exchange in a distributed system is accomplished through message passing. 

A computer program that runs in a distributed system is known as a distributed program. 

The process of writing distributed programs is referred to as distributed programming. 

• Cloud computing An Internet cloud of resources can be either a centralized or a 

distributed computing system. The cloud applies parallel or distributed computing, or 

both. Clouds can be built with physical or virtualized resources over large data centers 

that are centralized or distributed. Some authors consider cloud computing to be a form 

of utility computing or service computing . As an alternative to the preceding terms, 

some in the high-tech community prefer the term concurrent computing or concurrent 

programming. These terms typically refer to the union of parallel computing and 

distributing computing, although biased practitioners may interpret them differently. 

• Ubiquitous computing refers to computing with pervasive devices at any place and time 

using wired or wireless communication. The Internet of Things (IoT) is a networked 

connection of everyday objects including computers, sensors, humans, etc. The IoT is 

supported by Internet clouds to achieve ubiquitous computing with any object at any 

place and time. Finally, the term Internet computing is even broader and covers all 

computing paradigms over the Internet. This book covers all the aforementioned 

computing paradigms, placing more emphasis on distributed and cloud computing and 

their working systems, including the clusters, grids, P2P, and cloud systems. 

Internet of Things 

• The traditional Internet connects machines to machines or web pages to web pages. The 

concept of the IoT was introduced in 1999 at MIT . 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 5 

 

 

• The IoT refers to the networked interconnection of everyday objects, tools, devices, or 

computers. One can view the IoT as a wireless network of sensors that interconnect all 

things in our daily life. 

• It allows objects to be sensed and controlled remotely across existing network 

infrastructure 

 
SYSTEM MODELS FOR DISTRIBUTED AND CLOUD COMPUTING 

• Distributed and cloud computing systems are built over a large number of autonomous 

computer nodes. 

•  These node machines are interconnected by SANs, LANs, or WANs in a hierarchical 

manner. With today’s networking technology, a few LAN switches can easily connect 

hundreds of machines as a working cluster. 

• A WAN can connect many local clusters to form a very large cluster of clusters. 

Clusters of Cooperative Computers 

A computing cluster consists of interconnected stand-alone computers which work 

cooperatively as a single integrated computing resource. 

• In the past, clustered computer systems have demonstrated impressive results in handling 

heavy workloads with large data sets. 

Cluster Architecture 

cluster built around a low-latency, high bandwidth interconnection network. This network 

can be as simple as a SAN or a LAN (e.g., Ethernet). 

Figure 1.2 Clusters of Servers 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 6 

 

 

Figure 1.2shows the architecture of a typical server cluster built around a low-latency, 

high bandwidth interconnection network. This network can be as simple as a SAN (e.g., Myrinet) 

or a LAN (e.g., Ethernet). 

• To build a larger cluster with more nodes, the interconnection network can be built with 

multiple levels of Gigabit Ethernet, or InfiniBand switches. 

• Through hierarchical construction using a SAN, LAN, or WAN, one can build scalable 

clusters with an increasing number of nodes. The cluster is connected to the Internet via a 

virtual private network (VPN) gateway. 

• The gateway IP address locates the cluster. The system image of a computer is decided 

by the way the OS manages the shared cluster resources. 

Most clusters have loosely coupled node computers. All resources of a server node are 

managed by their own OS. Thus, most clusters have multiple system images as a result of having 

many autonomous nodes under different OS control. 

 Single-System Image(SSI) 

• Ideal cluster should merge multiple system images into a single-system image (SSI). 

• Cluster designers desire a cluster operating system or some middleware to support SSI at 

various levels, including the sharing of CPUs, memory, and I/O across all cluster nodes. 

An SSI is an illusion created by software or hardware that presents a collection of resources as 

one integrated, powerful resource. SSI makes the cluster appear like a single machine to the user. 

A cluster with multiple system images is nothing but a collection of independent computers. 

 Hardware, Software, and Middleware Support 

• Clusters exploring massive parallelism are commonly known as MPPs. Almost all HPC 

clusters in the Top 500 list are also MPPs. 

• The building blocks are computer nodes (PCs, workstations, servers, or SMP), special 

communication software such as PVM, and a network interface card in each computer 

node. 

Most clusters run under the Linux OS. The computer nodes are interconnected by a high- 

bandwidth network (such as Gigabit Ethernet, Myrinet, InfiniBand, etc.). Special cluster 

middleware supports are needed to create SSI or high availability (HA). Both sequential and 

parallel applications can run on the cluster, and special parallel environments are needed to 

facilitate use of the cluster resources. For example, distributed memory has multiple images. 

Users may want all distributed memory to be shared by all servers by forming distributed shared 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 7 

 

 

memory (DSM). Many SSI features are expensive or difficult to achieve at various cluster 

operational levels. Instead of achieving SSI, many clusters are loosely coupled machines. Using 

virtualization, one can build many virtual clusters dynamically, upon user demand. 

 
Cloud Computing over the Internet 

• A cloud is a pool of virtualized computer resources. 

• A cloud can host a variety of different workloads, including batch-style backend jobs and 

interactive and user-facing applications. 

• A cloud allows workloads to be deployed and scaled out quickly through rapid 

provisioning of virtual or physical machines. 

• The cloud supports redundant, self-recovering, highly scalable programming models that 

allow workloads to recover from many unavoidable hardware/software failures. 

• Finally, the cloud system should be able to monitor resource use in real time to enable 

rebalancing of allocations when needed. 

a. Internet Clouds 

• Cloud computing applies a virtualized platform with elastic resources on demand by 

provisioning hardware, software, and data sets dynamically .The idea is to move desktop 

computing to a service-oriented platform using server clusters and huge databases at data 

centers. 

• Cloud computing leverages its low cost and simplicity to benefit both users and 

providers. 

• Machine virtualization has enabled such cost-effectiveness. Cloud computing intends to 

satisfy many user applications simultaneously. 

 

 
Figure 1.3 Internet Cloud 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 8 

 

 

b. The Cloud Landscape 

• The cloud ecosystem must be designed to be secure, trustworthy, and dependable. Some 

computer users think of the cloud as a centralized resource pool. Others consider the 

cloud to be a server cluster which practices distributed computing over all the servers 

Traditionally, a distributed computing system tends to be owned and operated by an 

autonomous administrative domain (e.g., a research laboratory or company) for on- 

premises computing needs. 

• Cloud computing as an on-demand computing paradigm resolves or relieves us from 

these problems. 

Three Cloud service Model in a cloud landscape 

Infrastructure as a Service (IaaS) 

 This model puts together infrastructures demanded by users—namely servers, storage, 

networks, and the data center fabric. 

• The user can deploy and run on multiple VMs running guest OS on specific applications. 

• The user does not manage or control the underlying cloud infrastructure, but can specify 

when to request and release the needed resources. 

Platform as a Service (PaaS) 

• This model enables the user to deploy user-built applications onto a virtualized cloud platform. 

PaaS includes middleware, databases, development tools, and some runtime support such as Web 

2.0 and Java. 

• The platform includes both hardware and software integrated with specific programming 

interfaces. 

• The provider supplies the API and software tools (e.g., Java, Python, Web 2.0, .NET). The user 

is freed from managing the cloud infrastructure. 

Software as a Service (SaaS) 

• This refers to browser-initiated application software over thousands of paid cloud customers. 

The SaaS model applies to business processes, industry applications, consumer relationship 

management (CRM), enterprise resources planning (ERP), human resources (HR), and 

collaborative applications. On the customer side, there is no upfront investment in servers or 

software licensing. On the provider side, costs are rather low, compared with conventional 

hosting of user applications. 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 9 

 

 

 

 
 

 

Figure 1.4 The Cloud Landscape in an application 

Internet clouds offer four deployment modes: private, public, managed, and hybrid . 

These modes demand different levels of security implications. The different SLAs imply that the 

security responsibility is shared among all the cloud providers, the cloud resource consumers, 

and the third party cloud-enabled software providers. Advantages of cloud computing have been 

advocated by many IT experts, industry leaders, and computer science researchers. 

 
Reasons to adapt the cloud for upgraded Internet applications and web services: 

1. Desired location in areas with protected space and higher energy efficiency 

2. Sharing of peak-load capacity among a large pool of users, improving overall utilization 

3. Separation of infrastructure maintenance duties from domain-specific application development 

4. Significant reduction in cloud computing cost, compared with traditional computing 

paradigms 

5. Cloud computing programming and application development 

6. Service and data discovery and content/service distribution 

7. Privacy, security, copyright, and reliability issues 

8. Service agreements, business models, and pricing policies 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 10 

 

 

 

 “The National Institute of Standards and Technology (NIST) defines cloud 

computing as a "pay-per-use model for enabling available, convenient and on- 

demand network access to a shared pool of configurable computing resources 

(e.g., networks, servers, storage, applications and services) that can be rapidly 

provisioned and released with minimal management effort or service provider 

interaction." 

 Cloud computing is using the internet to access someone else's software running on 

someone else's hardware in someone else's data center. 

 The user sees only one resource ( HW, Os) but uses virtually multiple os. HW resources 

etc.. 

 Cloud architecture effectively uses virtualization 

 A model of computation and data storage based on ―pay as you go‖ access to ―unlimited‖ 

remote data center capabilities 

 A cloud infrastructure provides a framework to manage scalable, reliable, on-demand 

access to applications 

 Cloud services provide the ―invisible‖ backend to many of our mobile applications 

 High level of elasticity in consumption 

 Historical roots in today’s Internet apps 

 Search, email, social networks, e-com sites 

 File storage (Live Mesh, Mobile Me) 

 
 

 Definition 

Cloud Computing Architecture 

 Architecture consists of 3 tiers 

◦ Cloud Deployment Model 

◦ Cloud Service Model 

◦ Essential Characteristics of Cloud Computing 

Essential Characteristics 1 

 On-demand self-service. 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 11 

 

 

◦ A consumer can unilaterally provision computing capabilities such as server time 

and network storage as needed automatically, without requiring human interaction 

with a service provider. 

 

 
Figure 1.5 Cloud Computing Architecture 

Essential Characteristics 2 

 Broad network access. 

◦ Capabilities are available over the network and accessed through standard 

mechanisms that promote use by heterogeneous thin or thick client platforms 

(e.g., mobile phones, laptops, and PDAs) as well as other traditional or 

cloudbased software services. 

 
Essential Characteristics 3 

 Resource pooling. 

◦ The provider’s computing resources are pooled to serve multiple consumers using 

a multi-tenant model, with different physical and virtual resources dynamically 

assigned and reassigned according to consumer demand. 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 12 

 

 

Essential Characteristics 4 

 Rapid elasticity. 

◦ Capabilities can be rapidly and elastically provisioned - in some cases 

automatically - to quickly scale out; and rapidly released to quickly scale in. 

◦ To the consumer, the capabilities available for provisioning often appear to be 

unlimited and can be purchased in any quantity at any time. 

 
Essential Characteristics 5 

 Measured service. 

◦ Cloud systems automatically control and optimize resource usage by leveraging a 

metering capability at some level of abstraction appropriate to the type of service. 

◦ Resource usage can be monitored, controlled, and reported - providing 

transparency for both the provider and consumer of the service. 

 
Cloud Service Models 

 Cloud Software as a Service (SaaS) 

 Cloud Platform as a Service (PaaS) 

 Cloud Infrastructure as a Service (IaaS) 

SaaS 

 SaaS is a licensed software offering on the cloud and pay per use 

 SaaS is a software delivery methodology that provides licensed multi-tenant access to 

software     and     its     functions     remotely     as      a      Web-based      service. 

Usually billed based on usage 

◦ Usually multi tenant environment 

◦ Highly scalable architecture 

 Customers do not invest on software application programs 

 The capability provided to the consumer is to use the provider’s applications running on a 

cloud infrastructure. 

 The applications are accessible from various client devices through a thin client interface 

such as a web browser (e.g., web-based email). 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 13 

 

 

 The consumer does not manage or control the underlying cloud infrastructure including 

network, servers, operating systems, storage, data or even individual application 

capabilities, with the possible exception of limited user specific application configuration 

settings. 

SaaS providers 

 Google’s Gmail, Docs, Talk etc 

 Microsoft’s Hotmail, Sharepoint 

 SalesForce, 

 Yahoo, Facebook 

Infrastructure as a Service (IaaS) 

 IaaS is the delivery of technology infrastructure ( mostly hardware) as an on demand, 

scalable service 

◦ Usually billed based on usage 

◦ Usually multi tenant virtualized environment 

◦ Can be coupled with Managed Services for OS and application support 

◦ User can choose his OS, storage, deployed app, networking components 

◦ 

 

Figure 1.6 Cloud Service Model 

 The capability provided to the consumer is to provision processing, storage, networks, 

and other fundamental computing resources. 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 14 

 

 

 Consumer is able to deploy and run arbitrary software, which may include operating 

systems and applications. 

 The consumer does not manage or control the underlying cloud infrastructure but has 

control over operating systems, storage, deployed applications, and possibly limited 

control of select networking components (e.g., host firewalls). 

IaaS providers 

 Amazon Elastic Compute Cloud (EC2) 

◦ Each instance provides 1-20 processors, upto 16 GB RAM, 1.69TB storage 

 RackSpace Hosting 

◦ Each instance provides 4 core CPU, upto 8 GB RAM, 480 GB storage 

 Joyent Cloud 

◦ Each instance provides 8 CPUs, upto 32 GB RAM, 48 GB storage 

 Go Grid 

◦ Each instance provides 1-6 processors, upto 15 GB RAM, 1.69TB storage 

 

Platform as a Service (PaaS) 

 PaaS provides all of the facilities required to support the complete life cycle of building, 

delivering and deploying web applications and services entirely from the Internet. 

Typically applications must be developed with a particular platform in mind 

• Multi tenant environments 

• Highly scalable multi tier architecture 

 The capability provided to the consumer is to deploy onto the cloud infrastructure 

consumer created or acquired applications created using programming languages and 

tools supported by the provider. 

 The consumer does not manage or control the underlying cloud infrastructure including 

network, servers, operating systems, or storage, but has control over the deployed 

applications and possibly application hosting environment configurations. 

 
PaaS providers 

 Google App Engine 

◦ Python, Java, Eclipse 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 15 

 

 

 Microsoft Azure 

◦ .Net, Visual Studio 

 Sales Force 

◦ Apex, Web wizard 

 TIBCO, 

 VMware, 

 Zoho 

 
 

Cloud Computing - Opportunities and Challenges 

 It enables services to be used without any understanding of their infrastructure. 

 Cloud computing works using economies of scale 

 It potentially lowers the outlay expense for start up companies, as they would no longer 

need to buy their own software or servers. 

 Cost would be by on-demand pricing. 

 Vendors and Service providers claim costs by establishing an ongoing revenue stream. 

 Data and services are stored remotely but accessible from ―anywhere‖ 

 
 

Cloud Computing – Pros 

 Lower computer costs 

 Instant software updates: 

◦ When the application is web-based, updates happen automatically 

 Improved document format compatibility 

 e capacity: 

◦ Cloud computing offers virtually limitless storage 

◦ • Increased data reliability: 

 

Cloud Computing – Cons 

 Need of Internet : 

◦  A dead Internet connection means no work and in areas where Internet 

connections are few or inherently unreliable, this could be a deal-breaker. 

◦ Requires a constant Internet connection 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 16 

 

 

 Can be slow: 

◦  Even with a fast connection, web-based applications can sometimes be slower 

than accessing a similar software program on your desktop PC. 

 Disparate Protocols : 

◦ Each cloud systems uses different protocols and different APIs – Standards yet to 

evolve. 

 
 Evolution of Cloud Computing 

Evolution of Cloud Computing 

 Cloud Computing Leverages dynamic resources to deliver a large number of services to 

end users. 

 It is High Throughput Computing(HTC) paradigm 

 It enables users to share access to resources from anywhere at any time 

 

II Hardware Evolution 

 In 1930, binary arithmetic was developed 

 computer processing technology, terminology, and programming languages. 

• In 1939,Electronic computer was developed 

 Computations were performed using vacuum-tube technology. 

• In 1941, Konrad Zuse's Z3 was developed 

 Support both floating-point and binary arithmetic. 

There are four generations 

 First Generation Computers 

 Second Generation Computers 

 Third Generation Computers 

 Fourth Generation Computers 

a.First Generation Computers 

Time Period : 1942 to 1955 

Technology : Vacuum Tubes 

Size : Very Large System 

Processing : Very Slow 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 17 

 

 

Examples: 

1.ENIAC (Electronic Numerical Integrator and Computer) 

2.EDVAC(Electronic Discrete Variable Automatic Computer) 

 
Advantages: 

• It made use of vacuum tubes which was the advanced technology at that time 

• Computations were performed in milliseconds. 

Disadvantages: 

• very big in size, weight was about 30 tones. 

• very costly. 

• Requires more power consumption 

•Large amount heat was generated. 

 
 

 b.Second Generation Computers 

Time Period : 1956 to 1965. 

Technology : Transistors 

Size : Smaller 

Processing : Faster 

o Examples 

Honeywell 400 

IBM 7094 

Advantages 

 Less heat than first generation. 

 Assembly language and punch cards were used for input. 

 Low cost than first generation computers. 

 Computations was performed in microseconds. 

 Better Portability as compared to first generation 

Disadvantages: 

 A cooling system was required. 

 Constant maintenance was required. 

 Only used for specific purposes 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 18 

 

 

c.Third Generation Computers 

Time Period : 1966 to 1975 

Technology : ICs (Integrated Circuits) 

Size : Small as compared to 2nd generation computers 

Processing : Faster than 2nd generation computers 

Examples 

• PDP-8 (Programmed Data Processor) 

• PDP-11 

Advantages 

• These computers were cheaper as compared to generation computers. 

• They were fast and reliable. 

• IC not only reduce the size of the computer but it also improves the performance of the 

computer 

• Computations was performed in nanoseconds 

 Disadvantages 

• IC chips are difficult to maintain. 

• The highly sophisticated technology required for the manufacturing of IC chips. 

•Air Conditioning is required 

 
 

d.Fourth Generation Computers 

Time Period : 1975 to Till Date 

Technology : Microprocessor 

Size : Small as compared to third generation computer 

Processing : Faster than third generation computer 

Examples 

• IBM 4341 

• DEC 10 

 
 

Advantages: 

 Fastest in computation and size get reduced as compared to the previous generation of 

computer. Heat generated is small. 

 Less maintenance is required. 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 19 

 

 

Disadvantages: 

 The Microprocessor design and fabrication are very complex. 

 Air Conditioning is required in many cases 

 

III Internet Hardware Evolution 

 Internet Protocol is the standard communications protocol used by every computer on the 

Internet. 

 The conceptual foundation for creation of the Internet was significantly developed by three 

individuals. 

• Vannevar Bush — MEMIX (1930) 

• Norbert Wiener 

• Marshall McLuhan 

 Licklider was founder for the creation of the AR PANET (Advanced Research Projects 

Agency Network) 

 Clark deployed a minicomputer called an Interface Message Processor (IMP) at each site. 

 Network Control Program (NCP)- first networking protocol that was used on the ARPANET 
 

 

 

 

Figure 1.7 IMP Architecture 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 20 

 

 

Internet Hardware Evolution 

 Establishing a Common Protocol for the Internet 

 Evolution of Ipv6 

 Finding a Common Method to Communicate Using the Internet Protocol 

 Building a Common Interface to the Internet 

 The Appearance of Cloud Formations From One Computer to a Grid of Many 

a.Establishing a Common Protocol for the Internet 

 NCP essentially provided a transport layer consisting of the ARPANET Host-to-Host 

Protocol (AIIIIP) and the Initial Connection Protocol (ICP) 

 Application protocols 

o File Transfer Protocol (FTP), used for file transfers, 

o Simple Mail Transfer Protocol (SMTP), used for sending email 

Four versions of TCP/IP 

• TCP vl 

• TCP v2 

• TCP v3 and IP v3, 

• TCP v4 and IP v4 

b.Evolution of Ipv6 

 IPv4 was never designed to scale to global levels. 

 To increase available address space, it had to process large data packets (i.e., more bits of 

data). 

 To overcome these problems, Internet Engineering Task Force (IETF) developed IPv6, 

which was released in January 1995. 

 Ipv6 is sometimes called the Next Generation Internet Protocol (IPNG) or TCP/IP v6. 

 

c.Finding a Common Method to Communicate Using the Internet Protocol 

 In the 1960s,the word ktpertext was created by Ted Nelson. 

 In 1962, Engelbart's first project was Augment, and its purpose was to develop computer 

tools to augment human capabilities. 

 He developed the mouse, Graphical user interface (GUI), and the first working hypertext 

system, named NLS (oN-Line System). 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 21 

 

 

 NLS was designed to cross-reference research papers for sharing among geographically 

distributed researchers. 

 In the 1980s, Web was developed in Europe by Tim Berners-Lee and Robert Cailliau 

 uilding a Common Interface to the Internet 

 Betters-Lee developed the first web browser featuring an integrated editor that could 

create hypertext documents. 

 Following this initial success, Berners-Lee enhanced the server and browser by adding 

support for the FTP (File Transfer protocol) 

Figure 1.8 First Web Browser 

 Mosaic was the first widely popular web browser available to the general public. Mosaic 

support for graphics, sound, and video clips. 

 In October 1994, Netscape released the first beta version of its browser, Mozilla 0.96b, 

over the Internet. 

 In 1995, Microsoft Internet Explorer was developed that supports both a graphical Web 

browser and the name for a set of technologies. 

 Mozilla Firefox. released in November 2004, became very popular almost immediately. 

 

e.The Appearance of Cloud Formations From One Computer to a Grid of Many 

 Two decades ago, computers were clustered together to form a single larger computer in 

order to simulate a supercomputer and greater processing power. 

 In the early 1990s, Ian Foster and Carl Kesselman presented their concept of "The Grid." 

They used an analogy to the electricity grid, where users could plug in and use a 

(metered) utility service. 

 A major problem in clustering model was data residency. Because of the distributed 

nature of a grid, computational nodes could be anywhere in the world. 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 22 

 

 

 The Globus Toolkit is an open source software toolkit used for building grid systems and 

applications 

 

 

Figure 1.9 Evolution 

Evolution of Cloud Services 
 

2008-2009 
Google Application Engine 

Microsoft Azure 

2006 S3 launches EC2 

2002 Launch of Amazon Web Services 

1990 
The first milestone of cloud computing arrival of 

salesforce.com 

1960 
Super Computers 

Mainframes 

 

IV. SERVER VIRTUALIZATION 

 Virtualization is a method of running multiple independent virtual operating systems on a 

single physical computer. 

 This approach maximizes the return on investment for the computer. 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 23 

 

 

 Virtualization technology is a way of reducing the majority of hardware acquisition and 

maintenance costs, which can result in significant savings for any company. 

 Parallel Processing 

 Vector Processing 

 Symmetric Multiprocessing Systems 

 Massively Parallel Processing Systems 

a.Parallel Processing 

 Parallel processing is performed by the simultaneous execution of program instructions 

that have been allocated across multiple processors. 

 Objective: running a progran in less time. 

 The next advancement in parallel processing-multiprogramming 

 In a multiprogramming system, multiple programs submitted by users but each allowed 

to use the processor for a short time. 

 This approach is known as "round-robin scheduling‖(RR scheduling) 

b.Vector Processing 

 Vector processing was developed to increase processing performance by operating in a 

multitasking manner. 

 Matrix operations were added to computers to perform arithmetic operations. 

 This was valuable in certain types of applications in which data occurred in the form of 

vectors or matrices. 

 In applications with less well-formed data, vector processing was less valuable. 

c.Symmetric Multiprocessing Systems 

 Symmetric multiprocessing systems (SMP) was developed to address the problem of 

resource management in master/slave models. 

 In SMP systems, each processor is equally capable and responsible for managing the 

workflow as it passes through the system. 

 The primary goal is to achieve sequential consistency 

d.Massively Parallel Processing Systems 

 In Massively Parallel Processing Systems, a computer system with many independent 

arithmetic units, which run in parallel. 

 All the processing elements are interconnected to act as one very large computer. 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 24 

 

 

 Early examples of MPP systems were the Distributed ArrayProcessor, the Goodyear 

MPP, the Connection Machine, and the Ultracomputer 

 MPP machines are not easy to program, but for certain applications, such as data mining, 

they are the best solution 

 
 Principles of Parallel and Distributed Computing 

• Three major milestones have led to cloud computing evolution 

– Mainframes: Large computational facilities leveraging multiple processing units. 

Even though mainframes cannot be considered as distributed systems, they offered 

large computational power by using multiple processors, which were presented as a 

single entity to users. 

Mile Stones to Cloud computing Evolution 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 25 

 

 

– Clusters: An alternative technological advancement to the use of mainframes and 

super computers. 

– Grids 

– Clouds 

 Eras of Computing 

• Two fundamental and dominant models of computing are sequential and parallel. 

– The sequential era began in the 1940s, and Parallel( and distributed) computing 

era followed it within a decade. 

• Four key elements of computing developed during three eras are 

– Architecture 

– Compilers 

– Applications 

– Problem solving environments 

• . 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 26 

 

 

 

 

 The computing era started with development in hardware architectures, which actually 

enabled the creation of system software – particularly in the area of compilers and 

operating systems – which support the management of such systems and the 

development of applications 

 
• The term parallel computing and distributed computing are often used interchangeably, 

even though they mean slightly different things. 

• The term parallel implies a tightly coupled system, where as distributed systems 

refers to a wider class of system, including those that are tightly coupled. 

• More precisely, the term parallel computing refers to a model in which the 

computation is divided among several processors sharing the same memory. 

• The architecture of parallel computing system is often characterized by the 

homogeneity of components: each processor is of the same type and it has the same 

capability as the others. 

 
• The shared memory has a single address space, which is accessible to all the processors. 

• Parallel programs are then broken down into several units of execution that can be 

allocated to different processors and can communicate with each other by means of 

shared memory. 

• Originally parallel systems are considered as those architectures that featured multiple 

processors sharing the same physical memory and that were considered a single 

computer. 

– Over time, these restrictions have been relaxed, and parallel systems now include 

all architectures that are based on the concept of shared memory, whether this is 

physically present or created with the support of libraries, specific hardware, and 

a highly efficient networking infrastructure. 

– For example: a cluster of which of the nodes are connected through an InfiniBand 

network and configured with distributed shared memory system can be considered 

as a parallel system. 

• The term distributed computing encompasses any architecture or system that allows the 

computation to be broken down into units and executed concurrently on different 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 27 

 

 

computing elements, whether these are processors on different nodes, processors on the 

same computer, or cores within the same processor. 

• Distributed computing includes a wider range of systems and applications than parallel 

computing and is often considered a more general term. 

• Even though it is not a rule, the term distributed often implies that the locations of the 

computing elements are not the same and such elements might be heterogeneous in terms 

of hardware and software features. 

• Classic examples of distributed computing systems are 

– Computing Grids 

– Internet Computing Systems 

 
 

 Elements of Parallel computing 

• Silicon-based processor chips are reaching their physical limits. Processing speed is 

constrained by the speed of light, and the density of transistors packaged in a processor is 

constrained by thermodynamics limitations. 

• A viable solution to overcome this limitation is to connect multiple processors working in 

coordination with each other to solve ―Grand Challenge‖ problems. 

• The first step in this direction led 

– To the development of parallel computing, which encompasses techniques, 

architectures, and systems for performing multiple activities in parallel. 

 
a.Parallel Processing 

• Processing of multiple tasks simultaneously on multiple processors is called parallel 

processing. 

• The parallel program consists of multiple active processes ( tasks) simultaneously solving 

a given problem. 

• A given task is divided into multiple subtasks using a divide-and-conquer technique, and 

each subtask is processed on a different central processing unit (CPU). 

• Programming on multi processor system using the divide-and-conquer technique is called 

parallel programming. 

• Many applications today require more computing power than a traditional sequential 

computer can offer. 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 28 

 

 

• Parallel Processing provides a cost effective solution to this problem by increasing the 

number of CPUs in a computer and by adding an efficient communication system 

between them. 

• The workload can then be shared between different processors. This setup results in 

higher computing power and performance than a single processor a system offers. 

 
Parallel Processing influencing factors 

• The development of parallel processing is being influenced by many factors. The 

prominent among them include the following: 

– Computational requirements are ever increasing in the areas of both scientific and 

business computing. The technical computing problems, which require high-speed 

computational power, are related to 

• life sciences, aerospace, geographical information systems, mechanical 

design and analysis etc. 

– Sequential architectures are reaching mechanical physical limitations as they are 

constrained by the speed of light and thermodynamics laws. 

• The speed which sequential CPUs can operated is reaching saturation 

point ( no more vertical growth), and hence an alternative way to get high 

computation speed is to connect multiple CPUs ( opportunity for 

horizontal growth). 

– Hardware improvements in pipelining , super scalar, and the like are non scalable 

and require sophisticated compiler technology. 

• Developing such compiler technology is a difficult task. 

– Vector processing works well for certain kinds of problems. It is suitable mostly 

for scientific problems ( involving lots of matrix operations) and graphical 

processing. 

• It is not useful for other areas, such as databases. 

– The technology of parallel processing is mature and can be exploited 

commercially 

• here is already significant R&D work on development tools and 

environments. 

– Significant development in networking technology is paving the way for 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 29 

 

 

• heterogeneous computing. 

 
 

 ardware architectures for parallel Processing 

• The core elements of parallel processing are CPUs. Based on the number of instructions 

and data streams, that can be processed simultaneously, computing systems are classified 

into the following four categories: 

– Single-instruction, Single-data (SISD) systems 

– Single-instruction, Multiple-data (SIMD) systems 

– Multiple-instruction, Single-data (MISD) systems 

– Multiple-instruction, Multiple-data (MIMD) systems 

 
 

(i) Single – Instruction , Single Data (SISD) systems 

• SISD computing system is a uni-processor machine capable of executing a single 

instruction, which operates on a single data stream. 

• Machine instructions are processed sequentially, hence computers adopting this model 

are popularly called sequential computers. 

• Most conventional computers are built using SISD model. 

• All the instructions and data to be processed have to be stored in primary memory. 

• The speed of processing element in the SISD model is limited by the rate at which the 

computer can transfer information internally. 

• Dominant representative SISD systems are IBM PC, Macintosh, and workstations. 

 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 30 

 

 

(ii) Single – Instruction , Multiple Data (SIMD) systems 

• SIMD computing system is a multiprocessor machine capable of executing the same 

instruction on all the CPUs but operating on different data streams. 

• Machines based on this model are well suited for scientific computing since they involve 

lots of vector and matrix operations. 

• For instance statement Ci = Ai * Bi, can be passed to all the processing elements (PEs), 

organized data elements of vectors A and B can be divided into multiple sets ( N- sets for 

N PE systems), and each PE can process one data set. 

Dominant representative SIMD systems are Cray’s Vector processing machine and Thinking 

Machines Cm*, and GPGPU accelerators 

 

 

• 



CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 31 

 

 

(iii) Multiple – Instruction , Single Data (MISD) systems 

• MISD computing system is a multi processor machine capable of executing different 

instructions on different Pes all of them operating on the same data set. 

• Machines built using MISD model are not useful in most of the applications. 

• Few machines are built but none of them available commercially. 

• This type of systems are more of an intellectual exercise than a practical configuration. 
 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

annauniversityedu.blogspot.com 

 

 

(iv) Multiple – Instruction , Multiple Data (MIMD) systems 

• MIMD computing system is a multi processor machine capable of executing multiple 

instructions on multiple data sets. 

• Each PE in the MIMD model has separate instruction and data streams, hence machines 

built using this model are well suited to any kind of application. 

• Unlike SIMD, MISD machine, PEs in MIMD machines work asynchronously, 

MIMD machines are broadly categorized into shared-memory MIMD and distributed memory 

MIMD based on the way PEs are coupled to the main memory 

 

 

 

 

 
Department of CSE VII Semester 33 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

annauniversityedu.blogspot.com 

 

 

CSE VII Semester 

Shared Memory MIMD machines 

• All the PEs are connected to a single global memory and they all have access to it. 

• Systems based on this model are also called tightly coupled multi processor systems. 

• The communication between PEs in this model takes place through the shared memory. 

• Modification of the data stored in the global memory by one PE is visible to all other 

PEs. 

• Dominant representative shared memory MIMD systems are silicon graphics machines 

and Sun/IBM SMP ( Symmetric Multi-Processing). 

 

 
 

 
Distributed Memory MIMD machines 

• All PEs have a local memory. Systems based on this model are also called loosely 

coupled multi processor systems. 

• The communication between PEs in this model takes place through the interconnection 

network, the inter process communication channel, or IPC. 

• The network connecting PEs can be configured to tree, mesh, cube, and so on. 

• Each PE operates asynchronously, and if communication/synchronization among tasks is 

necessary, they can do so by exchanging messages between them. 

 

 

 

 

 

 

 

 

 

 

 
Department of 34 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 35 

annauniversityedu.blogspot.com 

 

 

Shared Vs Distributed MIMD model 

• The shared memory MIMD architecture is easier to program but is less tolerant to failures 

and harder to extend with respect to the distributed memory MIMD model. 

• Failures, in a shared memory MIMD affect the entire system, whereas this is not the case 

of the distributed model, in which each of the PEs can be easily isolated. 

• Moreover, shared memory MIMD architectures are less likely to scale because the 

addition of more PEs leads to memory contention. 

• This is a situation that does not happen in the case of distributed memory, in which each 

PE has its own memory. 

As a result, distributed memory MIMD architectures are most popular today 

 
 

 pproaches to Parallel Programming 

• A sequential program is one that runs on a single processor and has a single line of 

control. 

• To make many processors collectively work on a single program, the program must be 

divided into smaller independent chunks so that each processor can work on separate 

chunks of the problem. 

• The program decomposed in this way is a parallel program. 

• A wide variety of parallel programming approaches are available. 

• The most prominent among them are the following. 

• Data Parallelism 

• Process Parallelism 

• Farmer-and-worker model 

• The above said three models are suitable for task-level parallelism. In the case of data 

level parallelism, the divide-and-conquer technique is used to split data into multiple sets, 

and each data set is processed on different PEs using the same instruction. 

• This approach is highly suitable to processing on machines based on the SIMD model. 

• In the case of Process Parallelism, a given operation has multiple (but distinct) activities 

that can be processed on multiple processors. 

• In the case of Farmer-and-Worker model, a job distribution approach is used, one 

processor is configured as master and all other remaining PEs are designated as slaves, 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 36 

annauniversityedu.blogspot.com 

 

 

the master assigns the jobs to slave PEs and, on completion, they inform the master, 

which in turn collects results. 

• These approaches can be utilized in different levels of parallelism. 

 
 

d. Levels of Parallelism 

• Levels of Parallelism are decided on the lumps of code ( grain size) that can be a 

potential candidate of parallelism. 

• The table shows the levels of parallelism. 

• All these approaches have a common goal 

– To boost processor efficiency by hiding latency. 

– To conceal latency, there must be another thread ready to run whenever a lengthy 

operation occurs. 

• The idea is to execute concurrently two or more single-threaded applications. Such as 

compiling, text formatting, database searching, and device simulation. 

 

 

 
 

Grain Size Code Item Parallelized By 

Large Separate and heavy weight process Programmer 

Medium Function or procedure Programmer 

Fine Loop or instruction block Parallelizing compiler 

Very Fine Instruction Processor 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 37 

annauniversityedu.blogspot.com 

 

 

Levels of Parallelism 
 

 

 
 

e. Laws of Caution 

• Studying how much an application or a software system can gain from parallelism. 

• In particular what need to keep in mind is that parallelism is used to perform multiple 

activities together so that the system can increase its throughput or its speed. 

• But the relations that control the increment of speed are not linear. 

• For example: for a given n processors, the user expects speed to be increase by in times. 

This is an ideal situation, but it rarely happens because of the communication overhead. 

• Here two important guidelines to take into account. 

– Speed of computation is proportional to the square root of the system cost; they 

never increase linearly. Therefore, the faster a system becomes, the more 

expensive it is to increase its speed 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 38 

annauniversityedu.blogspot.com 

 

 

– Speed by a parallel computer increases as the logarithm of the number of 
 
 

processors (i.e. y=k*log(N)). 

Number processors versus speed Cost versus speed 
 
 

 Elements of Distributed Computing 

a.General concepts and definitions 

• Distributed computing studies the models, architectures, and algorithms used for building 

and managing distributed systems. 

• As general definition of the term distributed system, we use the one proposed by 

Tanenbaum 

– A distributed system is a collection of independent computers that appears to its 

users as a single coherent system. 

• This definition is general enough to include various types of distributed computing 

systems that are especially focused on unified usage and aggregation of distributed 

resources. 

• Communications is another fundamental aspect of distributed computing. Since 

distributed systems are composed of more than one computer that collaborate together, it 

is necessary to provide some sort of data and information exchange between them, which 

generally occurs through the network. 

– A distributed system is one in which components located at networked computers 

communicate and coordinate their action only by passing messages. 

• As specified in this definition, the components of a distributed system communicate with 

some sort of message passing. This is a term that encompasses several communication 

models. 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 39 

annauniversityedu.blogspot.com 

 

 

 omponents of distributed System 

• A distributed system is the result of the interaction of several components that traverse 

the entire computing stack from hardware to software. 

• It emerges from the collaboration of several elements that- by working together- give 

users the illusion of a single coherent system. 

• The figure provides an overview of the different layers that are involved in providing the 

services of a distributed system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10 A layered view of a distributed system. 

c.Architectural styles for distributed computing 

• At the very bottom layer, computer and network hardware constitute the physical 

infrastructure; these components are directly managed by the operating system, which 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 40 

annauniversityedu.blogspot.com 

 

 

provides the basic services for inter process communication (IPC), process scheduling 

and management, and resource management in terms of file system and local devices. 

• Taken together these two layers become the platform on top of which specialized 

software is deployed to turn a set of networked computers into a distributed system 

• Although a distributed system comprises the interaction of several layers, the middleware 

layer is the one that enables distributed computing, because it provides a coherent and 

uniform runtime environment for applications. 

• There are many different ways to organize the components that, taken together, constitute 

such an environment. 

• The interactions among these components and their responsibilities give structure to the 

middleware and characterize its type or, in other words, define its architecture. 

• Architectural styles aid in understanding the classifying the organization of the software 

systems in general and distributed computing in particular. 

• The use of well-known standards at the operating system level and even more at the 

hardware and network levels allows easy harnessing of heterogeneous components and 

their organization into a coherent and uniform system. 

• For example; network connectivity between different devices is controlled by standards, 

which allow them into interact seamlessly. 

• Design patterns help in creating a common knowledge within the community of software 

engineers and developers as to how to structure the relevant of components within an 

application and understand the internal organization of software applications. 

• Architectural styles do the same for the overall architecture of software systems. 

• The architectural styles are classified into two major classes 

• Software Architectural styles : Relates to the logical organization of the software. 

• System Architectural styles: styles that describe the physical organization of 

distributed software systems in terms of their major components. 

Software Architectural Styles 

• Software architectural styles are based on the logical arrangement of software 

components. 

• They are helpful because they provide an intuitive view of the whole system, despite its 

physical deployment. 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 41 

annauniversityedu.blogspot.com 

 

 

• They also identify the main abstractions that are used to shape the components of the 

system and the expected interaction patterns between them. 

Data Centered Architectures 

• These architectures identify the data as the fundamental element of the software 

system, and access to shared data is the core characteristics of the data-centered 

architectures. 

• Within the context of distributed and parallel computing systems, integrity of data is 

overall goal for such systems. 

• The repository architectural style is the most relevant reference model in this category. 

It is characterized by two main components – the central data structure, which represents 

the current state of the system, and a collection of independent component, which operate 

on the central data. 

• The ways in which the independent components interact with the central data structure 

can be very heterogeneous. 

• In particular repository based architectures differentiate and specialize further into 

subcategories according to the choice of control discipline to apply for the shared data 

structure. Of particular interest are databases and blackboard systems. 

Black board Architectural Style 

• The black board architectural style is characterized by three main components: 

– Knowledge sources: These are entities that update the knowledge base that is 

maintained in the black board. 

– Blackboard: This represents the data structure that is shared among the knowledge 

sources and stores the knowledge base of the application. 

– Control: The control is the collection of triggers and procedures that govern the 

interaction with the blackboard and update the status of the knowledge base. 

Data Flow Architectures 

• Access to data is the core feature; data-flow styles explicitly incorporate the pattern of 

data-flow, since their design is determined by an orderly motion of data from component 

to component, which is the form of communication between them. 

• Styles within this category differ in one of the following ways: how the control is exerted, 

the degree of concurrency among components, and the topology that describes the flow 

of data. 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 42 

annauniversityedu.blogspot.com 

 

 

• Batch Sequential: The batch sequential style is characterized by an ordered sequence of 

separate programs executing one after the other. These programs are chained together by 

providing as input for the next program the output generated by the last program after its 

completion, which is most likely in the form of a file. This design was very popular in the 

mainframe era of computing and still finds applications today. For example, many 

distributed applications for scientific computing are defined by jobs expressed as 

sequence of programs that, for example, pre-filter, analyze, and post process data. It is 

very common to compose these phases using the batch sequential style. 

• Pipe-and-Filter Style: It is a variation of the previous style for expressing the activity of 

a software system as sequence of data transformations. Each component of the processing 

chain is called a filter, and the connection between one filter and the next is represented 

by a data stream. 

Virtual Machine architectures 

• The virtual machine class of architectural styles is characterized by the presence of an 

abstract execution environment (generally referred as a virtual machine) that simulates 

features that are not available in the hardware or software. 

• Applications and systems are implemented on top of this layer and become portable over 

different hardware and software environments. 

• The general interaction flow for systems implementing this pattern is – the program (or 

the application) defines its operations and state in an abstract format, which is interpreted 

by the virtual machine engine. The interpretation of a program constitutes its execution. It 

is quite common in this scenario that the engine maintains an internal representation of 

the program state. 

• Popular examples within this category are rule based systems, interpreters, and command 

language processors. 

• Rule-Based Style: 

• This architecture is characterized by representing the abstract execution 

environment as an inference engine. Programs are expressed in the form of rules 

or predicates that hold true. The input data for applications is generally 

represented by a set of assertions or facts that the inference engine uses to activate 

rules or to apply predicates, thus transforming data. The examples of rule-based 

systems can be found in the networking domain: Network Intrusion Detection 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 43 

annauniversityedu.blogspot.com 

 

 

Systems (NIDS) often rely on a set of rules to identify abnormal behaviors 

connected to possible intrusion in computing systems. 

• Interpreter Style: The presence of engine to interpret the style. 

Call and return architectures 

• This identifies all systems that are organized into components mostly connected together 

by method calls. 

• The activity of systems modeled in this way is characterized by a chain of method calls 

whose overall execution and composition identify the execution one or more operations. 

• There are three categories in this 

– Top down Style : developed with imperative programming 

– Object Oriented Style: Object programming models 

– Layered Style: provides the implementation in different levels of abstraction of 

the system. 

System Architectural Styles 

• System architectural styles cover the physical organization of components and processes 

over a distributed infrastructure. 

• Two fundamental reference style 

– Client / Server 

- Peer- to -Peer 

- The information and the services of interest can be centralized and accessed through a 

single access point: the server. 

- Multiple clients are interested in such services and the server must be appropriately 

designed to efficiently serve requests coming from different clients. 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 44 

annauniversityedu.blogspot.com 

 

 

Client / Server architectural Styles 
 

 

- 

- 

- 

- 

- 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Symmetric architectures in which all the components, called peers, play the same role 

and incorporate both client and server capabilities of the client/server model. 

- More precisely, each peer acts as a server when it processes requests from other peers 

and as a client when it issues requests to other peers. 

Peer-to-Peer architectural Style 
 

 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 45 

annauniversityedu.blogspot.com 

 

 

d.Models for Inter process Communication 

• Distributed systems are composed of a collection of concurrent processes interacting with 

each other by means of a network connection. 

• IPC is a fundamental aspect of distributed systems design and implementation. 

• IPC is used to either exchange data and information or coordinate the activity of 

processes. 

• IPC is what ties together the different components of a distributed system, thus making 

them act as a single system. 

• There are several different models in which processes can interact with each other – these 

maps to different abstractions for IPC. 

• Among the most relevant that we can mention are shared memory, remote procedure call 

(RPC), and message passing. 

• At lower level, IPC is realized through the fundamental tools of network programming. 

• Sockets are the most popular IPC primitive for implementing communication channels 

between distributed processes. 

 
Message-based communication 

• The abstraction of message has played an important role in the evolution of the model 

and technologies enabling distributed computing. 

• The definition of distributed computing – is the one in which components located at 

networked computers communicate and coordinate their actions only by passing 

messages. The term messages, in this case, identify any discrete amount of information 

that is passed from one entity to another. It encompasses any form of data representation 

that is limited in size and time, whereas this is an invocation to a remote procedure or a 

serialized object instance or a generic message. 

• The term message-based communication model can be used to refer to any model for 

IPC. 

• Several distributed programming paradigms eventually use message-based 

communication despite the abstractions that are presented to developers for programming 

the interactions of distributed components. 

• Here are some of the most popular and important: 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 46 

annauniversityedu.blogspot.com 

 

 

Message Passing: This paradigm introduces the concept of a message as the main 

abstraction of the model. The entities exchanging information explicitly encode in the form 

of a message the data to be exchanged. The structure and the content of a message vary 

according to the model. Examples of this model are the Message-Passing-Interface (MPI) 

and openMP. 

• Remote Procedure Call (RPC): This paradigm extends the concept of procedure call 

beyond the boundaries of a single process, thus triggering the execution of code in remote 

processes. 

• Distributed Objects: This is an implementation of the RPC model for the object- 

oriented paradigm and contextualizes this feature for the remote invocation of methods 

exposed by objects. Examples of distributed object infrastructures are Common Object 

Request Broker Architecture (CORBA), Component Object Model (COM, DCOM, and 

COM+), Java Remote Method Invocation (RMI), and .NET Remoting. 

• Distributed agents and active Objects: Programming paradigms based on agents and 

active objects involve by definition the presence of instances, whether they are agents of 

objects, despite the existence of requests. 

• Web Service: An implementation of the RPC concept over HTTP; thus allowing the 

interaction of components that are developed with different technologies. A Web service 

is exposed as a remote object hosted on a Web Server, and method invocation are 

transformed in HTTP requests, using specific protocols such as Simple Object Access 

Protocol (SOAP) or Representational State Transfer (REST). 

 
e. Technologies for distributed computing 

• Remote Procedure Call (RPC) 

– RPC is the fundamental abstraction enabling the execution procedures on clients’ 

request. 

– RPC allows extending the concept of a procedure call beyond the boundaries of a 

process and a single memory address space. 

– The called procedure and calling procedure may be on the same system or they 

may be on different systems.. 

• Distributed Object Frameworks 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 47 

annauniversityedu.blogspot.com 

 

 

Elasticity = Scalability + Automation + Optimization 

– Extend object-oriented programming systems by allowing objects to be 

distributed across a heterogeneous network and provide facilities so that they can 

be coherently act as though they were in the same address space. 

Web Services 

• Web Services are the prominent technology for implementing SOA systems and 

applications. 

• They leverage Internet technologies and standards for building distributed systems. 

• Several aspects make Web Services the technology of choice for SOA. 

• First, they allow for interoperability across different platforms and programming 

languages. 

• Second, they are based on well-known and vendor-independent standards such as HTTP, 

SOAP, and WSDL. 

• Third, they provide an intuitive and simple way to connect heterogeneous software 

systems, enabling quick composition of services in distributed environment. 

 
 ELASTICITY IN CLOUD COMPUTING 

 Elasticity is defined as the ability of a system to add and remove resources (such as CPU 

cores, memory, VM and container instances) to adapt to the load variation in real time. 

 Elasticity is a dynamic property for cloud computing. 

 Elasticity is the degree to which a system is able to adapt to workload changes by 

provisioning and deprovisioning resources in an autonomic manner, such that at each 

point in time the available resources match the current demand as closely as possible. 

 

 

 Elasticity is built on top of scalability. 

 It can be considered as an automation of the concept of scalability and aims to optimize at 

best and as quickly as possible the resources at a given time. 

 Another term associated with elasticity is the efficiency, which characterizes how cloud 

resource can be efficiently utilized as it scales up or down. 

 It is the amount of resources consumed for processing a given amount of work, the lower 

this amount is, the higher the efficiency of a system. 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 48 

annauniversityedu.blogspot.com 

 

 

 Elasticity also introduces a new important factor, which is the speed. 

  Rapid provisioning and deprovisioning are key to maintaining an acceptable 

performance in the context of cloud computing 

 Quality of service is subjected to a service level agreement 

 
 

Classification 

Elasticity solutions can be arranged in different classes based on 

 Scope 

 Policy 

 Purpose 

 Method 

a.Scope 

 Elasticity can be implemented on any of the cloud layers. 

 Most commonly, elasticity is achieved on the IaaS level, where the resources to be 

provisioned are virtual machine instances. 

 Other infrastructure services can also be scaled 

 On the PaaS level, elasticity consists in scaling containers or databases for instance. 

 Finally, both PaaS and IaaS elasticity can be used to implement elastic applications, be it 

for private use or in order to be provided as a SaaS 

 The elasticity actions can be applied either at the infrastructure or application/platform 

level. 

 The elasticity actions perform the decisions made by the elasticity strategy or 

management system to scale the resources. 

 Google App Engine and Azure elastic pool are examples of elastic Platform as a Service 

(PaaS). 

 Elasticity actions can be performed at the infrastructure level where the elasticity 

controller monitors the system and takes decisions. 

 The cloud infrastructures are based on the virtualization technology, which can be VMs 

or containers. 

 In the embedded elasticity, elastic applications are able to adjust their own resources 

according to runtime requirements or due to changes in the execution flow. 

 There must be a knowledge of the source code of the applications. 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 49 

annauniversityedu.blogspot.com 

 

 

 Application Map: The elasticity controller must have a complete map of the application 

components and instances. 

 Code embedded: The elasticity controller is embedded in the application source code. 

 The elasticity actions are performed by the application itself. 

 While moving the elasticity controller to the application source code eliminates the use of 

monitoring systems 

 There must be a specialized controller for each application. 

 
 

b.Policy 

 Elastic solutions can be either manual or automatic. 

 A manual elastic solution would provide their users with tools to monitor their systems 

and add or remove resources but leaves the scaling decision to them. 

Automatic mode: All the actions are done automatically, and this could be classified into 

reactive and proactive modes. 

Elastic solutions can be either reactive or predictive 

Reactive mode: The elasticity actions are triggered based on certain thresholds or rules, the 

system reacts to the load (workload or resource utilization) and triggers actions to adapt changes 

accordingly. 

 An elastic solution is reactive when it scales a posteriori, based on a monitored change in 

the system. 

 These are generally implemented by a set of Event-Condition-Action rules. 

Proactive mode: This approach implements forecasting techniques, anticipates the future 

needs and triggers actions based on this anticipation. 

 A predictive or proactive elasticity solution uses its knowledge of either recent history or 

load patterns inferred from longer periods of time in order to predict the upcoming load 

of the system and scale according to it. 

c.Purpose 

 An elastic solution can have many purposes. 

 The first one to come to mind is naturally performance, in which case the focus should be 

put on their speed. 

 Another purpose for elasticity can also be energy efficiency, where using the minimum 

amount of resources is the dominating factor. 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 50 

annauniversityedu.blogspot.com 

 

 

 Other solutions intend to reduce the cost by multiplexing either resource providers or 

elasticity methods 

 Elasticity has different purposes such as improving performance, increasing resource 

capacity, saving energy, reducing cost and ensuring availability. 

 Once we look to the elasticity objectives, there are different perspectives. 

 Cloud IaaS providers try to maximize the profit by minimizing the resources while 

offering a good Quality of Service (QoS), 

 PaaS providers seek to minimize the cost they pay to the 

Cloud. 

 The customers (end-users) search to increase their Quality of Experience (QoE) and to 

minimize their payments. 

 QoE is the degree of delight or annoyance of the user of an application or service 

 
 

d.Method 

 Vertical elasticity, changes the amount of resources linked to existing instances on-the- 

fly. 

 This can be done in two manners. 

 The first method consists in explicitly redimensioning a virtual machine instance, i.e., 

changing the quota of physical resources allocated to it. 

 This is however poorly supported by common operating systems as they fail to take into 

account changes in CPU or memory without rebooting, thus resulting in service 

interruption. 

 The second vertical scaling method involves VM migration: moving a virtual machine 

instance to another physical machine with a different overall load changes its available 

resources 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 51 

annauniversityedu.blogspot.com 

 

 

 Horizontal scaling is the process of adding/removing instances, which may be located at 

different locations. 

 Load balancers are used to distribute the load among the different instances. 

 Vertical scaling is the process of modifying resources (CPU, memory, storage or both) 

size for an instance at run time. 

 It gives more flexibility for the cloud systems to cope with the varying workloads 

 
 

Migration 

 Migration can be also considered as a needed action to further allow the vertical scaling 

when there is no enough resources on the host machine. 

 It is also used for other purposes such as migrating a VM to a less loaded physical 

machine just to guarantee its performance. 

 Several types of migration are deployed such as live migration and no-live migration. 

 Live migration has two main approaches 

 post-copy 

 pre-copy 

 Post-copy migration suspends the migrating VM, copies minimal processor state to the 

target host, resumes the VM and then begins fetching memory pages from the source. 

 In pre-copy approach, the memory pages are copied while the VM is running on the 

source. 

 If some pages are changed (called dirty pages) during the memory copy process, they will 

be recopied until the number of recopied pages is greater than dirty pages, or the source 

VM will be stopped. 

 The remaining dirty pages will be copied to the destination VM. 

 
 

Architecture 

 The architecture of the elasticity management solutions can be either centralized or 

decentralized. 

 Centralized architecture has only one elasticity controller, i.e., the auto scaling system 

that provisions and deprovisions resources. 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 52 

annauniversityedu.blogspot.com 

 

 

 In decentralized solutions, the architecture is composed of many elasticity controllers or 

application managers, which are responsible for provisioning resources for different 

cloud-hosted platforms 

 
Provider 

 Elastic solutions can be applied to a single or multiple cloud providers. 

 A single cloud provider can be either public or private with one or multiple regions or 

datacenters. 

 Multiple clouds in this context means more than one cloud provider. 

 It includes hybrid clouds that can be private or public, in addition to the federated clouds 

and cloud bursting. 

 Most of the elasticity solutions support only a single cloud provider 

 

 

 On-demand Provisioning. 

 Resource Provisioning means the selection, deployment, and run-time management of 

software (e.g., database server management systems, load balancers) and hardware 

resources (e.g., CPU, storage, and network) for ensuring guaranteed performance for 

applications. 

 Resource Provisioning is an important and challenging problem in the large-scale 

distributed systems such as Cloud computing environments. 

 There are many resource provisioning techniques, both static and dynamic each one 

having its own advantages and also some challenges. 

 These resource provisioning techniques used must meet Quality of Service (QoS) 

parameters like availability, throughput, response time, security, reliability etc., and 

thereby avoiding Service Level Agreement (SLA) violation. 

 Over provisioning and under provisioning of resources must be avoided. 

 Another important constraint is power consumption. 

 The ultimate goal of the cloud user is to minimize cost by renting the resources and from 

the cloud service provider’s perspective to maximize profit by efficiently allocating the 

resources. 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 53 

annauniversityedu.blogspot.com 

 

 

 In order to achieve the goal, the cloud user has to request cloud service provider to make 

a provision for the resources either statically or dynamically. 

 So that the cloud service provider will know how many instances of the resources and 

what resources are required for a particular application. 

 By provisioning the resources, the QoS parameters like availability, throughput, security, 

response time, reliability, performance etc must be achieved without violating SLA 

There are two types 

 Static Provisioning 

 Dynamic Provisioning 

Static Provisioning 

 For applications that have predictable and generally unchanging demands/workloads, it is 

possible to use ―static provisioning" effectively. 

 With advance provisioning, the customer contracts with the provider for services. 

 The provider prepares the appropriate resources in advance of start of service. 

 The customer is charged a flat fee or is billed on a monthly basis. 

Dynamic Provisioning 

 In cases where demand by applications may change or vary, ―dynamic provisioning" 

techniques have been suggested whereby VMs may be migrated on-the-fly to new 

compute nodes within the cloud. 

 The provider allocates more resources as they are needed and removes them when they 

are not. 

 The customer is billed on a pay-per-use basis. 

 When dynamic provisioning is used to create a hybrid cloud, it is sometimes referred to   

as cloud bursting. 

Parameters for Resource Provisioning 

 Response time 

 Minimize Cost 

 Revenue Maximization 

 Fault tolerant 

 Reduced SLA Violation 

 Reduced Power Consumption 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 54 

annauniversityedu.blogspot.com 

 

 

Response time: The resource provisioning algorithm designed must take minimal time to 

respond when executing the task. 

Minimize Cost: From the Cloud user point of view cost should be minimized. 

Revenue Maximization: This is to be achieved from the Cloud Service Provider’s view. 

Fault tolerant: The algorithm should continue to provide service in spite of failure of nodes. 

Reduced SLA Violation: The algorithm designed must be able to reduce SLA violation. 

Reduced Power Consumption: VM placement & migration techniques must lower power 

consumption 

Dynamic Provisioning Types 

1. Local On-demand Resource Provisioning 

2. Remote On-demand Resource Provisioning 

Local On-demand Resource Provisioning 

1. The Engine for the Virtual Infrastructure 

 The OpenNebula Virtual Infrastructure Engine 

• OpenNEbula creates a distributed virtualization layer 

• Extend the benefits of VM Monitors from one to multiple resources 

• Decouple the VM (service) from the physical location 

• Transform   a   distributed   physical   infrastructure   into   a  flexible  and elastic virtual 

infrastructure, which adapts to the changing demands of the VM (service) workloads 

 

 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 55 

annauniversityedu.blogspot.com 

 

 

Separation of Resource Provisioning from Job Management 

• New virtualization layer between the service and the infrastructure layers 

• Seamless integration with the existing middleware stacks. 

• Completely transparent to the computing service and so end users 
 

 

 

 

 

Cluster Partitioning 

• Dynamic partition of the infrastructure 

• Isolate workloads (several computing clusters) 

• Dedicated HA partitions 

 
 

Benefits for Existing Grid Infrastructures 

• The  virtualization  of  the  local  infrastructure  supports  a virtualized alternative to 

contribute resources to a Grid infrastructure 

• Simpler deployment and operation of new middleware distributions 

• Lower operational costs 

• Easy provision of resources to more than one infrastructure 

• Easy support for VO-specific worker nodes 

Performance partitioning between local and grid clusters 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 56 

annauniversityedu.blogspot.com 

 

 

 

 
 
 

• 

Other Tools for VM Management 

• VMware DRS, Platform Orchestrator, IBM Director, Novell ZENworks, Enomalism, 

Xenoserver 

• Advantages: 

• Open-source (Apache license v2.0) 

• Open and flexible architecture to integrate new virtualization technologies 

• Support for the definition of any scheduling policy (consolidation, workload 

balance, affinity, SLA) 

• LRM-like CLI and API for the integration of third-party tools 

 
 

Remote on-Demand Resource Provisioning 

Access to Cloud Systems 

• Provision of virtualized resources as a service 

VM Management Interfaces 

The processes involved are 

• Submission 

• Control 

• Monitoring 



Panimalar Instiute of Technology CS8791 CLOUD COMPUTING 

Department of CSE VII Semester 57 

annauniversityedu.blogspot.com 

 

 

Infrastructure Cloud Computing Solutions 

• Commercial Cloud: Amazon EC2 

• Scientific Cloud: Nimbus (University of Chicago) 

• Open-source Technologies 

• Globus VWS (Globus interfaces) 

• Eucalyptus (Interfaces compatible with Amazon EC2) 

• OpenNEbula (Engine for the Virtual Infrastructure) 

On-demand Access to Cloud Resources 

• Supplement local resources with cloud resources to satisfy peak or fluctuating demands 
 

 

 
 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

1 

 

 

UNIT III CLOUD ARCHITECTURE, SERVICES AND STORAGE 

Layered Cloud Architecture Design – NIST Cloud Computing Reference Architecture – 

Public, Private and Hybrid Clouds - laaS – PaaS – SaaS – Architectural Design Challenges – 

Cloud Storage – Storage-as-a-Service – Advantages of Cloud Storage – Cloud Storage 

Providers – S3. 

 LAYERED ARCHITECTURE: 

Generic Cloud Architecture Design: 

An Internet cloud is envisioned as a public cluster of servers provisioned on demand to 

perform collective web services or distributed applications using data-center resources. 

 Cloud Platform Design Goals 

 Enabling Technologies for Clouds 

 A Generic Cloud Architecture 

Cloud Platform Design Goals 

 Scalability 

 Virtualization 

 Efficiency 

 Reliability 

 Security 

Cloud management receives the user request and finds the correct resources. Cloud 

calls the provisioning services which invoke the resources in the cloud. Cloud 

management software needs to support both physical and virtual machines 

Enabling Technologies for Clouds 

 Cloud users are able to demand more capacity at peak demand, reduce costs, 

experiment with new services, and remove unneeded capacity. 

 Service providers can increase system utilization via multiplexing, virtualization and 

dynamic resource provisioning. 

 Clouds are enabled by the progress in hardware, software and networking 

technologies 

 Cloud users are able to demand more capacity at peak demand, reduce costs, 

experiment with new services, and remove unneeded capacity. 

 Service providers can increase system utilization via multiplexing, virtualization and 

dynamic resource provisioning. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

2 

 

 

 Clouds are enabled by the progress in hardware, software and networking 

technologies 

A Generic Cloud Architecture 

 The Internet cloud is envisioned as a massive cluster of servers. 

 Servers are provisioned on demand to perform collective web services using data- 

center resources. 

 The cloud platform is formed dynamically by provisioning or deprovisioning servers, 

software, and database resources. 

 Servers in the cloud can be physical machines or VMs. 

 User interfaces are applied to request services. 

 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

3 

 

 

 The cloud computing resources are built into the data centers. 

 Data centers are typically owned and operated by a third-party provider. 

Consumers do not need to know the underlying technologies 

 In a cloud, software becomes a service. 

 Cloud demands a high degree of trust of massive amounts of data retrieved from large 

data centers. 

 The software infrastructure of a cloud platform must handle all resource management 

and maintenance automatically. 

 Software must detect the status of each node server joining and leaving. 

 Cloud computing providers such as Google and Microsoft, have built a large number 

of data centers. 

 Each data center may have thousands of servers. 

 The location of the data center is chosen to reduce power and cooling costs. 

Layered Cloud Architectural Development 

 

 The architecture of a cloud is developed at three layers 

 Infrastructure 

 Platform 

 Application 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

4 

 

 

 Implemented with virtualization and standardization of hardware and software 

resources provisioned in the cloud. 

The services to public, private and hybrid clouds are conveyed to users through networking 

support 

Infrastructure Layer 

 Foundation for building the platform layer. 

 Built with virtualized compute, storage, and network resources. 

 Provide the flexibility demanded by users. 

 Virtualization realizes automated provisioning of resources and optimizes the 

infrastructure management process. 

Platform Layer 

 Foundation for implementing the application layer for SaaS applications. 

 Used for general-purpose and repeated usage of the collection of software resources. 

 Provides users with an environment to develop their applications, to test operation 

flows, and to monitor execution results and performance. 

The platform should be able to assure users that they have scalability, dependability, and 

security protection 

Application Layer 

 Collection of all needed software modules for SaaS applications. 

 Service applications in this layer include daily office management work, such as 

information retrieval, document processing, and authentication services. 

 The application layer is also heavily used by enterprises in business marketing and 

sales, consumer relationship management (CRM) and financial transactions. 

 Not all cloud services are restricted to a single layer. 

 Many applications may apply resources at mixed layers. 

 Three layers are built from the bottom up with a dependence relationship. 

Market-Oriented Cloud Architecture 

 High-level architecture for supporting market-oriented resource allocation in a cloud 

computing environment. 

 Users or brokers acting on user’s behalf submit service requests to the data center. 

 When a service request is first submitted, the service request examiner interprets the 

submitted request for QoS requirements. 

Accept or Reject the request. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

5 

 

 

 

 
 

 VM Monitor: Latest status information regarding resource availability. 

 Service Request Monitor: Latest status information workload processing 

 Pricing mechanism:Decides how service requests are charged. 

 Accounting mechanism:Maintains the actual usage of resources by requests to 

compute the final cost. 

 VM Monitor mechanism keeps track of the availability of VMs and their resource 

entitlements. 

 Dispatcher starts the execution of accepted service requests on allocated VMs. 

Service Request Monitor mechanism keeps track of the execution progress of service 

requests. 

Multiple VMs can be started and stopped on demand 

Quality of Service Factors 

QoS parameters 

 Time 

 Cost 

 Reliability 

 Trust/security 

QoS requirements cannot be static and may change over time. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

6 

 

 

 CLOUD REFERENCE ARCHITECTURE 

Definitions 

 A model of computation and data storage based on ―pay as you go‖ access to 

―unlimited‖ remote data center capabilities. 

 A cloud infrastructure provides a framework to manage scalable, reliable, on-demand 

access to applications. 

 Cloud services provide the ―invisible‖ backend to many of our mobile applications. 

High level of elasticity in consumption. 

NIST Cloud Definition: 

The National Institute of Standards and Technology (NIST) defines cloud computing as a 

 
Architecture 

 Architecture consists of 3 tiers 

◦ Cloud Deployment Model 

◦ Cloud Service Model 

◦ Essential Characteristics of Cloud Computing . 

 
"pay-per-use model for enabling available, convenient and on-demand network access to a 

shared pool of configurable computing resources (e.g., networks, servers, storage, 

applications and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction." 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

7 

 

 

Essential Characteristics 1 

 On-demand self-service. 

◦ A consumer can unilaterally provision computing capabilities such as server 

time and network storage as needed automatically, without requiring human 

interaction with a service provider. 

Essential Characteristics 2 

 Broad network access. 

◦ Capabilities are available over the network and accessed through standard 

mechanisms that promote use by heterogeneous thin or thick client platforms 

(e.g., mobile phones, laptops, and PDAs) as well as other traditional or 

cloudbased software services. 

Essential Characteristics 3 

 Resource pooling. 

◦ The provider’s computing resources are pooled to serve multiple consumers 

using a multi-tenant model, with different physical and virtual resources 

dynamically assigned and reassigned according to consumer demand. 

Essential Characteristics 4 

 Rapid elasticity. 

◦ Capabilities can be rapidly and elastically provisioned - in some cases 

automatically - to quickly scale out; and rapidly released to quickly scale in. 

◦ To the consumer, the capabilities available for provisioning often appear to be 

unlimited and can be purchased in any quantity at any time. 

Essential Characteristics 5 

 Measured service. 

◦ Cloud systems automatically control and optimize resource usage by 

leveraging a metering capability at some level of abstraction appropriate to the 

type of service. 

Resource usage can be monitored, controlled, and reported - providing transparency for both 

the provider and consumer of the service. 

 
 NIST (National Institute of Standards and Technology Background) 

The goal is to accelerate the federal government’s adoption of secure and effective cloud 

computing to reduce costs and improve services. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

8 

 

 

Actors in Cloud Computing 

Cloud Computing Reference Architecture: 
 

 

Interactions between the Actors in Cloud Computing 

 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

9 

 

 

Example Usage Scenario 1: 

 A cloud consumer may request service from a cloud broker instead of contacting a 

cloud provider directly. 

 The cloud broker may create a new service by combining multiple services or by 

enhancing an existing service. 

Usage Scenario- Cloud Brokers 

 In this example, the actual cloud providers are invisible to the cloud consumer. 

 The cloud consumer interacts directly with the cloud broker. 
 

Example Usage Scenario 2 

 Cloud carriers provide the connectivity and transport of cloud services from cloud 

providers to cloud consumers. 

 A cloud provider participates in and arranges for two unique service level agreements 

(SLAs), one with a cloud carrier (e.g. SLA2) and one with a cloud consumer (e.g. 

SLA1). 

Usage Scenario for Cloud Carriers 

 A cloud provider arranges service level agreements (SLAs) with a cloud carrier. 

 Request dedicated and encrypted connections to ensure the cloud services. 
 

Example Usage Scenario 3 

• For a cloud service, a cloud auditor conducts independent assessments of the 

operation and security of the cloud service implementation. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

10 

 

 

• The audit may involve interactions with both the Cloud Consumer and the Cloud 

Provider. 

Cloud Consumer 

 The cloud consumer is the principal stakeholder for the cloud computing service. 

 A cloud consumer represents a person or organization that maintains a business 

relationship with, and uses the service from a cloud provider. 

The cloud consumer may be billed for the service provisioned, and needs to arrange 

payments accordingly. 

Example Services Available to a Cloud Consumer 
 

 
 The consumers of SaaS can be organizations that provide their members with access 

to software applications, end users or software application administrators. 

 SaaS consumers can be billed based on the number of end users, the time of use, the 

network bandwidth consumed, the amount of data stored or duration of stored data. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

11 

 

 

 Cloud consumers of PaaScan employ the tools and execution resources provided by 

cloud providers to develop, test, deploy and manage the applications. 

 PaaS consumers can be application developers or application testers who run and test 

applications in cloud-based environments,. 

 PaaS consumers can be billed according to, processing, database storage and network 

resources consumed. 

 Consumers of IaaS have access to virtual computers, network-accessible storage & 

network infrastructure components. 

  The consumers of IaaS can be system developers, system administrators and IT 

managers. 

 IaaS consumers are billed according to the amount or duration of the resources 

consumed, such as CPU hours used by virtual computers, volume and duration of data 

stored. 

Cloud Provider 

 A cloud provider is a person, an organization; 

 It is the entity responsible for making a service available to interested parties. 

 A Cloud Provider acquires and manages the computing infrastructure required for 

providing the services. 

 Runs the cloud software that provides the services. 

Makes arrangement to deliver the cloud services to the Cloud Consumers through network 

access. 

 
Cloud Provider - Major Activities 

 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

12 

 

 

Cloud Auditor 

 A cloud auditor is a party that can perform an independent examination of cloud 

service controls. 

 Audits are performed to verify conformance to standards through review of objective 

evidence. 

 A cloud auditor can evaluate the services provided by a cloud provider in terms of 

security controls, privacy impact, performance, etc. 

Cloud Broker 

 Integration of cloud services can be too complex for cloud consumers to manage. 

  A cloud consumer may request cloud services from a cloud broker, instead of 

contacting a cloud provider directly. 

  A cloud broker is an entity that manages the use, performance and delivery of cloud 

services. Negotiates relationships between cloud providers and cloud consumers. 

Services of cloud broker 

Service Intermediation: 

 A cloud broker enhances a given service by improving some specific capability and 

providing value-added services to cloud consumers. 

Service Aggregation: 

  A cloud broker combines and integrates multiple services into one or more new 

services. 

 The broker provides data integration and ensures the secure data movement between 

the cloud consumer and multiple cloud providers. 

Services of cloud broker 

Service Arbitrage: 

 Service arbitrage is similar to service aggregation except that the services being 

aggregated are not fixed. 

 Service arbitrage means a broker has the flexibility to choose services from multiple 

agencies. 

Eg: The cloud broker can use a credit-scoring service to measure and select an agency with 

the best score. 

Cloud Carrier 

 A cloud carrier acts as an intermediary that provides connectivity and transport of 

cloud services between cloud consumers and cloud providers. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

13 

 

 

 Cloud carriers provide access to consumers through network. 

 The distribution of cloud services is normally provided by network and 

telecommunication carriers or a transport agent 

 A transport agent refers to a business organization that provides physical transport of 

storage media such as high-capacity hard drives and other access devices. 

Scope of Control between Provider and Consumer 

The Cloud Provider and Cloud Consumer share the control of resources in a cloud system 
 

 
 

 The application layer includes software applications targeted at end users or 

programs. 

The applications are used by SaaS consumers, or installed/managed/maintained by PaaS 

consumers, IaaS consumers and SaaS providers. 

 The middleware layer provides software building blocks (e.g., libraries, database, and 

Java virtual machine) for developing application software in the cloud. 

 Used by PaaS consumers, installed/ managed/ maintained by IaaS consumers or PaaS 

providers, and hidden from SaaS consumers. 

 The OS layer includes operating system and drivers, and is hidden from SaaS 

consumers and PaaS consumers. 

  An IaaS cloud allows one or multiple guest OS to run virtualized on a single physical 

host. 

The IaaS consumers should assume full responsibility for the guest OS, while the IaaS 

provider controls the host OS, 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

14 

 

 

 Cloud Deployment Model 

 Public Cloud 

 Private Cloud 

 Hybrid Cloud 

 Community Cloud 

 Public cloud 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A public cloud is one in which the cloud infrastructure and computing resources are 

made available to the general public over a public network. 

 A public cloud is meant to serve a multitude(huge number) of users, not a single 

customer. 

 A fundamental characteristic of public clouds is multitenancy. 

 Multitenancy allows multiple users to work in a software environment at the same 

time, each with their own resources. 

 Built over the Internet (i.e., service provider offers resources, applications storage to 

the customers over the internet) and can be accessed by any user. 

 Owned by service providers and are accessible through a subscription. 

 Best Option for small enterprises, which are able to start their businesses without 

large up-front(initial) investment. 

 By renting the services, customers were able to dynamically upsize or downsize their 

IT according to the demands of their business. 

 Services are offered on a price-per-use basis. 

 Promotes standardization, preserve capital investment 

 Public clouds have geographically dispersed datacenters to share the load of users and 

better serve them according to their locations 

 Provider is in control of the infrastructure 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

15 

 

 

Examples: 

o Amazon EC2 is a public cloud that provides Infrastructure as a Service 

o Google AppEngine is a public cloud that provides Platform as a Service 

o SalesForce.com is a public cloud that provides software as a service. 

Advantage 

 Offers unlimited scalability – on demand resources are available to meet your 

business needs. 

 Lower costs—no need to purchase hardware or software and you pay only for the 

service you use. 

 No maintenance - Service provider provides the maintenance. 

 Offers reliability: Vast number of resources are available so failure of a system will 

not interrupt service. 

 Services like SaaS, PaaS, IaaS are easily available on Public Cloud platform as it can 

be accessed from anywhere through any Internet enabled devices. 

 Location independent – the services can be accessed from any location 

Disadvantage 

 No control over privacy or security 

 Cannot be used for use of sensitive applications(Government and Military agencies 

will not consider Public cloud) 

 Lacks complete flexibility(since dependent on provider) 

 No stringent (strict) protocols regarding data management 

 
 

 Private Cloud 

 Cloud services are used by a single organization, which are not exposed to the public 

 Services are always maintained on a private network and the hardware and software 

are dedicated only to single organization 

 Private cloud is physically located at 

 Organization’s premises [On-site private clouds] (or) 

 Outsourced(Given) to a third party[Outsource private Clouds] 

 It may be managed either by 

 Cloud Consumer organization (or) 

 By a third party 

 Private clouds are used by 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

16 

 

 

 government agencies 

 financial institutions 

 Mid size to large-size organisations. 

 On-site private clouds 
 

Fig: On-site private clouds 

 
 

Out-sourced Private Cloud 

 Supposed to deliver more efficient and convenient cloud 
 
 

 
 

 Offers higher efficiency, resiliency(to recover quickly), security, and privacy 

 Customer information protection: In-house security is easier to maintain and rely 

on. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

17 

 

 

 Follows its own(private organization) standard procedures and 

operations(where as in public cloud standard procedures and operations of 

service providers are followed ) 

Advantage 

 Offers greater Security and Privacy 

 Organization has control over resources 

 Highly reliable 

 Saves money by virtualizing the resources 

Disadvantage 

 Expensive when compared to public cloud 

 Requires IT Expertise to maintain resources. 

 
 

 Hybrid Cloud 

 Built with both public and private clouds 

 It is a heterogeneous cloud resulting from a private and public clouds. 

 Private cloud are used for 

 sensitive applications are kept inside the organization’s network 

 business-critical operations like financial reporting 

 Public Cloud are used when 

 Other services are kept outside the organization’s network 

 high-volume of data 

 Lower-security needs such as web-based email(gmail,yahoomail etc) 

 The resources or services are temporarily leased for the time required and then 

released. This practice is also known as cloud bursting. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

18 

 

 

 

 
 

Fig:Hybrid Cloud 

 
 

Advantage 

 It is scalable 

 Offers better security 

 Flexible-Additional resources are availed in public cloud when needed 

 Cost-effectiveness—we have to pay for extra resources only when needed. 

 Control - Organisation can maintain a private infrastructure for sensitive application 

 
 

Disadvantage 

 Infrastructure Dependency 

 Possibility of security breach(violate) through public cloud 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

19 

 

 

 

Difference Public Private Hybrid 

Tenancy Multi-tenancy: Single tenancy: Data stored in the 

public cloud is multi- 

tenant. 

Data stored in private 

cloud is Single 
Tenancy. 

 the data of Single 
 multiple organizations data 
 organizations in is stored in the 
 stored in a shared cloud. 
 environment.  

Exposed to 

the Public 

Yes:   anyone   can 

use   the    public 

cloud services. 

No: Only 

organization 

can  use 

private 

services. 

the 

itself 

the 

cloud 

Services  on  private 

cloud   can   be 

accessed only by the 

organization’s users 

Services on public 

cloud   can   be 
Accessed by anyone. 

Data 

Center 

Location 

Anywhere on the 

Internet 

Inside 

organization’s 

network. 

the Private Cloud- 

Present in 

organization’s 

network. 

Public Cloud - 

anywhere on the 

Internet. 

Cloud 

Service 

Management 

Cloud service 

provider manages 

Organization has 

their own 

Organization 

manages the private 

 the services. administrators 

managing services 

cloud. 

Cloud Service 

Provider(CSP) 

manages the public 

cloud. 

Hardware 

Components 

CSP provides all 

the hardware. 

Organization 

provides 

hardware. 

Private Cloud – 

organization provides 

resources. 

Public Cloud – Cloud 

service Provider 

provides. 

Expenses Less Cost Expensive 

compared 

public cloud 

when 
to 

Cost       required for 

setting    up    private 

cloud. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

20 

 

 

 Cloud Service Models 

 Software as a Service (SaaS) 

 Platform as a Service (PaaS) 

 Infrastructure as a Service (IaaS) 
 

 

 

These models are offered based on various SLAs between providers and users 

SLA of cloud computing covers 

o service availability 

o performance 

 data protection 

o Security 

 Software as a Service(SaaS)( Complete software offering on the cloud) 

 SaaS is a licensed software offering on the cloud and pay per use 

 SaaS is a software delivery methodology that provides licensed multi-tenant access to 

software    and    its    functions    remotely     as     a     Web-based     service.   

Usually billed based on usage 

◦ Usually multi tenant environment 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

21 

 

 

◦ Highly scalable architecture 

 Customers do not invest on software application programs. 

 The capability provided to the consumer is to use the provider’s applications running 

on a cloud infrastructure. 

 The applications are accessible from various client devices through a thin client 

interface such as a web browser (e.g., web-based email). 

 The consumer does not manage or control the underlying cloud infrastructure 

including network, servers, operating systems, storage, data or even individual 

application capabilities, with the possible exception of limited user specific 

application configuration settings. 

 On the customer side, there is no upfront investment in servers or software licensing. 

  It is a ―one-to-many‖ software delivery model, whereby an application is shared 

across multiple users 

  Characteristic of Application Service Provider(ASP) 

o Product sold to customer is application access. 

o Application is centrally managed by Service Provider. 

o Service delivered is one-to-many customers 

o Services are delivered on the contract 

E.g. Gmail and docs, Microsoft SharePoint, and the CRM software(Customer 

Relationship management) 

 SaaS providers 

 Google’s Gmail, Docs, Talk etc 

 Microsoft’s Hotmail, Sharepoint 

 SalesForce, 

 Yahoo 

 Facebook 

 Infrastructure as a Service (IaaS) ( Hardware offerings on the cloud) 

IaaS is the delivery of technology infrastructure (mostly hardware) as an on demand, 

scalable service . 

◦ Usually billed based on usage 

◦ Usually multi tenant virtualized environment 

◦ Can be coupled with Managed Services for OS and application support 

◦ User can choose his OS, storage, deployed app, networking components 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

22 

 

 

◦ The capability provided to the consumer is to provision processing, storage, 

networks, and other fundamental computing resources. 

◦ Consumer is able to deploy and run arbitrary software, which may include 

operating systems and applications. 

◦ The consumer does not manage or control the underlying cloud infrastructure 

but has control over operating systems, storage and deployed applications. 

 
 IaaS/HaaS solutions bring all the benefits of hardware virtualization: workload 

partitioning, application isolation, sandboxing, and hardware tuning 

  Sandboxing: A program is set aside from other programs in a separate environment 

so that if errors or security issues occur, those issues will not spread to other areas on 

the computer. 

 Hardware tuning: To improve the performance of system 

 The user works on multiple VMs running guest OSes 

 the service is performed by rented cloud infrastructure 

 The user does not manage or control the cloud infrastructure, but can specify when to 

request and release the needed resources. 

 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

23 

 

 

IaaS providers 

 Amazon Elastic Compute Cloud (EC2) 

◦ Each instance provides 1-20 processors, upto 16 GB RAM, 1.69TB storage 

 RackSpace Hosting 

◦ Each instance provides 4 core CPU, upto 8 GB RAM, 480 GB storage 

 Joyent Cloud 

◦ Each instance provides 8 CPUs, upto 32 GB RAM, 48 GB storage 

 Go Grid 

◦ Each instance provides 1-6 processors, upto 15 GB RAM, 1.69TB storage 

 

 Platform as a Service (PaaS) ( Development platform) 

 PaaS provides all of the facilities required to support the complete life cycle of 

building, delivering and deploying web applications and services entirely from the 

Internet. 

 Typically applications must be developed with a particular platform in mind 

• Multi tenant environments 

• Highly scalable multi tier architecture 

 The capability provided to the consumer is to deploy onto the cloud infrastructure 

consumer created or acquired applications created using programming languages and 

tools supported by the provider. 

 The consumer does not manage or control the underlying cloud infrastructure 

including network, servers, operating systems, or storage. 

Have control over the deployed applications and possibly application hosting environment 

configurations. 

 
Customers are provided with execution platform for developing applications. 

Execution platform includes operating system, programming language execution 

environment, database, web server, hardware etc. 

This acts as middleware on top of which applications are built 

The user is freed from managing the cloud infrastructure 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

24 

 

 

 

 
 

 

Application management is the core functionality of the middleware 

Provides runtime(execution) environment 

Developers design their applications in the execution environment. 

Developers need not concern about hardware (physical or virtual), operating systems, and 

other resources. 

PaaS core middleware manages the resources and scaling of applications on demand. 

PaaS offers 

o Execution environment and hardware resources (infrastructure) (or) 

o software is installed on the user premises 

PaaS: Service Provider provides Execution environment and hardware resources 

(infrastructure) 

 
Characteristics of PaaS 

Runtime framework: Executes end-user code according to the policies set by the user and 

the provider. 

Abstraction: PaaS helps to deploy(install) and manage applications on the cloud. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

25 

 

 

Automation: Automates the process of deploying applications to the infrastructure, 

additional resources are provided when needed. 

Cloud services: helps the developers to simplify the creation and delivery cloud 

applications. 

PaaS providers 

 Google App Engine 

◦ Python, Java, Eclipse 

 Microsoft Azure 

◦ .Net, Visual Studio 

 Sales Force 

◦ Apex, Web wizard 

 TIBCO, 

 VMware, 

 Zoho 

Cloud Computing – Services 

 Software as a Service - SaaS 

 Platform as a Service - PaaS 

 Infrastructure as a Service - IaaS 
 

 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

26 

 

 

 

Category Description Product Type Vendors  

and  

Products  

PaaS-I Execution platform is Middleware + Force.com,  

provided along with   Longjump  

hardware resources Infrastructure    

(infrastructure)       

PaaS -II Execution platform is Middleware + Google App 

provided with additional Infrastructure,  Engine  

components   

Middleware 

   

PaaS- III Runtime environment for Middleware + Microsoft Azure 

developing any kind of Infrastructure,  

application development   

Middleware 

 

 

 

 

 Architectural Design Challenges 

Challenge 1 : Service Availability and Data Lock-in Problem 

Service Availability 

Service Availability in Cloud might be affected because of 

Single Point Failure 

Distributed Denial of Service 

Single Point Failure 

o Depending on single service provider might result in failure. 

o In case of single service providers, even if company has multiple data centres 

located in different geographic regions, it may have common software 

infrastructure and accounting systems. 

Solution: 

o Multiple cloud providers may provide more protection from failures and they provide High 

Availability(HA) 

o Multiple cloud Providers will rescue the loss of all data. 

Distributed Denial of service (DDoS) attacks. 

o Cyber criminals, attack target websites and online services and makes services unavailable 

to users. 

o DDoS tries to overwhelm (disturb) the services unavailable to user by having more traffic 

than the server or network can accommodate. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

27 

 

 

It 

Solution: 

o Some SaaS providers provide the opportunity to defend against DDoS attacks by using 

quick scale-ups. 

Customers cannot easily extract their data and programs from one site to run on another. 

Solution: 

o Have standardization among service providers so that customers can deploy (install) 

services and data across multiple cloud providers. 

 
Data Lock-in 

is a situation in which a customer using service of a provider cannot be moved to another 

service provider because technologies used by a provider will be incompatible with other 

providers. 

This makes a customer dependent on a vendor for services and makes customer unable to 

use service of another vendor. 

Solution: 

o Have standardization (in technologies) among service providers so that customers can 

easily move from a service provider to another. 

 
Challenge 2: Data Privacy and Security Concerns 

Cloud services are prone to attacks because they are accessed through internet. 

Security is given by 

o Storing the encrypted data in to cloud. 

o Firewalls, filters. 

Cloud environment attacks include 

o Guest hopping 

o Hijacking 

o VM rootkits. 

Guest Hopping: Virtual machine hyper jumping (VM jumping) is an attack method that 

exploits(make use of) hypervisor’s weakness that allows a virtual machine (VM) to be 

accessed from another. 

Hijacking: Hijacking is a type of network security attack in which the attacker takes 

control of a communication 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

28 

 

 

VM Rootkit: is a collection of malicious (harmful) computer software, designed to enable 

access to a computer that is not otherwise allowed. 

A man-in-the-middle (MITM) attack is a form of eavesdroppping(Spy) where 

communication between two users is monitored and modified by an unauthorized party. 

o Man-in-the-middle attack may take place during VM migrations [virtual machine (VM) 

migration - VM is moved from one physical host to another host]. 

Passive attacks steal sensitive data or passwords. 

Active attacks may manipulate (control) kernel data structures which will cause major 

damage to cloud servers. 

 
Challenge 3: Unpredictable Performance and Bottlenecks 

Multiple VMs can share CPUs and main memory in cloud computing, but I/O sharing is 

problematic. 

Internet applications continue to become more data-intensive (handles huge amount of 

data). 

Handling huge amount of data (data intensive) is a bottleneck in cloud environment. 

Weak Servers that does not provide data transfers properly must be removed from cloud 

environment 

 
Challenge 4: Distributed Storage and Widespread Software Bugs 

The database is always growing in cloud applications. 

There is a need to create a storage system that meets this growth. 

This demands the design of efficient distributed SANs (Storage Area Network of Storage 

devices). 

Data centres must meet 

o Scalability 

o Data durability 

o HA(High Availability) 

o Data consistence 

Bug refers to errors in software. 

Debugging must be done in data centres. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

29 

 

 

Challenge 5: Cloud Scalability, Interoperability and Standardization 

Cloud Scalability 

Cloud resources are scalable. Cost increases when storage and network bandwidth 

scaled(increased) 

Interoperability 

Open Virtualization Format (OVF) describes an open, secure, portable, efficient, and 

extensible format for the packaging and distribution of VMs. 

OVF defines a transport mechanism for VM, that can be applied to different virtualization 

platforms 

Standardization 

Cloud standardization, should have ability for virtual machine to run on any virtual 

platform. 

 
Challenge 6: Software Licensing and Reputation Sharing 

Cloud providers can use both pay-for-use and bulk-use licensing schemes to widen the 

business coverage. 

Cloud providers must create reputation-guarding services similar to the ―trusted e-mail‖ 

services 

Cloud providers want legal liability to remain with the customer, and vice versa. 

 
 

 Cloud Storage 

Storing your data on the storage of a cloud service provider rather than on a local system. 

Data stored on the cloud are accessed through Internet. 

Cloud Service Provider provides Storage as a Service 

 
 

 Storage as a Service 

 Third-party provider rents space on their storage to cloud users. 

 Customers move to cloud storage when they lack in budget for having their own storage. 

 Storage service providers takes the responsibility of taking current backup, replication, 

and disaster recovery needs. 

 Small and medium-sized businesses can make use of Cloud Storage 

 Storage is rented from the provider using a 

o cost-per-gigabyte-stored (or) 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

30 

 

 

o cost-per-data-transferred 

 The end user doesn’t have to pay for infrastructure (resources), they have to pay only for 

how much they transfer and save on the provider’s storage. 

 

 

 

5.2 Providers 

 Google Docs allows users to upload documents, spreadsheets, and presentations to 

Google’s data servers. 

 Those files can then be edited using a Google application. 

 Web email providers like Gmail, Hotmail, and Yahoo! Mail, store email messages on 

their own servers. 

 Users can access their email from computers and other devices connected to the Internet. 

 Flicker and Picasa host millions of digital photographs, Users can create their own online 

photo albums. 

 YouTube hosts millions of user-uploaded video files. 

 Hostmonster and GoDaddy store files and data for many client web sites. 

 Facebook and MySpace are social networking sites and allow members to post pictures 

and other content. That content is stored on the company’s servers. 

 MediaMax and Strongspace offer storage space for any kind of digital data. 

 
 

 Data Security 

 To secure data, most systems use a combination of techniques: 

o Encryption 

o Authentication 

o Authorization 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

31 

 

 

Encryption 

o Algorithms are used to encode information. To decode the information keys are required. 

Authentication processes 

o This requires a user to create a name and password. 

Authorization practices 

o The client lists the people who are authorized to access information stored on the cloud 

system. 

If information stored on the cloud, the head of the IT department might have complete and 

free access to everything. 

 

Reliability 

 Service Providers gives reliability for data through redundancy (maintaining multiple 

copies of data). 

Reputation is important to cloud storage providers. If there is a perception that the provider is 

unreliable, they won’t have many clients. 

Advantages 

 Cloud storage providers balance server loads. 

 Move data among various datacenters, ensuring that information is stored close and 

thereby available quickly to where it is used. 

 It allows to protect the data in case there’s a disaster. 

 Some products are agent-based and the application automatically transfers 

information to the cloud via FTP 

Cautions 

 Don’t commit everything to the cloud, but use it for a few, noncritical purposes. 

 Large enterprises might have difficulty with vendors like Google or Amazon. 

 Forced to rewrite solutions for their applications. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

32 

 

 

 Lack of portability. 

 
Theft (Disadvantage) 

 User data could be stolen or viewed by those who are not authorized to see it. 

  Whenever user data is let out of their own datacenter, risk trouble occurs from a 

security point of view. 

 If user store data on the cloud, make sure user encrypts data and secures data transit 

with technologies like SSL. 

 
 Cloud Storage Providers 

Amazon Simple Storage Service (S3) 

 The best-known cloud storage service is Amazon’s Simple Storage Service (S3), 

launched in 2006. 

 Amazon S3 is designed to make computing easier for developers. 

 Amazon S3 provides an interface that can be used to store and retrieve any amount of 

data, at any time, from anywhere on the Web. 

 Amazon S3 is intentionally built with a minimal feature set that includes the 

following functionality: 

• Write, read, and delete objects containing from 1 byte to 5 gigabytes of data 

each. 

The number of objects that can be stored is unlimited. 

• Each object is stored and retrieved via a unique developer-assigned key. 

• Objects can be made private or public, and rights can be assigned to specific 

users. 

• Uses standards-based REST and SOAP interfaces designed to work with any 

Internet-development toolkit. 

Design Requirements 

Amazon built S3 to fulfill the following design requirements: 

• Scalable Amazon S3 can scale in terms of storage, request rate, and users to support an 

unlimited number of web-scale applications. 

 Reliable Store data durably, with 99.99 percent availability. Amazon says it does not 

allow any downtime. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

33 

 

 

• Fast Amazon S3 was designed to be fast enough to support high-performance applications. 

Server-side latency must be insignificant relative to Internet latency. Any performance 

bottlenecks can be fixed by simply adding nodes to the system. 

• Inexpensive Amazon S3 is built from inexpensive commodity hardware components. As a 

result, frequent node failure is the norm and must not affect the overall system. It must be 

hardware-agnostic, so that savings can be captured as Amazon continues to drive down 

infrastructure costs. 

• Simple Building highly scalable, reliable, fast, and inexpensive storage is difficult. Doing 

so in a way that makes it easy to use for any application anywhere is more difficult. Amazon 

S3 must do both. 

 
Design Principles 

Amazon used the following principles of distributed system design to meet Amazon S3 

requirements: 

• Decentralization It uses fully decentralized techniques to remove scaling bottlenecks and 

single points of failure. 

• Autonomy The system is designed such that individual components can make decisions 

based on local information. 

• Local responsibility Each individual component is responsible for achieving its 

consistency; this is never the burden of its peers. 

• Controlled concurrency Operations are designed such that no or limited concurrency 

control is required. 

• Failure toleration The system considers the failure of components to be a normal mode of 

operation and continues operation with no or minimal interruption. 

• Controlled parallelism Abstractions used in the system are of such granularity that 

parallelism can be used to improve performance and robustness of recovery or the 

introduction of new nodes. 

• Small, well-understood building blocks Do not try to provide a single service that does 

everything for everyone, but instead build small components that can be used as building 

blocks for other services. 

• Symmetry Nodes in the system are identical in terms of functionality, and require no or 

minimal node-specific configuration to function. 

• Simplicity The system should be made as simple as possible, but no simpler. 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

34 

 

 

How S3 Works 

Amazon keeps its lips pretty tight about how S3 works, but according to Amazon, S3’s 

design aims to provide scalability, high availability, and low latency at commodity costs. S3 

stores arbitrary objects at up to 5GB in size, and each is accompanied by up to 2KB of 

metadata. Objects are organized by buckets. Each bucket is owned by an AWS account and 

the buckets are identified by a unique, user-assigned key. 

 

 

 
 

 

Buckets and objects are created, listed, and retrieved using either a REST-style or 

SOAP interface. 

Objects can also be retrieved using the HTTP GET interface or via BitTorrent. An 

access control list restricts who can access the data in each bucket. Bucket names and keys 

are formulated so that they can be accessed using HTTP. Requests are authorized using an 

access control list associated with each bucket and object, for instance: 



CS8791-Cloud Computing Unit III Notes 

VII 
SEMESTER 

35 

 

 

http://s3.amazonaws.com/examplebucket/examplekey 

http://examplebucket.s3.amazonaws.com/examplekey 

The Amazon AWS Authentication tools allow the bucket owner to create an authenticated 

URL with a set amount of time that the URL will be valid. 

http://s3.amazonaws.com/examplebucket/examplekey
http://examplebucket.s3.amazonaws.com/examplekey


CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

1 

 

 

UNIT IV RESOURCE MANAGEMENT AND SECURITY IN CLOUD 10 

Inter Cloud Resource Management – Resource Provisioning and Resource Provisioning Methods 

– Global Exchange of Cloud Resources – Security Overview – Cloud Security Challenges – 

Software-as-a-Service Security – Security Governance – Virtual Machine Security – IAM – 

Security Standards. 

 
 INTER-CLOUD RESOURCE MANAGEMENT 

Cloud of Clouds (Inter cloud) 

 Inter cloud or 'cloud of clouds’-refer to a theoretical model for cloud computing services. 

 Combining many different individual clouds into one seamless mass in terms of on- 

demand operations. 

 The inter cloud would simply make sure that a cloud could use resources beyond its 

reach. 

 Taking advantage of pre-existing contracts with other cloud providers. 

 Each single cloud does not have infinite physical resources or ubiquitous geographic 

footprint. 

 A cloud may be saturated to the computational and storage resources of its infrastructure. 

 It would still be able satisfy such requests for service allocations sent from its clients. 

 A single cloud cannot always fulfill the requests or provide required services. 

 When two or more clouds have to communicate with each other, or another intermediary 

comes into play and federates the resources of two or more clouds. 

 In inter cloud, intermediary is known as ―cloud broker‖ or simply ―broker.‖ 

 Broker is the entity which introduces the cloud service customer (CSC) to the cloud 

service provider (CSP) 

 
Inter-Cloud Resource Management Consists of 

 
 Extended Cloud Computing Services 

 Resource Provisioning and Platform Management 

 Virtual Machine Creation and Management 

 Global Exchange of Cloud Resources 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

2 

 

 

4.1.1 Extended Cloud Computing Services 
 

 

 
 

 
Fig: Six layers of cloud services and their providers 

 

 

Six layers of cloud services 

 Software as a Service(SaaS) 

 Platform as a Service(PaaS) 

 Infrastructure as a Service(IaaS) 

 Hardware / Virtualization Cloud Services(HaaS) 

 Network Cloud Services (NaaS) 

 Collocation Cloud Services(LaaS) 

 The top layer offers SaaS which provides cloud application. 

 PaaS sits on top of IaaS infrastructure. 

 The bottom three layers are more related to physical requirements. 

 The bottommost layer provides Hardware as a Service (HaaS). 

 NaaS is used for interconnecting all the hardware components. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

3 

 

 

 Location as a Service (LaaS), provides security to all the physical hardware and network 

resources. This service is also called as Security as a Service. 

 The cloud infrastructure layer can be further subdivided as 

 Data as a Service (DaaS) 

 Communication as a Service (CaaS) 

 Infrastructure as a Service(IaaS) 

 Cloud players are divided into three classes: 

 Cloud service providers and IT administrators 

 Software developers or vendors 

 End users or business users. 
 

 
Cloud Players IaaS PaaS SaaS 

IT 
administrators/ 

Cloud Providers 

Monitor SLAs Monitor SLAs 

and enable 

service 

platforms 

Monitor SLAs 

and deploy 

software 

Software 

developers 

(Vendors) 

To deploy 

and store 

data 

Enabling 

platforms 

Develop and 

deploy 

software 

End users or 

business users 

To deploy 

and store 

data 

To develop and 

test software 

Use business 

software 

 

Table: Cloud Differences in Perspective of Providers, Vendors, and Users 

 
 Cloud Service Tasks and Trends 

 SaaS is mostly used for Business Applications 

 Eg: CRM (Customer Relationship Management) used for business promotion, direct 

sales, and marketing services 

 PaaS is provided by Google, Salesforce.com, and Facebook etc. 

 IaaS is provided by Amazon, Windows Azure, and RackRack etc. 

 Collocation services Provides security to lower layers. 

 Network cloud services provide communications. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

4 

 

 

 
 

 Software Stack for Cloud Computing 

 The software stack structure of cloud computing software can be viewed as layers. 

 Each layer has its own purpose and provides the interface for the upper layers. 

 The lower layers are not completely transparent to the upper layers. 

 

 Runtime Support Services 

 Runtime support refers to software needed in applications. 

  The SaaS provides the software applications as a service, rather than allowing users 

purchase the software. 

 On the customer side, there is no upfront investment in servers. 

 

 Resource Provisioning (Providing) and Platform 

Deployment There are techniques to provision computer 

resources or VMs. Parallelism is exploited at the cluster node 

level. 

 Provisioning of Compute Resources (VMs) 

 Providers supply cloud services by signing SLAs with end users. 

 The SLAs must specify resources such as 

 CPU 

 Memory 

 Bandwidth 

Users can use these for a preset (fixed) period. 

 Under provisioning of resources will lead to broken SLAs and penalties. 

  Over provisioning of resources will lead to resource underutilization, and consequently, 

a decrease in revenue for the provider. 

  Provisioning of resources to users is a challenging problem. The difficulty comes from 

the following 

o Unpredictability of consumer demand 

o Software and hardware failures 

o Heterogeneity of services 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

5 

 

 

o Power management 

o Conflict in signed SLAs between consumers and service providers. 

 

 Provisioning Methods 

Three cases of static cloud resource provisioning policies are considered. 

Static cloud resource provisioning 

case (a) 

 over provisioning(Providing) with the peak load causes heavy resource waste (shaded 

area). 

..  

case (b) 

Under provisioning of resources results in losses by both user and provider. Users have paid for 

the demand (the shaded area above the capacity) is not used by users. 

 

 

 

 
 

case (c) 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

6 

 

 

Declining in user demand results in worse resource waste. 
 

 
Constant provisioning 

 Fixed capacity to a declining user demand could result in even worse resource waste. 

 The user may give up the service by canceling the demand, resulting in reduced revenue 

for the provider. 

 Both the user and provider may be losers in resource provisioning without elasticity. 

Resource-provisioning methods are 

 Demand-driven method - Provides static resources and has been used in grid computing 

 Event-driven method - Based on predicted workload by time. 

 Popularity-Driven Resource Provisioning – Based on Internet traffic monitored 

 

 Demand Driven Methods 

 Provides Static resources 

 This method adds or removes nodes (VM) based on the current utilization(Use) level of 

the allocated resources. 

 When a resource has surpassed (exceeded) a threshold (Upperlimit) for a certain amount 

of time, the scheme increases the resource (nodes) based on demand. 

 When a resource is below a threshold for a certain amount of time, then resources could 

be decreased accordingly. 

 This method is easy to implement. 

 The scheme does not work out properly if the workload changes abruptly. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

7 

 

 

 

 

 

 

 Event-Driven Resource Provisioning 

 This scheme adds or removes machine instances based on a specific time event. 

 The scheme works better for seasonal or predicted events such as Christmastime in the 

West and the Lunar New Year in the East. 

 During these events, the number of users grows before the event period and then 

decreases during the event period. This scheme anticipates peak traffic before it happens. 

 The method results in a minimal loss of QoS, if the event is predicted correctly 
 

 

 

 

 
 Popularity-Driven Resource Provisioning 

 Internet searches for popularity of certain applications and allocates resources by 

popularity demand. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

8 

 

 

 This scheme has a minimal loss of QoS, if the predicted popularity is correct. 

 Resources may be wasted if traffic does not occur as expected. 

 Again, the scheme has a minimal loss of QoS, if the predicted popularity is correct. 

 Resources may be wasted if traffic does not occur as expected. 
 

 

 
 Dynamic Resource Deployment 

 The cloud uses VMs as building blocks to create an execution environment across 

multiple resource sites. 

 Dynamic resource deployment can be implemented to achieve scalability in performance. 

 Peering arrangements established between gateways enable the allocation of resources 

from multiple grids to establish the execution environment. 

 Dynamic resource deployment can be implemented to achieve scalability in performance. 

 InterGrid is used for interconnecting distributed computing infrastructures. 

 InterGrid provides an execution environment on top of the interconnected infrastructures. 

 IGG(InterGridGateway) allocates resources from an 

Organization’s local cluster (Or) 

Cloud provider. 

 Under peak demands, IGG interacts with another IGG that can allocate resources from a 

cloud computing provider.

 Component called the DVE manager performs resource allocation and management.

 Intergrid gateway (IGG) allocates resources from a local cluster three steps:



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

9 

 

 

(1) Requesting the VMs(Resources) 

(2) Enacting (Validate) the leases 

(3) Deploying (install) the VMs as requested. 
 

 

Fig: Cloud resource deployment using an IGG (intergrid gateway) to allocate the VMs 

from a Local cluster to interact with the IGG of a public cloud provider. 

 Under peak demand, this IGG interacts with another IGG that can allocate resources from 

a cloud computing provider. 

 A grid has predefined peering arrangements with other grids, which the IGG manages. 

 Through multiple IGGs, the system coordinates the use of InterGrid resources. 

 An IGG is aware of the peering terms with other grids, selects suitable grids that can 

provide the required resources, and replies to requests from other IGGs. 

 Request redirection policies determine which peering grid InterGrid selects to process a 

request and a price for which that grid will perform the task. 

 An IGG can also allocate resources from a cloud provider. 

 The InterGrid allocates and provides a distributed virtual environment (DVE). 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

10 

 

 

 This is a virtual cluster of VMs that runs isolated from other virtual clusters. 

  A component called the DVE manager performs resource allocation and management on 

behalf of specific user applications. 

 The core component of the IGG is a scheduler for implementing provisioning policies 

and peering with other gateways. 

 The communication component provides an asynchronous message-passing mechanism. 

 

 

 Provisioning of Storage Resources 

 Storage layer is built on top of the physical or virtual servers. 

 Data is stored in the clusters of the cloud provider. 

 The service can be accessed anywhere in the world. 

 Eg:

  E-mail system might have millions of users and each user can have thousands of e-mails 

and consume multiple gigabytes of disk space. 

 Web searching application. 

 To store huge amount of information solid-state drives are used instead of hard disk 

drives 

In storage technologies, hard disk drives may be augmented (increased) with solid-state drives in 

the future. 

 

 
 Virtual Machine Creation and Management 

 
The managers provide a public API for users to submit and control the VMs 

. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

11 

 

 

Fig. Virtual Machine Creation and Management 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Independent Service Management: 

 Independent services request facilities to execute many unrelated tasks. 

 Commonly, the APIs provided are some web services that the developer can use 

conveniently. 

 

Running Third-Party Applications 

 Cloud platforms have to provide support for building applications that are constructed by 

third-party 

application providers or programmers. 

 
 The APIs are often in the form of services. 

 Web service application engines are often used by programmers for building applications. 

 The web browsers are the user interface for end users. 

 
Virtual Machine Manager 

The manager manage VMs deployed on a set of physical resources 

 VIEs(Virtual Infrastructure Engine) can create and stop VMs on a physical cluster 

 Users submit VMs on physical machines using different kinds of hypervisors 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

12 

 

 

 To deploy a VM, the manager needs to use its template. 

 Virtual Machine Templates contains a description for a VM with the following static 

information: 

o The number of cores or processors to be assigned to the VM 

o The amount of memory the VM requires 

o The kernel used to boot the VM’s operating system. 

o The price per hour of using a VM 

 OAR/Kadeploy is a deployment tool 

 API(Application Programming Interface) - An API is a software intermediary that 

makes it possible for application programs to interact with each other and share data 

 

Virtual Machine Templates 

 A VM template is analogous to a computer’s configuration and contains a description 

for a VM with the following static information: 

 The number of cores or processors to be assigned to the VM 

 The amount of memory the VM requires 

 The kernel used to boot the VM’s operating system 

 The disk image containing the VM’s file system 

 The price per hour of using a VM 

 
 

Distributed VM Management 

 A distributed VM manager makes requests for VMs and queries their status. 

 This manager requests VMs from the gateway on behalf of the user application. 

 The manager obtains the list of requested VMs from the gateway. 

 This list contains a tuple of public IP/private IP addresses for each VM with Secure 

Shell (SSH) tunnels. 

 

 Global Exchange of Cloud Resources 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

13 

 

 

 Cloud infrastructure providers (i.e., IaaS providers) have established data centers in 

multiple geographical locations to provide redundancy and ensure reliability in case of 

site failures. 

 Amazon does not provide seamless/automatic mechanisms for scaling its hosted services 

across multiple geographically distributed data centers. 

 This approach has many shortcomings 

 First, it is difficult for cloud customers to determine in advance the best location for 

hosting their services as they may not know the origin of consumers of their services. 

 Second, SaaS providers may not be able to meet the QoS expectations of their service 

consumers originating from multiple geographical locations. 

 The figure the high-level components of the Melbourne group’s proposed InterCloud 

architecture 

 
Fig: Inter-cloud exchange of cloud resources through brokering 

 

 

 It is not possible for a cloud infrastructure provider to establish its data centers at all 

possible locations throughout the world. 

 This results in difficulty in meeting the QOS expectations of their customers. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

14 

 

 

 Hence, services of multiple cloud infrastructure service providers are used. 

 Cloud coordinator evaluates the available resources. 

 The availability of a banking system ensures that financial transactions related to SLAs 

are carried out in a securely. 

 By realizing InterCloud architectural principles in mechanisms in their offering, cloud 

providers will be able to dynamically expand or resize their provisioning capability based 

on sudden spikes in workload demands by leasing available computational and storage 

capabilities from other cloud. 

 They consist of client brokering and coordinator services that support utility-driven 

federation of clouds: 

o application scheduling 

o resource allocation 

o migration of workloads. 

 The architecture cohesively couples the administratively and topologically distributed 

storage and compute capabilities of clouds as part of a single resource leasing abstraction. 

 The system will ease the crossdomain capability integration for on-demand, flexible, 

energy-efficient, and reliable access to the infrastructure based on virtualization 

technology 

 The Cloud Exchange (CEx) acts as a market maker for bringing together service 

producers and consumers. 

  It aggregates the infrastructure demands from application brokers and evaluates them 

against the available supply currently published by the cloud coordinators. 

  It supports trading of cloud services based on competitive economic models such as 

commodity markets and auctions. 

 CEx allows participants to locate providers and consumers with fitting offers. 

 

 Security 

 Virtual machines from multiple organizations have to be co-located on the same physical 

server in order to maximize the efficiencies of virtualization. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

15 

 

 

 Cloud service providers must learn from the managed service provider (MSP) model and 

ensure that their customers' applications and data are secure if they hope to retain their 

customer base and competitiveness. 

 Cloud environment should be free from abuses, cheating, hacking, viruses, rumors, and 

privacy and copyright violations. 

 
 Cloud Security Challenges 

 In cloud model users lose control over physical security. 

 In a public cloud, users are sharing computing resources with other companies. 

  When users share the environment in the cloud, it results in data at risk of seizure 

(attack). 

 Storage services provided by one cloud vendor may be incompatible with another 

vendor’s services; this results in unable to move from one to the other. 

 Vendors create ―sticky services‖. 

 Sticky services are the services which makes end user, in difficulty while transporting 

from one cloud vendor to another. 

 
Example: Amazon’s ―Simple Storage Service‖ [S3] is incompatible with IBM’s Blue Cloud, or 

Google, or Dell). 

 Customers want their data encrypted while data is at rest (data stored) in the cloud 

vendor’s storage pool. 

 Data integrity means ensuring that data is identically maintained during any operation 

(such as transfer, storage, or retrieval). 

 Data integrity is assurance that the data is consistent and correct. 

 One of the key challenges in cloud computing is data-level security. 

 It is difficult for a customer to find where its data resides on a network controlled by its 

provider. 

 Some countries have strict limits on what data about its citizens can be stored and for 

how long. 

 Banking regulators require that customers’ financial data remain in their home country. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

16 

 

 

  Security managers will need to pay particular attention to systems that contain critical 

data such as corporate financial information. 

  Outsourcing (giving rights to third party) loses control over data and not a good idea 

from a security perspective. 

 Security managers have to interact with company’s legal staff to ensure that appropriate 

contract terms are in place to protect corporate data. 

 Cloud-based services will result in many mobile IT users accessing business data and 

services without traversing the corporate network. 

 This will increase the need for enterprises to place security controls between mobile users 

and cloud-based services. 

 Placing large amounts of sensitive data in a globally accessible cloud leaves 

organizations open to large distributed threats—attackers no longer have to come onto the 

premises to steal data, and they can find it all in the one "virtual" location. 

 Virtualization efficiencies in the cloud require virtual machines from multiple 

organizations to be collocated on the same physical resources. 

 Although traditional data center security still applies in the cloud environment, physical 

segregation and hardware-based security cannot protect against attacks between virtual 

machines on the same server. 

 The dynamic and fluid nature of virtual machines will make it difficult to maintain the 

consistency of security and ensure the auditability of records. 

 The ease of cloning and distribution between physical servers could result in the 

propagation of configuration errors and other vulnerabilities. 

 Localized virtual machines and physical servers use the same operating systems as well 

as enterprise and web applications in a cloud server environment, increasing the threat of 

an attacker or malware exploiting vulnerabilities in these systems and applications 

remotely. 

 Virtual machines are vulnerable as they move between the private cloud and the public 

cloud. 

 Operating system and application files are on a shared physical infrastructure in a 

virtualized cloud environment and require system, file, and activity monitoring to provide 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

17 

 

 

confidence and auditable proof to enterprise customers that their resources have not been 

compromised or tampered with. 

  The Intrusion Detection System(IDS) and Intrusion Prevention Systems(IPS) detects 

malicious activity at virtual machine level. 

 The co-location of multiple virtual machines increases the threat from attacker. 

  If Virtual machines and physical machine use the same operating systems in a cloud 

environment, increases the threat from an attacker. 

  A fully or partially shared cloud environment is expected to have a greater attack than 

own resources environment. 

 Virtual machines must be self-defending. 

 Cloud computing provider is incharge of customer data security and privacy. 

 

 Software as a Service Security (Or) Data Security (Or) Application Security (Or) 

Virtual Machine Security. 

Cloud computing models of the future will likely combine the use of SaaS (and other 

XaaS's as appropriate), utility computing, and Web 2.0 collaboration technologies to leverage the 

Internet to satisfy their customers' needs. New business models being developed as a result of the 

move to cloudcomputing are creating not only new technologies and business operational 

processes but also newsecurity requirements and challenges 

 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

18 

 

 

Fig: Evolution of Cloud Services 

 
SaaS plays the dominant cloud service model and this is the area where the most critical need for 

security practices are required 

Security issues that are discussed with cloud-computing vendor: 

1. Privileged user access—Inquire about who has specialized access to data, and about the 

hiring and management of such administrators. 

2. Regulatory compliance—Make sure that the vendor is willing to undergo external audits 

and/or security certifications. 

3. Data location—Does the provider allow for any control over the location of data? 

4. Data segregation—Make sure that encryption is available at all stages, and that these 

encryption schemes were designed and tested by experienced professionals. 

5. Recovery—Find out what will happen to data in the case of a disaster. Do they offer complete 

restoration? If so, how long would that take? 

6. Investigative support—Does the vendor have the ability to investigate any inappropriate or 

illegal activity? 

7. Long-term viability—What will happen to data if the company goes out of business? How 

will data be returned, and in what format? 

The security practices for the SaaS environment are as follows: 

Security Management (People) 

 One of the most important actions for a security team is to develop a formal charter for 

the security organization and program. 

 This will foster a shared vision among the team of what security leadership is driving 

toward and expects, and will also foster "ownership" in the success of the collective team. 

 The charter should be aligned with the strategic plan of the organization or company the 

security team works for. 

 Security Governance 

 A security committee should be developed whose objective is to focus on providing 

guidance about security initiatives with business and IT strategies. 

 A charter for the security team is typically one of the first deliverables from the steering 

committee. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

19 

 

 

 This charter must clearly define the roles and responsibilities of the security team and 

other groups involved in performing information security functions. 

 Lack of a formalized strategy can lead to an unsustainable operating model and 

 security level as it evolves. 

 In addition, lack of attention to security governance can result in key needs of the 

business not being met, including but not limited to, risk management, security 

monitoring, applicationsecurity, and sales support. 

  Lack of proper governance and management of duties can also result in potential security 

risks being left unaddressed and opportunities to improve the business being missed. 

 The security team is not focused on the key security functions and activities that are 

critical to the business. 

Cloud security governance refers to the management model that facilitates effective and 

efficient security management and operations in the cloud environment so that an enterprise’s 

business targets are achieved. This model incorporates a hierarchy of executive mandates, 

performance expectations, operational practices, structures, and metrics that, when implemented, 

result in the optimization of business value for an enterprise. Cloud security governance helps 

answer leadership questions such as: 

 

 Are our security investments yielding the desired returns?

 Do we know our security risks and their business impact?

 Are we progressively reducing security risks to acceptable levels?

 Have we established a security-conscious culture within the enterprise?

Strategic alignment, value delivery, risk mitigation, effective use of resources, and 

performance measurement are key objectives of any IT-related governance model, security 

included. To successfully pursue and achieve these objectives, it is important to understand the 

operational culture and business and customer profiles of an enterprise, so that an effective 

security governance model can be customized for the enterprise. 

 

Cloud Security Governance Challenges 

Whether developing a governance model from the start or having to retrofit one on existing 

investments in cloud, these are some of the common challenges: 

Lack of senior management participation and buy-in 

https://www.coalfire.com/Solutions/Cyber-Risk-Management/Assessments/Enterprise-Risk-Assessment


CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

20 

 

 

 

The lack of a senior management influenced and endorsed security policy is one of the 

common challenges facing cloud customers. An enterprise security policy is intended to set the 

executive tone, principles and expectations for security management and operations in the cloud. 

However, many enterprises tend to author security policies that are often laden with tactical 

content, and lack executive input or influence. The result of this situation is the ineffective 

definition and communication of executive tone and expectations for security in the cloud. 

Lack of embedded management operational controls 

Another common cloud security governance challenge is lack of embedded management 

controls into cloud security operational processes and procedures. Controls are often interpreted 

as an auditor’s checklist or repackaged as procedures, and as a result, are not effectively 

embedded into security operational processes and procedures as they should be, for purposes of 

optimizing value and reducing day-to-day operational risks. This lack of embedded controls may 

result in operational risks that may not be apparent to the enterprise. For example, the security 

configuration of a device may be modified (change event) by a staffer without proper analysis of 

the business impact (control) of the modification. The net result could be the introduction of 

exploitable security weaknesses that may not have been apparent with this modification. 

Lack of operating model, roles, and responsibilities 

Many enterprises moving into the cloud environment tend to lack a formal operating 

model for security, or do not have strategic and tactical roles and responsibilities properly 

defined and operationalized. This situation stifles the effectiveness of a security management and 

operational function/organization to support security in the cloud. Simply, establishing a 

hierarchy that includes designating an accountable official at the top, supported by a stakeholder 

committee, management team, operational staff, and third-party provider support (in that order) 

can help an enterprise to better manage and control security in the cloud, and protect associated 

investments in accordance with enterprise business goals. 

Lack of metrics for measuring performance and risk 

Another major challenge for cloud customers is the lack of defined metrics to measure 

security performance and risks – a problem that also stifles executive visibility into the real 

security risks in the cloud. This challenge is directly attributable to the combination of other 

challenges discussed above. For example, a metric that quantitatively measures the number of 

exploitable security vulnerabilities on host devices in the cloud over time can be leveraged as an 

indicator of risk in the host device environment. Similarly, a metric that measures the number of 

user-reported security incidents over a given period can be leveraged as a performance indicator 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

21 

 

 

 

of staff awareness and training efforts. Metrics enable executive visibility into the extent to 

which security tone and expectations (per established policy) are being met within the enterprise 

and support prompt decision-making in reducing risks or rewarding performance as appropriate. 

The challenges described above clearly highlight the need for cloud customers to establish a 

framework to effectively manage and support security in cloud management, so that the pursuit 

of business targets are not potentially compromised. Unless tone and expectations for cloud 

security are established (via an enterprise policy) to drive operational processes and procedures 

with embedded management controls, it is very difficult to determine or evaluate business value, 

performance, resource effectiveness, and risks regarding security operations in the cloud. Cloud 

security governance facilitates the institution of a model that helps enterprises explicitly address 

the challenges described above. 

 

Key Objectives for Cloud Security Governance 

Building a cloud security governance model for an enterprise requires strategic-level security 

management competencies in combination with the use of appropriate security standards and 

frameworks (e.g., NIST, ISO, CSA) and the adoption of a governance framework (e.g., COBIT). 

The first step is to visualize the overall governance structure, inherent components, and to direct 

its effective design and implementation. The use of appropriate security standards and 

frameworks allow for a minimum standard of security controls to be implemented in the cloud, 

while also meeting customer and regulatory compliance obligations where applicable. A 

governance framework provides referential guidance and best practices for establishing the 

governance model for security in the cloud. The following represents key objectives to pursue in 

establishing a governance model for security in the cloud. These objectives assume that 

appropriate security standards and a governance framework have been chosen based on the 

enterprise’s business targets, customer profile, and obligations for protecting data and other 

information assets in the cloud environment. 

1. Strategic Alignment 

Enterprises should mandate that security investments, services, and projects in the cloud are 

executed to achieve established business goals (e.g., market competitiveness, financial, or 

operationalperformance). 

2. Value Delivery 

Enterprises should define, operationalize, and maintain an appropriate security 

function/organization with appropriate strategic and tactical representation, and charged with the 

https://www.coalfire.com/Solutions/Cyber-Risk-Management/Assessments/Cyber-Risk-Program-Maturity-Assessment
https://www.coalfire.com/Solutions/Audit-and-Assessment


CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

22 

 

 

 

responsibility to maximize the business value (Key Goal Indicators, ROI) from the pursuit of 

security initiatives in the cloud. 

3. Risk Mitigation 

Security initiatives in the cloud should be subject to measurements that gauge effectiveness in 

mitigating risk to the enterprise (Key Risk Indicators). These initiatives should also yield results 

that progressively demonstrate a reduction in these risks over time. 

4. Effective Use of Resources 

It is important for enterprises to establish a practical operating model for managing and 

performing security operations in the cloud, including the proper definition and 

operationalization of due processes, the institution of appropriate roles and responsibilities, and 

use of relevant tools for overall efficiency and effectiveness. 

5. Sustained Performance 

Security initiatives in the cloud should be measurable in terms of performance, value and risk to 

the enterprise (Key Performance Indicators, Key Risk Indicators), and yield results that 

demonstrate attainment of desired targets (Key Goal Indicators) over time. 

 

 
Risk Management 

 Effective risk management entails identification of technology assets; identification of 

data and its links to business processes, applications, and data stores; and assignment of 

ownership and custodial responsibilities. 

 Actions should also include maintaining a repository of information assets 

 A risk assessment process should be created that allocates security resources related to 

business continuity. 

 
Risk Assessment 

 Security risk assessment is critical to helping the information security organization make 

informed decisions when balancing the dueling priorities of business utility and 

protection of assets. 

 Lack of attention to completing formalized risk assessments can contribute to an increase 

in information security audit findings, can jeopardize certification goals, and can lead to 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

23 

 

 

inefficient and ineffective selection of security controls that may not adequately mitigate 

information security risks to an acceptable level. 

Security Portfolio(selection) Management 

 Security portfolio management ensures efficient and effective operation of any 

information. 

Security Awareness 

 Not providing proper awareness and training to the people who may need them can 

expose the company to a variety of security risks 

Policies, Standards, and Guidelines 

 Policies, standards, and guidelines are developed that can ensure consistency of 

performance. 

Secure Software Development Life Cycle (SecSDLC) 

 The SecSDLC involves identifying specific threats and the risks. The SDLC consists of 

six phases 

Phase 1.Investigation: 

-Define project goals, and document them. 

Phase 2.Analysis: 

-Analyze current threats and perform risk analysis. 

Phase 3.Logical design: 

-Develop a security blueprint(plan) and business responses to disaster. 

Phase 4.Physical design: 

-Select technologies to support the security blueprint(plan). 

Phase 5.Implementation: 

- Buy or develop security solutions. 

Phase 6.Maintenance: 

-Constantly monitor, test, modify, update, and repair to respond to changing threats. 

 
 

Security Monitoring and Incident Response 

 Centralized security management systems should be used to provide notification of 

security vulnerabilities and to monitor systems continuously. 

Business Continuity Plan 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

24 

 

 

Business continuity plan, ensures uninterrupted operations of business. 

Forensics 

Forensics includes recording and analyzing events to determine the nature and source of 

information abuse, security attacks, and other such incidents. 

Security Architecture Design 

A security architecture framework should be established with the following consideration 

1. Authentication 

2. Authorization 

3. Availability 

4. Confidentiality 

5. Integrity 

6. Privacy 

 
Vulnerability Assessment 

 Vulnerability assessment classifies network assets to more efficiently prioritize 

vulnerability-mitigation programs, such as patching and system upgrading. 

 It measures the effectiveness of risk mitigation by setting goals of reduced vulnerability 

exposure and faster mitigation 

Password Assurance Testing 

 If the SaaS security team or its customers want to periodically test password strength by 

running 

 password "crackers," they can use cloud computing to decrease crack time and pay only 

for what they use. 



Security Images: 

 Virtualization-based cloud computing provides the ability to create "Gold image" VM 

secure builds and to clone multiple copies. 

  Gold image VMs also provide the ability to keep security up to date and reduce 

exposure by patching offline. 

 

Data Privacy 

 Depending on the size of the organization and the scale of operations, either an individual 

or a team should be assigned and given responsibility for maintaining privacy. 

 A member of the security team who is responsible for privacy or security compliance 

team should collaborate with the company legal team to address data privacy issues 

and concerns. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

25 

 

 

 Hiring a consultant in privacy area, will ensure that your organization is prepared to 

meet the data privacy demands of its customers and regulators. 

 Data Governance 

The data governance framework should include: 

_ Data inventory 

_ Data classification 

_ Data analysis (business intelligence) 

_ Data protection 

_ Data privacy 

_ Data retention/recovery/discovery 

_ Data destruction 

 
 

Data Security 

The challenge in cloud computing is data-level security. 

Security to data is given by 

Encrypting the data 

Permitting only specified users to access the data. 

Restricting the data not to cross the countries border. 

For example, with data-level security, the enterprise can specify that this data is not allowed to 

go outside of the India. 

 
Application Security 

This is collaborative effort between the security and product development team. 

Application security processes 

o Secure coding guidelines 

o Training 

o Testing scripts 

o Tools 

Penetration Testing is done to a System or application. 

Penetration Testing is defined as a type of Security Testing used to test the insecure areas of 

the system or application. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

26 

 

 

The goal of this testing is to find all the security vulnerabilities that are present in the system 

being tested. 

SaaS providers should secure their web applications by following Open Web Application 

Security Project (OWASP) guidelines for secure application development, by locking down 

ports and unnecessary commands 

 

 

 
5.3 Virtual Machine Security 

In the cloud environment, physical servers are consolidated (combined) to multiple virtual 

machine instances. 

Following are deployed on virtual machines to ensure security 

Firewalls 

Intrusion detection and prevention 

Integrity monitoring 

Log inspection 

Virtual servers have security requirements identical to those of physical servers. The 

same applies to the applications and services they host. Virtualization provides security benefits: 

each virtual machine has a private security context, potentially with separate authentication and 

authorization rules, and with separate process, name and file system spaces. Deploying 

applications onto separate virtual machines provides better security control compared to running 

multiple applications on the same host operating system: penetrating one virtual machine's OS 

doesn't necessarily compromise workload and data residing in other virtual machines. 

Nonetheless, some practices should be kept in mind to prevent virtualization from introducing 

security vulnerabilities. 

One aspect is physical security. Virtual infrastructure is not as 'visible' as physical 

infrastructure: there is no sticky label on a virtual machine to indicate its purpose and security 

classification. If a datacenter identifies servers with extremely high security requirements, and 

physically isolates them in a locked room or cage to prevent tampering or theft of data, then the 

physical machines hosting their virtualized workloads should be isolated in a similar way. Even 

without secured areas, many institutions keep workloads of different security classes on different 

servers. Those same isolation rules apply for virtual machines. Care should be taken to ensure 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

27 

 

 

that the protected virtual machines are not migrated to a server in a less secure location. In the 

context of Oracle VM, this implies maintaining separate server pools, each with their own group 

of servers. 

These rules of isolation should also be applied to networking: there are no color coded 

network cables to help staff identify and isolate different routes, segments and types network 

traffic to and from virtual machines or between them. There are no visual indicators that help 

ensure that application, management, and backup traffic are kept separate. Rather than plug 

network cables into different physical interfaces and switches, the Oracle VM administrator must 

ensure that the virtual network interfaces are connected to separate virtual networks. Specifically, 

use VLANs to isolate virtual machines from one another, and assign virtual networks for virtual 

machine traffic to different physical interfaces from those used for management, storage or 

backup. These can all be controled from the Oracle VM Manager user interface. Ensure that 

secure live migration is selected to guarantee that virtual machine memory data is not sent across 

the wire unencrypted. 

Additional care must be given to virtual machine disk images. In most cases the virtual 

disks are made available over the network for migration and failover purposes. In many cases 

they are files, which could easily be copied and stolen if the security of network storage is 

compromised. Therefore it is essential to lock down the NAS or SAN environments and prevent 

unauthorized access. An intruder with root access to a workstation on the storage network could 

mount storage assets and copy or alter their contents. Use a separate network for transmission 

between the storage servers and the Oracle VM hosts to ensure its traffic is not made public and 

subject to being snooped. Make sure that unauthorized individuals are not permitted to log into 

the Oracle VM Servers, as that would give them access to the guests' virtual disk images, and 

potentially much more. 

All of these steps require controlling access to the Oracle VM Manager and Oracle VM 

Server domain 0 instances. Network access to these hosts should be on a private network, and the 

user accounts able to log into any of the servers in the Oracle VM environment should be 

rigorously controlled, and limited to the smallest possible number of individuals. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

28 

 

 

 Identity and access management architecture( IAM) 

Basic concept and definitions of IAM functions for any service: 

Authentication – is a process of verifying the identity of a user or a system.Authentication 

usually connotes a more roburst form of identification. In some use 

cases such as service – to- service interaction, authentication involves verifying the 

network service. 

Authorization – is a process of determining the privileges the user or system is 

entitled to once the identity is established. Authorization usually follows theauthentication step 

and is used to determine whether the user or service has the 

necessary privileges to perform certain operations. 

Auditing – Auditing entails the process of review and examination ofauthentication, 

authorization records and activities to determine the adequacy of IAMsystem controls, to verify 

complaints with established security policies and procedure,to detect breaches in security 

services and to recommend any changes that areindicated for counter measures 

IAM Architecture and Practice 

IAM is not a monolithic solution that can be easily deployed to gain capabilitiesimmediately. It 

is as much an aspect of architecture as it is acollection of technology components, processes, and 

standard practices. Standardenterprise IAM architecture encompasses several layers of 

technology, services, andprocesses. At the core of the deployment architecture is a directory 

service (such as 

LDAP or Active Directory) that acts as a repository for the identity, credential, and user 

attributes of the organization’s user pool. The directory interacts with IAM technology 

components such as authentication, user management, provisioning, and federation services that 

support the standard IAM practice and processes within the organization. 

The IAM processes to support the business can be broadly categorized as follows: 

User management: Activities for the effective governance and management of identity life 

cycles 

Authentication management: Activities for the effective governance and management of the 

process for determining that an entity is who or what it claims tobe. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

29 

 

 

Authorization management: Activities for the effective governance and management of the 

process for determining entitlement rights that decide what resources an entity is permitted to 

access in accordance with the organization’s policies. 

Access management: Enforcement of policies for access control in response to a request from 

an entity (user, services) wanting to access an IT resource within the organization. 

Data management and provisioning: Propagation of identity and data for authorization to IT 

resources via automated or manual processes. 

Monitoring and auditing: Monitoring, auditing, and reporting compliance by users regarding 

access to resources within the organization based on the defined policies. 

IAM processes support the following operational activities: 

Provisioning: Provisioning can be thought of as a combination of the duties of the 

human resources and IT departments, where users are given access to data repositories or 

systems, applications, and databases based on a unique user identity. Deprovisioning works in 

the opposite manner, resulting in the deletion or deactivation of an identity or of privileges 

assigned to the user identity. 

Credential and attribute management: These processes are designed to manage the life cycle 

of credentials and user attributes— create, issue, manage, revoke—to inappropriate account use. 

Credentials are usually bound to an individual and are verified during the authentication process. 

The processes include provisioning of attributes, static (e.g., standard text password) and 

dynamic (e.g., one-time password) credentials that comply with a password standard (e.g., 

passwords resistant to dictionary attacks), handling password expiration, encryption management 

of credentials during transit and at rest, and access policies of user attributes (privacy and 

handling of attributes for various regulatory reasons).Minimize the business risk associated with 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

30 

 

 

identityimpersonation 
 

Figure 5.7 Enterprise IAM functional architecture 

Entitlement management: Entitlements are also referred to as authorization policies. The 

processes in this domain address the provisioning and deprovisioning of privileges needed for  

the user to access resources including systems, applications, and databases. Proper entitlement 

management ensures that users are assigned only the required privileges. 

Compliance management: This process implies that access rights and privileges are monitored 

and tracked to ensure the security of an enterprise’s resources. The process also helps auditors 

verify compliance to various internal access control policies, and standards that include practices 

such as segregation of duties, access monitoring, periodic auditing, and reporting. An example is 

a user certification process that allows application owners to certify that only authorized users 

have the privileges necessary to access business-sensitive information. 

Identity federation management: Federation is the process of managing the trust relationships 

established beyond the internal network boundaries or administrative domain boundaries among 

distinct organizations. A federation is an association of organizations that come together to 

exchange information about their users and resources to enable collaborations and transactions. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

31 

 

 

Centralization of authentication (authN) and authorization (authZ): A central authentication 

and authorization infrastructure alleviates the need for application developers to build custom 

authentication and authorization features into their applications. Furthermore, it promotes a loose 

coupling architecture where applications become agnostic to the authentication methods and 

policies. This approach is also called an ―externalization of authN and authZ from applications 

Figure 5.8 Identity Life cycle 

 
IAM Standards and Specifications for Organisations 

The following IAM standards and specifications will help organizations implement effective and 

efficient user access management practices and processes inthe cloud. These sections are ordered 

by four major challenges in user and access management faced by cloud users: 

1. How can I avoid duplication of identity, attributes, and credentials and provide a single sign- 

on user experience for my users? SAML. 

2. How can I automatically provision user accounts with cloud services and automate the process 

of provisoning and deprovisioning? SPML. 

 
 IAM Practices in the Cloud 

When compared to the traditional applications deployment model within the 

enterprise, IAM practices in the cloud are still evolving. In the current state of IAM technology, 

standards support by CSPs (SaaS, PaaS, and IaaS) is not consistent across providers. Although 

large providers such as Google, Microsoft, and Salesforce.com seem to demonstrate basic IAM 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

32 

 

 

capabilities, our assessment is that they still fall short of enterprise IAM requirements for 

managing regulatory, privacy, and data protection requirements. The maturity model takes into 

account the dynamic nature of IAM users, systems, and applications in the cloud and 

addresses the four key components of the IAM automation process: 

• User Management, New Users 

• User Management, User Modifications 

• Authentication Management 

• Authorization Management 

IAM practices and processes are applicable to cloud services; they need to be adjusted to the 

cloud environment. Broadly speaking, user management functions in the cloud can be 

categorized as follows: 

• Cloud identity administration, Federation or SSO 

 
• Authorization management 

• Compliance management 

 
Cloud Identity Administration: Cloud identity administrative functions should focus on life 

cycle management of user identities in the cloud—provisioning, deprovisioning, identity 

federation, SSO, password or credentials management, profile management, and administrative 

management. Organizations that are not capable of supporting federation should explore cloud- 

based identity management services. This new breed of services usually synchronizes an 

organization’s internal directories with its directory (usually multitenant) and acts as a proxy IdP 

for the organization. 

Federated Identity (SSO): Organizations planning to implement identity federation that enables 

SSO for users can take one of the following two paths (architectures): 

• Implement an enterprise IdP within an organization perimeter. 

• Integrate with a trusted cloud-based identity management service provider. 

Both architectures have pros and cons. 

Enterprise identity provider: In this architecture, cloud services will delegate authentication to 

an organization’s IdP. In this delegated authentication architecture, the organization federates 

identities within a trusted circle of CSP domains. A circle of trust can be created with all the 

domains that are authorized to delegate authentication to the IdP. In this deployment architecture, 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

33 

 

 

where the organization will provide and support an IdP, greater control can be exercised over 

user identities, attributes, credentials, and policies for authenticating and authorizing users to a 

cloud service. 

 

 
IdP deployment architecture. 

 
 

 
 Security standards 

Security standards define the processes, procedures, and practices necessary for 

implementing a security program. These standards also apply to cloud-related IT activities and 

include specific steps that should be taken to ensure a secure environment is maintained that 

provides privacy and security of confidential information in a cloud environment. Security 

standards are based on a set of key principles intended to protect this type of trusted 

environment. Messaging standards, especially for security in the cloud, must also include nearly 

all the same considerations as any other IT security endeavor. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

34 

 

 

Security (SAML ,OAuth, OpenID, SSL/TLS) 

A basic philosophy of security is to have layers of defense, a concept known as defense in 

depth. This means having overlapping systems designed to provide security even if one system 

fails. An example is a firewall working in conjunction with an intrusion-detection system (IDS). 

Defense in depth provides security because there is no single point of failure and no single-entry 

vector at which an attack can occur. No single security system is a solution by itself, so it is far 

better to secure all systems. This type of layered security is precisely what we are seeing develop 

in cloud computing. Traditionally, security was implemented at the endpoints, where the user 

controlled access. An organization had no choice except to put firewalls, IDSs, and antivirus 

software inside its own network. Today, with the advent of managed security services offered by 

cloud providers, additional security can be provided inside the cloud. 

 Security Assertion Markup Language (SAML) 

SAML is an XML-based standard for communicating authentication, authorization, and 

attribute information among online partners. It allows businesses to securely send assertions 

between partner organizations regarding the identity and entitlements of a principal. The 

Organization for the Advancement of Structured Information Standards (OASIS) Security 

Services Technical Committee is in charge of defining, enhancing, and maintaining the SAML 

specifications. 

SAML is built on a number of existing standards, namely, SOAP, HTTP, and XML. 

SAML relies on HTTP as its communications protocol and specifies the use of SOAP (currently, 

version 1.1). Most SAML transactions are expressed in a standardized form of XML. SAML 

assertions and protocols are specified using XML schema. Both SAML 1.1 and SAML 2.0 use 

digital signatures (based on the XML Signature standard) for authentication and message 

integrity. XML encryption is supported in SAML 2.0, though SAML 1.1 does not have 

encryption capabilities. SAML defines XML-based assertions and protocols, bindings, and 

profiles. The term SAML Core refers to the general syntax and semantics of SAML assertions as 

well as the protocol used to request and transmit those assertions from one system entity to 

another. SAML protocol refers to what is transmitted, not how it is transmitted. A SAML 

binding determines how SAML requests and responses map to standard messaging protocols. An 

important (synchronous) binding is the SAML SOAP binding. 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

35 

 

 

SAML standardizes queries for, and responses that contain, user authentication, 

entitlements, and attribute information in an XML format. This format can then be used to 

request security information about a principal from a SAML authority. A SAML authority, 

sometimes called the asserting party, is a platform or application that can relay security 

information. The relying party (or assertion consumer or requesting party) is a partner site that 

receives the security information. 

The exchanged information deals with a subject's authentication status, access 

authorization, and attribute information. A subject is an entity in a particular domain. A person 

identified by an email address is a subject, as might be a printer. 

SAML assertions are usually transferred from identity providers to service providers. Assertions 

contain statements that service providers use to make access control decisions. Three types of 

statements are provided by SAML: authentication statements, attribute statements, and 

authorization decision statements. SAML assertions contain a packet of security information in 

this form: 

<saml:Assertion A...> 

<Authentication> 

... 

</Authentication> 

<Attribute> 

... 

</Attribute> 

<Authorization> 

... 

</Authorization> 

</saml:Assertion A> 

The assertion shown above is interpreted as follows: 

Assertion A, issued at time T by issuer I, regarding subject 

S, provided conditions C are valid. 

Authentication statements assert to a service provider that the principal did indeed 

authenticate with an identity provider at a particular time using a particular method of 

authentication. Other information about the authenticated principal (called the authentication 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

36 

 

 

context) may be disclosed in an authentication statement. An attribute statement asserts that a 

subject is associated with certain attributes. An attribute is simply a name-value pair. Relying 

parties use attributes to make access control decisions. An authorization decision statement 

asserts that a subject is permitted to perform action A on resource R given evidence E. The 

expressiveness of authorization decision statements in SAML is intentionally limited. 

A SAML protocol describes how certain SAML elements (including assertions) are 

packaged within SAML request and response elements. It provides processing rules that SAML 

entities must adhere to when using these elements. Generally, a SAML protocol is a simple 

request-response protocol. The most important type of SAML protocol request is a query. A 

service provider makes a query directly to anidentity provider over a secure back channel. For 

this reason, query messages are typically bound to SOAP. Corresponding to the three types of 

statements, there are three types of SAML queries: the authentication query, the attribute query, 

and the authorization decision query. Of these, the attribute query is perhaps most important. The 

result of an attribute query is a SAML response containing anassertion, which itself contains an 

attribute statement. 

 Open Authentication (OAuth) 

OAuth is an open protocol, initiated by Blaine Cook and Chris Messina, to allow secure API 

authorization in a simple, standardized method for various types of web applications. Cook and 

Messina had concluded that there were no open standards for API access delegation. The OAuth 

discussion group was created in April 2007, for the small group of implementers to write the 

draft proposal for an open protocol. DeWitt Clinton of Google learned of the OAuth project and 

expressed interest in supporting the effort. In July 2007 the team drafted an initial specification, 

and it was released in October of the same year. OAuth is a method for publishing and 

interacting with protected data. For developers, OAuth provides 

users access to their data while protecting account credentials. OAuth allows users to grant 

access to their information, which is shared by the service provider and consumers without 

sharing all of their identity. The Core designation is used to stress that this is the baseline, and 

other extensions and protocols can build on it. By design, OAuth Core 1.0 does not provide 

many desired features (e.g., automated discovery of endpoints, language support, support for 

XML-RPC and SOAP, standard definition of resource access, OpenID integration, signing 

algorithms, etc.). This intentional lack of feature support is viewed by the authors as a significant 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

37 

 

 

benefit. The Core deals with fundamental aspects of the protocol, namely, to establish a 

mechanism for exchanging a user name and password for a token with defined rights and to 

provide tools to protect the token. . In fact, OAuth by itself provides no privacy at all and 

depends on other protocols such as SSL to accomplish that. 

 OpenID 

OpenID is an open, decentralized standard for user authentication and access control that 

allows users to log onto many services using the same digital identity. It is a single-sign-on 

(SSO) method of access control. As such, it replaces the common log-in process (i.e., a log-in 

name and a password) by allowing users to log in once and gain access to resources across 

participating systems. The original OpenID authentication protocol was developed in May 2005 

by Brad Fitzpatrick, creator of the popular community web site Live-Journal. In late June 2005, 

discussions began between OpenID developers and other developers from an enterprise software 

company named Net-Mesh. These discussions led to further collaboration on interoperability 

between OpenID and NetMesh's similar Light-Weight Identity (LID) protocol. The direct result 

of the collaboration was the Yadis discovery protocol, which was announced on October 24, 

2005. 

The Yadis specification provides a general-purpose identifier for a person and any other 

entity, which canbe used with a variety of services. It provides a syntax for a resource description 

document identifying services available using that identifier and an interpretation of the elements 

of that document. Yadis discovery protocol is used for obtaining a resource description 

document, given that identifier. Together these enable coexistence and interoperability of a rich 

variety of services using a single identifier. The identifier uses a standard syntax and a well- 

established namespace and requires no additional namespace administration infrastructure. 

An OpenID is in the form of a unique URL and is authenticated by the entity hosting the OpenID 

URL.The OpenID protocol does not rely on a central authority to authenticate a user's identity. 

Neither the OpenID protocol nor any web sites requiring identification can mandate that a 

specific type of authentication be used; nonstandard forms of authentication such as smart cards, 

biometrics, or ordinary passwords are allowed. A typical scenario for using OpenID might be 

something like this: A user visits a web site that displays an OpenID log-in form somewhere on 

the page. Unlike a typical log-in form, which has fields for user name and password, the OpenID 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

38 

 

 

log-in form has only one field for the OpenID identifier (which is an OpenID URL). This form is 

connected to an implementation of an OpenID client library. 

A user will have previously registered an OpenID identifier with an OpenID identity 

provider. The user types this OpenID identifier into the OpenID log-in form. The relying party 

then requests the web page located at that URL and reads an HTML link tag to discover the 

identity provider service URL. With OpenID 2.0, the client discovers the identity provider 

service URL by requesting the XRDS document (also called the Yadis document) with the 

content type application/xrds+xml, which may be available at the target URL but is always 

available for a target XRI. 

There are two modes by which the relying party can communicate with the identity 

provider: checkid_immediate and checkid_setup. In checkid_immediate, the relying party 

requests that the provider not interact with the user. All communication is relayed through the 

user's browser without explicitly notifying the user. In checkid_setup, the user communicates 

with the provider server directly using the same web browser as is used to access the relying 

party site. The second option is more popular on the web. 

To start a session, the relying party and the identity provider establish a shared secret— 

referenced by an associate handle—which the relying party then stores. Using checkid_setup, 

the relying party redirects the user's web browser to the identity provider so that the user can 

authenticate with the provider. The method of authentication varies, but typically, an OpenID 

identity provider prompts the user for a password, then asks whether the user trusts the relying 

party web site to receive his or her credentials and identity details. If the user declines the 

identity provider's request to trust the relying party web site, the browser is redirected to the 

relying party with a message indicating that authentication was rejected. 

The site in turn refuses to authenticate the user. If the user accepts the identity provider's 

request to trust the relying party web site, the browser is redirected to the designated return page 

on the relying party web site along with the user's credentials. That relying party must then 

confirm that the credentials really came from the identity provider. If they had previously 

established a shared secret, the relying party can validate the shared secret received with the 

credentials against the one previously stored. In this case, the relying party is considered to be 

stateful, because it stores the shared secret between sessions (a process sometimes referred to as 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

39 

 

 

persistence). In comparison, a stateless relying party must make background requests using the 

check_authentication method to be sure that the data came from the identity provider. 

 
 

 SSL/TLS 

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are 

cryptographically secure protocols designed to provide security and data integrity for 

communications over TCP/IP. TLS and SSL encrypt the segments of network connections at the 

transport layer. Several versions of the protocols are in general use in web browsers, email, 

instant messaging, and voice-over-IP. TLS is an IETF standard protocol which was last updated 

in RFC 5246. 

The TLS protocol allows client/server applications to communicate across a network in a 

way specifically designed to prevent eavesdropping, tampering, and message forgery. TLS 

provides endpoint authentication and data confidentiality by using cryptography. TLS 

authentication is one-way—the server is authenticated, because the client already knows the 

server's identity. In this case, the client remains unauthenticated. At the browser level, this means 

that the browser has validated the server's certificate—more specifically, it has checked the 

digital signatures of the server certificate's issuing chain ofCertification Authorities (CAs). 

Validation does not identify the server to the end user. For true identification, the end 

user must verify the identification information contained in the server's certificate (and, indeed, 

its whole issuing CA chain).This is the only way for the end user to know the "identity" of the 

server, and this is the only way identity can be securely established, verifying that the URL, 

name, or address that is being used is specified inthe server's certificate. Malicious web sites 

cannot use the valid certificate of another web site becausethey have no means to encrypt the 

transmission in a way that it can be decrypted with the valid certificate. 

Since only a trusted CA can embed a URL in the certificate, this ensures that checking the 

apparent URL with the URL specified in the certificate is an acceptable way of identifying the 

site.TLS also supports a more secure bilateral connection mode whereby both ends of the 

connection can be assured that they are communicating with whom they believe they are 

connected. This is known asmutual (assured) authentication. Mutual authentication requires the 

TLS client-side to also maintain a certificate. 

TLS involves three basic phases: 



CS8791-Cloud Computing Unit IV Notes 

VII 
SEMESTER 

40 

 

 

1. Peer negotiation for algorithm support 

2. Key exchange and authentication 

3. Symmetric cipher encryption and message authentication 

During the first phase, the client and server negotiate cipher suites, which determine 

which ciphers are used; makes a decision on the key exchange and authentication algorithms to 

be used; and determines the message authentication codes. The key exchange and authentication 

algorithms are typically public key algorithms. The message authentication codes are made up 

from cryptographic hash functions. Once these decisions are made, data transfer may begin. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

1 

 

 

UNIT II CLOUD ENABLING TECHNOLOGIES 

Service Oriented Architecture – REST and Systems of Systems – Web Services – Publish- 

Subscribe Model – Basics of Virtualization – Types of Virtualization – Implementation Levels of 

Virtualization – Virtualization Structures – Tools and Mechanisms – Virtualization of CPU – 

Memory – I/O Devices –Virtualization Support and Disaster Recovery. 

 

 Introduction 

Web Service 

 Generic definition 
 

• Any application accessible to other applications over the Web. 
 

 Definition of the UDDI consortium 
 

• Web services are self-contained, modular business applications that have open, Internet- 

oriented, standards-based interfaces. 

 Definition of the World Wide Web Consortium (W3C) 
 

• A Web service is a software system designed to support interoperable machine-to- 

machine interaction over a network. 

• It has an interface described in a machine-processable format (specifically WSDL). 
 

• Other systems interact with the Web service using SOAP messages. 
 

What is a Web Service? 
 

• Web Services are Classes/Methods, NOT Servlets 
 

• Loosely-coupled 
 

• Encapsulate functionality to logical entities 
 

• Reuse of code and functionality 
 

• Distributed Architecture 
 

• Standardized interface & established Internet protocols 

 
Figure 2.1 Service Interfaces 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

2 

 

 

Characteristics of a Web Service 
 

 A web service interface generally consists of a collection of operations that can be used 

by a client over the Internet. 

 The operations in a web service may be provided by a variety of different resources, for 

example, programs, objects, or databases. 

 The key characteristic of (most) web services is that they can process XML-formatted 

SOAP messages. An alternative is the REST approach. 

 Each web service uses its own service description to deal with the service-specific 

characteristics of the messages it receives. Commercial examples include Amazon, 

Yahoo, Google and eBay. 
 

 

 

 

Figure 2.2 Example-Travel Agent Service 
 

Remote Access 
 

 IP Address - Locate a Computer 
 

 URI - Uniform Resource Identifier 
 

• Locate a file in that Computer 
 

 Socket and Port- Binding to a Method 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

3 

 

 

 

 
 

Figure 2.3 Web Service Architecture 
 

 

 SOA – Service Oriented Architecture 
 

 Service provider publishes service description (WSDL), e.g. on a service broker 
 

 Service Requester finds service (on service broker) and dynamically binds to service 
 

 Enables ad-hoc collaboration and Enterprise Application Integration (EAI) within web- 

based information systems 

 SOA is about how to design a software system that makes use of services of new or 

legacy applications through their published or discoverable interfaces. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

4 

 

 

 These applications are often distributed over the networks. 
 

 SOA also aims to make service interoperability extensible and effective. 
 

 It prompts architecture styles such as loose coupling, published interfaces and a standard 

communication model in order to support this goal. 

Properties of SOA 
 

 Logical view 
 

 Message orientation 
 

 Description orientation 
 

Logical view 
 

 The SOA is an abstracted, logical view of actual programs, databases, business processes. 
 

 Defined in terms of what it does, typically carrying out a business-level operation. 
 

 The service is formally defined in terms of the messages exchanged between provider 

agents and requester agents. 

Message Orientation 
 

 The internal structure of providers and requesters include the implementation language, 

process structure, and even database structure. 

 These features are deliberately abstracted away in the SOA 
 

 Using the SOA discipline one does not and should not need to know how an agent 

implementing a service is constructed. 

 The key benefit of this concerns legacy systems. 
 

 By avoiding any knowledge of the internal structure of an agent, one can incorporate any 

software component or application to adhere to the formal service definition. 

Description orientation 
 

 A service is described by machine-executable metadata. 
 

 The description supports the public nature of the SOA. 
 

 Only those details that are exposed to the public and are important for the use of the 

service should be included in the description. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

5 

 

 

 The semantics of a service should be documented, either directly or indirectly, by its 

description. 

SOA Realization (Two ways) 
 

 XML - SOAP Based Web Services 
 

 Extensible Markup Language (XML) is a markup language designed as a standard way to 

encode documents and data 

 SOAP is an acronym for Simple Object Access Protocol. It is an XML-based messaging 

protocol for exchanging information among computers 

 RESTful Web services 
 

Web service is the terminology used everywhere 
 

Service Oriented Architecture model implemented by XML Web Services 

 

Figure 2.4 SOA Model 

WSDL – Web Services Description Languages 

 Provides a machine-readable description of how the service can be called, what 

parameters it expects, and what data structures it returns. 

 Used in combination with SOAP and an XML Schema to provide Web  services  over  

the Internet. 

UDDI – Universal Description, Discovery and Integration 
 

 White Pages — address, contact, and known identifiers; 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

6 

 

 

 Yellow Pages — industrial categorizations based on standard taxonomies; 
 

 Green Pages — technical information about services exposed by the business. 
 

 Representational State Transfer (REST) 
 

 APIs are for software components; a way for software to interact with other software. 
 

 Web Services are a set of rules and technologies that enable two or more components on 

the web to talk to each other. 

 Not every API is a web service. 
 

 REST API is a web service. 
 

 REST API is an API that follows the rules of REST specification. 
 

 A web service is defined by rules: 
 

a) How software components will talk? 
 

b) What kind of messages they will send to each other? 
 

c) How requests and responses will be handled? 
 

HTTP and REST 
 

 HTTP is an application layer protocol for sending and receiving messages over  a 

network. 

 REST is a specification that dictates how distributed systems on the web should 

communicate. 

 REST is a way to implement and use the HTTP protocol. 
 

REST and Systems of Systems 
 

 SOA focuses on loosely coupled software applications running across different 

administrative domains, based on common protocols and technologies, such as HTTP and 

XML. 

 SOA is related to early efforts on the architecture style of large scale distributed systems, 

particularly Representational State Transfer (REST). 

 REST still provides an alternative to the complex standard-driven web services 

technology. 

 Used in many Web 2.0 services. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

7 

 

 

 REST is a software architecture style for distributed systems, particularly distributed 

hypermedia systems, such as the World Wide Web. 

Applications: 
 

Google, Amazon, Yahoo, Facebook and Twitter 
 

Advantage: 
 

 Simplicity 
 

 Ease of being published and consumed by clients. 
 

 

 

Figure 2.5 A simple REST interaction between user and server in HTTP specification 

 

 

REST Principles 
 

The REST architectural style is based on four principles: 
 

 Resource Identification through URIs 
 

 Uniform, Constrained Interface 
 

 Self-Descriptive Message 
 

 Stateless Interactions 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

8 

 

 

Resource Identification through URIs 
 

 The RESTful web service exposes a set of resources which identify targets of interaction 

with its clients. 

 The key abstraction of information in REST is a resource. 
 

 Any information that can be named can be a resource, such as a document or image or a 

temporal service. 

 A resource is a conceptual mapping to a set of entities. 
 

 Each particular resource is identified by a unique name, or more precisely, a Uniform 

Resource Identifier (URI). 

 URI is of type URL, providing a global addressing space for resources involved in an 

interaction between components as well as facilitating service discovery. 

 The URIs can be bookmarked or exchanged via hyperlinks. 
 

 URIs provide more readability and the potential for advertisement. 

 

 

Uniform, Constrained Interface 
 

 Interaction with RESTful web services is done via the HTTP standard, client/server 

cacheable protocol. 

 Resources are manipulated using a fixed set of four CRUD 

(create, read, update, delete) verbs or operations: 

 PUT 
 

 GET 
 

 POST 
 

 DELETE 
 

 PUT creates a new resource. 
 

 The resource can then be destroyed by using DELETE. 
 

 GET retrieves the current state of a resource. 
 

 POST transfers a new state onto a resource. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

9 

 

 

Self-Descriptive Message 
 

 A REST message includes enough information to describe how to process the message. 
 

 This enables intermediaries to do more with the message without parsing the message 

contents. 

  In REST, resources are decoupled from their representation so that their content can be 

accessed in a variety of standard formats 

Eg:- HTML, XML, MIME, plain text, PDF, JPEG, JSON, etc. 
 

 REST provides multiple/alternate representations of each resource. 
 

 Metadata about the resource is available and can be used for various purposes. 
 

 Cache control 
 

 Transmission error detection 
 

 Authentication or authorization 
 

 Access control. 
 

Stateless Interactions 
 

 The REST interactions are ―stateless‖ 
 

 Message does not depend on the state of the conversation. 
 

 Stateless communications improve visibility, reliability and increases scalability 
 

 Decrease network performance by increasing the repetitive data 

 

 

REST - Advantages 
 

 RESTful web services can be considered an alternative to SOAP stack or ―big web 

services 

 Simplicity 
 

 Lightweight nature 
 

 Integration with HTTP 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

10 

 

 

REST Architectural Elements 
 

 

 
 Web Services 

 

 Web service is often referred to a self-contained, self-describing, modular application 

designed to be used and accessible by other software applications across the web. 

 This allows client software to dynamically determine what a service does, the data types 

that a service uses, how to invoke operations on the service, and the responses that the 

service may return. 

 Once a web service is deployed, other applications and other web services can discover 

and invoke the deployed service. 

 A web service is defined as a software system designed to support interoperable machine- 

to-machine interaction over a network 

 A web service has an interface described in a machine-executable format (specifically 

Web Services Description Language or WSDL). 

 Web services are remotely executed, they do not depend on resources residing on the 

client system that calls them. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

11 

 

 

 Other systems interact with the web service in a manner prescribed by its description 

using SOAP messages, typically conveyed using HTTP with an XML serialization 

 

 

 
 

 

Figure 2.6 Web Services 
 

Web Services- Technologies 
 

 Simple Object Access Protocol (SOAP) 

 Web Services Description Language (WSDL) 

 Universal Description, Discovery and Integration (UDDI) 

Simple Object Access Protocol (SOAP) 
 

 SOAP provides a standard packaging structure for transmission of XML documents over 

various Internet protocols, such as SMTP, HTTP, and FTP. 

 A SOAP message consists of a root element called envelope. Envelope contains a header: a 

container that can be extended by intermediaries. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

12 

 

 

 Additional application-level elements such as routing information, authentication, 

transaction management, message parsing instructions and Quality of Service (QoS) 

configurations are also included. 

 Body element that carries the payload of the message. 

  The content of the payload will be marshaled by the sender‘s SOAP engine and 

unmarshaled at the receiver side, based on the XML schema that describes the structure 

of the SOAP message. 

Web Services Description Language (WSDL) 
 

WSDL describes the interface, a set of operations supported by a web service in a standard 

format. 

 It standardizes the representation of input and output parameters of its operations as well as 

the service‘s protocol binding, the way in which the messages will be transferred on the wire. 

 Using WSDL enables disparate clients to automatically understand how to interact with a 

web service. 

Universal Description, Discovery, and Integration (UDDI) 
 

 UDDI provides a global registry for advertising and discovery of web services. 

 Performed by searching for names, identifiers, categories or the specification 

implemented by the web service 

 

 
SOAP is an extension, and an evolved version of XML-RPC. 

 

A simple and effective remote procedure call protocol which uses XML for encoding its 

calls and HTTP as a transport mechanism. 

 A procedure executed on the server and the value it returns was formatted in XML. 
 

 SOAP mainly describes the protocols between interacting parties 
 

 Data format of exchanging messages is left to XML schema to be handled. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

13 

 

 

 

 

 

Figure 2.7 WS-I Protocol Stack 
 

 Business Process Execution Language for Web Services (BPEL4WS), a standard 

executable language for specifying interactions between web services. 

 Web services can be composed together to make more complex web services and 

workflows. 

 BPEL4WS is an XML-based language, built on top of web service specifications, 

which is used to define and manage long-lived service orchestrations or processes. 

 In BPEL, a business process is a large-grained stateful service, which executes 

steps to complete a business goal. 

 That goal can be the completion of a business transaction, or fulfillment of the job 

of a service. 

 Web Service WS-Notification enables web services to use the publish and subscribe 

messaging pattern. 

 Web Services Security (WS-Security) are set of protocols that ensure security for 

SOAP-based messages by implementing the principles of confidentiality, integrity and 

authentication. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

14 

 

 

 Web Services Reliable Messaging (WS-Reliable Messaging) describes a protocol that 

allows messages to be delivered reliably between distributed applications in the presence 

of software component, system, or network failures 

 WS-ResourceLifetime specification standardizes the means by which a WS-Resource 

can be destroyed. 

 WS-Policy is  a  specification  that  allows  web  services  to  use  XML  to  advertise 

their policies (on security, quality of service, etc.) and for web service consumers to 

specify their policy requirements. 

 WS-ResourceProperties defines a standard set of message exchanges that allow a 

requestor to query or update the property values of the WS-Resource. 

 WS-Addressing is a specification of transport-neutral mechanism that allows web 

services to communicate addressing information. 

 WS-Transaction WS-Transaction is a specification developed that indicates how 

transactions will be handled and controlled in Web Services. 

 The transaction specification is divided into two parts - short atomic transactions (AT) 

and long business activity (BA). 

 Web Services Coordination (WS-Coordination) describes an extensible framework for 

providing protocols that coordinate the actions of distributed applications. 

 The Java Message Service (JMS) API is a messaging standard that allows application 

components based on the Java Platform Enterprise Edition (Java EE) to create, send, 

receive, and read messages. 

 Internet Inter-ORB Protocol (IIOP) is an object-oriented protocol 
 

 Used to facilitate network interaction between distributed programs written in different 

programming languages. 

 IIOP is used to enhance Internet and intranet communication for applications and 

services. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

15 

 

 

 

 
 

 

 A SOAP message consists of an envelope used by the applications to enclose information 

that need to be sent. 

 An envelope contains a header and a body block. 
 

 The EncodingStyle element refers to the URI address of an XML schema for encoding 

elements of the message. 

 Each element of a SOAP message may have a different encoding, but unless specified, 

the encoding of the whole message is as defined in the XML schema of the root element. 

 The header is an optional part of a SOAP message that may contain auxiliary 

information. 

 The body of a SOAP request-response message contains the main information of the 

conversation, formatted in one or more XML blocks. 

 In example, the client is calling CreateBucket of the Amazon S3 web service interface. 
 

 In case of an error in service invocation, a SOAP message including a Fault element in 

the body. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

16 

 

 

 

 
 

 

 

 PUBLISH SUBSCRIBE MODEL 
 

 Publish/Subscribe systems are nowadays considered a key technology for information 

diffusion. 

 Each participant in a publish/subscribe communication system can play the role of a 

publisher or a subscriber of information. 

 Publishers produce information in form of events, which are then consumed by 

subscribers. 

 Subscribers can declare their interest on a subset of the whole information issuing 

subscriptions. 

 There are two major roles: 
 

 Publisher 
 

 Subscriber 
 

 The former provides facilities for the later to register its interest in a specific topic or 

event. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

17 

 

 

 Specific conditions holding true on the publisher side can trigger the creation of messages 

that are attached to a specific event. 

 Message will be available to all the subscribers that registered for the corresponding 

event. 

 There are two major strategies for dispatching the event to the subscribers. 
 

Push strategy: 
 

 It is the responsibility of the publisher to notify all the subscribers. Eg: Method 

invocation. 

Pull strategy : 
 

 The publisher simply makes available the message for a specific event. 
 

 It is the responsibility of the subscribers to check whether there are messages on the 

events that are registered. 

 Subscriptions are used to filter out part of the events produced by publishers. 
 

 In Software Architecture, Publish/Subscribe pattern is a message pattern and a network 

oriented architectural pattern 

 It describes how two different parts of a message passing system connect and 

communicate with each other. 

 There are three main components to the Publish Subscribe Model: 
 

 Publishers 
 

 Eventbus/broker 
 

 Subscribers 
 

Publishers: 
 

 Broadcast messages, with no knowledge of the subscribers. 
 

Subscribers: 
 

 They ‗listen‘ out for messages regarding topic/categories that they are interested in 

without any knowledge of who the publishers are. 

Event Bus: 
 

 Transfers the messages from the publishers to the subscribers. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

18 

 

 



 

 
 

Figure 2.8 Publish Subscribe Model 
 

 Each subscriber only receives a subset of the messages that have been sent by the 

Publisher. 

 Receive the message topics or categories they have subscribed to. 
 

 There are two methods of filtering out unrequired messages: 
 

 Topic based filter 
 

 Content based filter 
 

 
 

Figure 2.9 High Level View of A Publish/Subscribe System 

 

 A generic pub/sub communication system is often referred as Event Service or 

Notification Service. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

19 

 

 

 System composed of a set of nodes distributed over a communication network. 
 

 The clients of this system are divided according to their role into publishers and 

subscribers. 

 Clients are not required to communicate directly among themselves. 
 

 The interaction takes place through the nodes of the pub/sub system. 
 

Elements of a Publish/Subscribe System 
 

 A publisher submits a piece of information e (i.e., an event) to the pub/sub system by 

executing the publish(e) operation. 

 An event is structured as a set of attribute-value pairs. 
 

 Each attribute has a name, a simple character string, and a type. 
 

 The type is generally one of the common primitive data types defined in programming 

languages or query languages (e.g. integer, real, string, etc.). 

 On the subscriber‘s side, interest in specific events is expressed through subscriptions. 
 

 A subscription is a filter over a portion of the event content (or the whole of it). 
 

 Expressed through a set of constraints that depend on the subscription language. 
 

 A subscriber installs and removes a subscription from the pub/sub system by executing 

the subscribe() and unsubscribe() operations respectively. 

 An event e matches a subscription if it satisfies all the declared constraints on the 

corresponding attributes. 

 The task of verifying whenever an event e matches a subscription is called matching. 
 

Semantics of a Publish/subscribe System 
 

 When a process issues a subscribe/unsubscribe operation, the pub/sub system is not 

immediately aware of the occurred event. 

 The registration (resp. cancellation) of a subscription takes a certain amount of time, 

denoted as Tsub, to be stored into the system. 

This time encompass the update of the internal data structures of the pub/sub system and the 

network delay due to the routing of the subscription. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

20 

 

 

Three properties: 
 

Safety (Legality): A subscriber cannot be notified for an information it is not interested 

in. 

Safety (Validity): A subscriber cannot be notified for an event that has not been 

previously published. 

Liveness: The delivery of a notification for an event is guaranteed only for those 

subscribers that subscribed at a time at least Tsub before the event was published. 

Quality of Service in Publish/Subscribe Systems 
 

Reliable delivery 

Timeliness 

Security and trust 

Reliable delivery 
 

 Reliable delivery of an event means determining the subscribers that have to receive a 

published event, as stated by the liveness property and delivering the event to all of them. 

Timeliness 
 

 Real-time applications often require strict control over the time elapsed by a piece of 

information to reach all its consumers. 

 They are typically deployed over dedicated infrastructures or simply managed 

environments where synchronous message delivery can be safely assumed. 

Security and trust 
 

 A subscriber wants to trust authenticity of the events it receives from the system. 
 

 Generated by a trusty publisher and the information they contains have not been 

corrupted. 

 Subscribers have to be trusted for what concerns the subscriptions they issue. 
 

 Since an event is in general delivered to several subscribers, the producer/consumer trust 

relationship that commonly occur in a point-to-point communication, in pub/sub system 

must involve multiple participants 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

21 

 

 

Subscription Models 
 

Topic based Model 

Type based Model 

Concept based Model 

Content based Model 

Topic-based Model 
 

 Events are grouped in topics. 
 

 A subscriber declares its interest for a particular topic to receive all events pertaining to 

that topic. 

 Each topic corresponds to a logical channel ideally connecting each possible publisher to 

all interested subscribers. 

 Requires the messages to be broadcasted into logical channels. 
 

 Subscribers only receive messages from logic channels they care about (and have 

subscribed to). 

Type based Model 
 

 Pub/sub variant events are actually objects belonging to a specific type, which can thus 

encapsulate attributes as well as methods. 

 Types represent a more robust data model for application developer. 
 

 Enforce type-safety at the pub/sub system, rather than inside the application. 
 

 The declaration of a desired type is the main discriminating attribute. 
 

Concept based Model 
 

 Allows to describe event schema at a higher level of abstraction by using ontologies. 
 

 Provide a knowledge base for an unambiguous interpretation of the event structure, by 

using metadata and mapping functions. 

Content based Model 
 

 System allows subscribers to receive messages based on the content of the messages. 
 

Subscribers themselves must sort out junk messages from the ones they want. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

22 

 

 

Benefits 
 

Loose coupling 
 

 The publisher is not aware of the number of subscribers, of the identities of the 

subscribers, or of the message types that the subscribers are subscribed to. 

Improved security 
 

 The communication infrastructure transports the published messages only to the 

applications that are subscribed to the corresponding topic. 

 Specific applications can exchange messages directly, excluding other applications from 

the message exchange. 

Improved testability. 
 

 Topics usually reduce the number of messages that are required for testing. 
 

Separation of concerns 
 

 Due to the simplistic nature of the architecture, developers can exercise fine grained 

separation of concerns by dividing up message types to serve a single simple purpose 

each. 

 Eg. data with a topic ―/cats‖ should only contain information about cats. 
 

Reduced cognitive load for subscribers 
 

 Subscribers need not concern themselves with the inner workings of a publisher. 
 

 They do not even have to access to the source code. 
 

 Subscribers only interact with the publisher through the public API exposed by the 

publisher. 

Drawbacks 
 

Increased complexity. 
 

Publish/Subscribe requires you to address the following: 
 

 To design a message classification scheme for topic implementation. 
 

 To implement the subscription mechanism. 
 

 To modify the publisher and the subscribers. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

23 

 

 

Increased maintenance effort. 
 

 Managing topics requires maintenance work. 
 

 Organizations that maintain many topics usually have formal procedures for their use. 
 

Decreased performance 
 

 Subscription management adds overhead. 
 

 This overhead increases the latency of message exchange, and this latency decreases 

performance. 

Inflexibility of data sent by publisher 
 

 The publish/subscribe model introduces high semantic coupling in the messages passed 

by the publishers to the subscribers. 

 Once the structure of the data is established, it becomes difficult to change. 
 

 In order to change the structure of the messages, all of the subscribers must be altered to 

accept the changed format 

Instability of Delivery 
 

 The publisher does not have perfect knowledge of the status of the systems listening to 

the messages. 

 For instance, publish/subscribe is commonly used for logging systems. 
 

 If a logger subscribing to the ‗Critical‘ message type crashes or gets stuck in an error 

state, then the ‗Critical‘ messages may be lost! 

 Then any services depending on the error messages will be unaware of the problems with 

the publisher. 

Applications 
 

Used in a wide range of group communication applications including 
 

 Software Distribution 
 

 Internet TV 
 

 Audio or Video-conferencing 
 

 Virtual Classroom 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

24 

 

 

 Multi-party Network Games 
 

 Distributed Cache Update 
 

It can also be used in even larger size group communication applications, such as broadcasting 

and content distribution. 

 News and Sports Ticker Services 
 

 Real-time Stock Quotes and Updates 
 

 Market Tracker 
 

 Popular Internet Radio Sites 

 

 

 VIRTUALIZATION 
 

• Virtualization is a technique, which allows sharing single physical instance of an 

application or resource among multiple organizations or tenants (customers). 

• Virtualization is a proved technology that makes it possible to run multiple operating 

system and applications on the same server at same time. 

• Virtualization is the process of creating a logical(virtual) version of a server operating 

system, a storage device, or network services. 

• The technology that work behind virtualization is known as a virtual machine 

monitor(VM), or virtual manager which separates compute environments from the actual 

physical infrastructure. 

• Virtualization -- the abstraction of computer resources. 
 

• Virtualization hides the physical characteristics of computing resources from their users, 

applications, or end users. 

• This includes making a single physical resource (such as a server, an operating system, an 

application, or storage device) appear to function as multiple virtual resources. 

• It can also include making multiple physical resources (such as storage devices or 

servers) appear as a single virtual resource. 

•  In computing, virtualization refers to the act of creating a virtual (rather than actual) 

version of something, like computer hardware platforms, operating systems, storage 

devices, and computer network resources 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

25 

 

 

• Creation of a virtual machine over existing operating system and hardware. 
 

• Host machine: The machine on which the virtual machine is created. 
 

• Guest machine: virtual machines referred as a guest machine. 
 

• Hypervisor: Hypervisor is a firmware or low-level program that acts as a Virtual 

Machine Manager. 
 

Figure 2.10 Virtualization Example 

Advantages of Virtualization: 

1. Reduced Costs. 
 

2. Efficient hardware Utilization. 
 

3. Virtualization leads to better resource Utilization and increase performance 
 

4. Testing for software development. 
 

5. Increase Availability 
 

6. Save energy 
 

7. Shifting all your Local Infrastructure to Cloud in a day 
 

8. Possibility to Divide Services 
 

9. Running application not supported by the host. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

26 

 

 

Disadvantages of Virtualization: 
 

1. Extra Costs. 
 

2. Software Licensing. 

 

 

 IMPLEMENTATION LEVELS OF VIRTUALIZATION 

Virtualization is a computer architecture technology by which multiple virtual machines 

(VMs) are multiplexed in the same hardware machine. The purpose of a VM is to enhance 

resource sharing by many users and improve computer performance in terms of resource 

utilization and application flexibility. 

Hardware resources (CPU, memory, I/O devices, etc.) or software resources(operating 

system and software libraries) can be virtualized in various functional layers. 

The idea is to separate the hardware from the software to yield better system efficiency. For 

example, computer users gained access to much enlarged memory space when the concept of 

virtual memory was introduced. Similarly, virtualization techniques can be applied to enhance 

the use of compute engines, networks and storage. 

 Levels of Virtualization: 

A traditional computer runs with host operating system specially tailored for its hardware 

architecture, as shown in Figure 2.11 (a). After virtualization, different user applications 

managed by their own operating systems (guest OS) can run on the same hardware, independent 

of the host OS. 

This is often done by adding additional software, called a virtualization layer as shown in 

Figure 2.11 (b). This virtualization layer is known as hypervisor or virtual machine monitor 

(VMM) .The VMs are shown in the upper boxes, where applications run with their own guest OS 

over the virtualized CPU, memory, and I/O resources. The main function of the software layer 

for virtualization is to virtualize the physical hardware of a host machine into virtual resources to 

be used by the VMs, exclusively. The virtualization software creates the abstraction of VMs by 

interposing a virtualization layer at various levels of a computer system. Common virtualization 

layers include the instruction set architecture (ISA) level, hardware level, operating system level, 

library support level, and application level. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

27 

 

 

 

 

Figure 2.11 The architecture of a computer system before and after Virtualization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 Virtualization ranging from hardware to applications in five abstraction levels. 

Instruction Set Architecture Level: 

At the ISA level, virtualization is performed by emulating a given ISA by the ISA of the 

host machine. For example, MIPS binary code can run on an x86-based host machine with the 

help of ISA emulation. With this approach, it is possible to run a large amount of legacy binary 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

28 

 

 

code written for various processors on any given new hardware host machine. Instruction set 

emulation leads to virtual ISAs created on any hardware machine. 

The basic emulation method is through code interpretation. An interpreter program 

interprets the source instructions to target instructions one by one. OneSource instruction may 

require tens or hundreds of native target instructions to perform its function. Obviously, this 

process is relatively slow. For better performance, dynamic binary translation is desired. 

This approach translates basic blocks of dynamic source instructions to target 

instructions. The basic blocks can also be extended to program traces or super blocks to increase 

translation efficiency. Instruction set emulation requires binary translation and optimization. A 

virtual instruction set architecture (V-ISA) thus requires adding a processor-specific software 

translation layer to the compiler. 

Hardware Abstraction Level: 

Hardware-level virtualization is performed right on top of the bare hardware. The idea is 

to virtualize a computer‘s resources, such as its processors, memory, and I/O devices. The 

intention is to upgrade the hardware utilization rate by multiple users concurrently. 

Operating System Level: 

This refers to an abstraction layer between traditional OS and user applications. OS-level 

virtualization creates isolated containers on a single physical server and the OS instances to 

utilize the hardware and software in datacenters. 

The containers behave like real servers. OS-level virtualization is commonly used in 

creating virtual hosting environments to allocate hardware resources among a large number of 

mutually distrusting users. It is also used, to a lesser extent, in consolidating server hardware by 

moving services on separate hosts into containers or VMs on one server. 

Library Support Level: 

Most applications use APIs exported by user level libraries rather than using lengthy 

system calls by the OS. Since most systems provide well documented APIs, such an interface 

becomes another candidate for virtualization. 

Virtualization with library interfaces is possible by controlling the communication link 

between applications and the rest of a system through API hooks. The software tool WINE has 

implemented this approach to support Windows applications on top of UNIX hosts. Another 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

29 

 

 

example is the vCUDA which allows applications executing within VMs to leverage GPU 

hardware acceleration. 

User-Application Level: 

Virtualization at the application level virtualizes an application as a VM. On a traditional 

OS, an application often runs as a process. Therefore, application-level virtualization is also 

known as process-level virtualization. The most popular approach is to deploy high level 

language (HLL)VMs. 

 
 VMM Design Requirements and Providers 

Hardware-level virtualization inserts a layer between real hardware and traditional 

operating systems. This layer is commonly called the Virtual Machine Monitor (VMM) and it 

manages the hardware resources of a computing system. Each time programs access the 

hardware the VMM captures the process. VMM acts as a traditional OS. 

One hardware component, such as the CPU, can be virtualized as several virtual copies. 

Therefore, several traditional operating systems which are the same or different can sit on the 

same set of hardware simultaneously. 

Three requirements for a VMM 

 First, a VMM should provide an environment for programs which is essentially identical 

to the original machine. 

 Second, programs run in this environment should show, at worst, only minor decreases in 

speed. 

 Third, a VMM should be in complete control of the system resources 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

30 

 

 

 Virtualization Support at the OS Level 

With the help of VM technology, a new computing mode known as cloud 

computing is emerging. Cloud computing is transforming the computing landscape by shifting 

the hardware and staffing costs of managing a computational center to third parties, just like 

banks. However, cloud computing has at least two challenges. 

 The first is the ability to use a variable number of physical machines and VM instances 

depending on the needs of a problem. 

 The second challenge concerns the slow operation of instantiating new VMs. 

Currently, new VMs originate either as fresh boots or as replicates of a template 

VM, unaware of the current application state. Therefore, to better support cloud computing, a 

large amount of research and development should be done. 

 
Why OS-Level Virtualization? 

To reduce the performance overhead of hardware-level virtualization, even hardware 

modification is needed. OS-level virtualization provides a feasible solution for these hardware- 

level virtualization issues. Operating system virtualization inserts a virtualization layer inside an 

operating system to partition a machine‘s physical resources. It enables multiple isolated VMs 

within a single operating system kernel. This kind of VM is often called a virtual execution 

environment (VE), Virtual Private System (VPS), or simply container. From the user‘s point of 

view, VEs look like real servers. This means a VE has its own set of processes, file system, user 

accounts, network interfaces with IP addresses, routing tables, firewall rules, and other personal 

settings. Although VEs can be customized for different people, they share the same operating 

system kernel. 

 
Advantages of OS Extensions 

(1) VMs at the operating system level have minimal startup/shutdown costs, low resource 

requirements, and high scalability. 

(2) For an OS-level VM, it is possible for a VM and its host environment to synchronize 

state changes when necessary. 

These benefits can be achieved via two mechanisms of OS-level virtualization: 

(1) All OS-level VMs on the same physical machine share a single operating system kernel 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

31 

 

 

(2) The virtualization layer can be designed in a way that allows processes in VMs to access as 

many resources of the host machine as possible, but never to modify them. 

 
Virtualization on Linux or Windows Platforms 

Virtualization support on the Windows-based platform is still in the research stage. The 

Linux kernel offers an abstraction layer to allow software processes to work with and operate on 

resources without knowing the hardware details. New hardware may need a new Linux kernel to 

support. Therefore, different Linux platforms use patched kernels to provide special support for 

extended functionality. 

 

 

 
 Middleware Support for Virtualization 

Library-level virtualization is also known as user-level Application Binary Interface 

(ABI) or API emulation. This type of virtualization can create execution environments for 

running alien programs on a platform rather than creating a VM to run the entire operating 

system. API call interception and remapping are the key functions performed. This provides an 

overview of several library-level virtualization systems: namely the Windows Application 

Binary Interface (WABI), lxrun, WINE, Visual MainWin, and Vcuda. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

32 

 

 

 

 
 

 Virtualization Structures/Tools and Mechanisms 

There are three typical classes of VM architecture. Before virtualization, the operating 

system manages the hardware. After virtualization, a virtualization layer is inserted between the 

hardware and the operating system. In such a case, the virtualization layer is responsible for 

converting portions of the real hardware into virtual hardware. Therefore, different operating 

systems such as Linux and Windows can run on the same physical machine, simultaneously. 

Depending on the position of the virtualization layer, there are several classes of VM 

architectures, namely the hypervisor architecture, para-virtualization, and host based 

virtualization. The hypervisor is also known as the VMM (Virtual Machine Monitor). They both 

perform the same virtualization operations. 

 Hypervisor and Xen Architecture: 

The hypervisor supports hardware-level virtualization on bare metal devices like CPU, 

memory, disk and network interfaces. The hypervisor software sits directly between the physical 

hardware and its OS. This virtualization layer is referred to as either the VMM or the hypervisor. 

The hypervisor provides hypercalls for the guest OSes and applications. Depending on the 

functionality, a hypervisor can assume a micro-kernel architecture like the Microsoft Hyper-V. 

Or it can assume monolithic hypervisor architecture like the VMware ESX for server 

virtualization. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

33 

 

 

A micro-kernel hypervisor includes only the basic and unchanging functions (such as 

physical memory management and processor scheduling). The device drivers and other 

changeable components are outside the hypervisor. A monolithic hypervisor implements all the 

aforementioned functions, including those of the device drivers. 

Therefore, the size of the hypervisor code of a micro-kernel hypervisor is smaller than 

that of a monolithic hypervisor. Essentially, a hypervisor must be able to convert physical 

devices into virtual resources dedicated for the deployed VM to use. 

The Xen Architecture: 

The core components of a Xen system are the hypervisor, kernel, and applications. The 

organization of the three components is important. Like other virtualization systems, many guest 

OSes can run on top of the hypervisor. However, not all guest OSes are created equal, and one in 

particular controls the others. 

The guest OS, which has control ability, is called Domain 0, and the others are called 

Domain U. Domain 0 is a privileged guest OS of Xen. It is first loaded when Xen boots without 

any file system drivers being available. Domain 0 is designed to access hardware directly and 

manage devices. Therefore, one of the responsibilities of Domain 0 is to allocate and map 

hardware resources for the guest domains (the Domain U domains). 

 
 Binary Translation with Full Virtualization: 

Depending on implementation technologies, hardware virtualization can be classified into 

two categories: full virtualization and host-based virtualization. Full virtualization does not need 

to modify the host OS. It relies on binary translation to trap and to virtualize the execution of 

certain sensitive, non virtualizable instructions. The guest OSes and their applications consist of 

noncritical and critical instructions. In a host-based system, both a host OS and a guest OS are 

used. A virtualization software layer is built between the host OS and guest OS. 

 
Full Virtualization: 

With full virtualization, noncritical instructions run on the hardware directly while critical 

instructions are discovered and replaced with traps into the VMM to be emulated by software. 

Both the hypervisor and VMM approaches are considered full virtualization. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

34 

 

 

Binary Translation of Guest OS Requests Using a VMM : 

VMware puts the VMM at Ring 0 and the guest OS at Ring 1. The VMM scans the 

instruction stream and identifies the privileged, control- and behavior-sensitive instructions. 

When these instructions are identified, they are trapped into the VMM, which emulates the 

behavior of these instructions. 

 

Figure 2.13 Indirect execution of complex instructions via binary translation of guest OS 

requests using the VMM plus direct execution of simpleinstructions on the same host. 

The method used in this emulation is called binary translation. Therefore, full 

virtualization combines binary translation and direct execution. The guest OS is completely 

decoupled from the underlying hardware. Consequently, the guest OS is unaware that it is being 

virtualized. Binary translation employs a code cache to store translated hot instructions to 

improve performance, but it increases the cost of memory usage. 

Host-Based Virtualization: 

An alternative VM architecture is to install a virtualization layer on top of the host OS. 

This host OS is still responsible for managing the hardware. The guest OSes are installed and run 

on top of the virtualization layer. Dedicated applications may run on the VMs. Certainly, some 

other applications can also run with the host OS directly. This host-based architecture has some 

distinct advantages, as enumerated next. First, the user can install this VM architecture without 

modifying the host OS. The virtualizing software can rely on the host OS to provide device 

drivers and other low level services. This will simplify the VM design and ease its deployment. 

Second, the host-based approach appeals to many host machine configurations. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

35 

 

 

Compared to the hypervisor/VMM architecture, the performance of the host based architecture 

may also be low. When an application requests hardware access, it involves four layers of 

mapping which downgrades performance significantly. 

 
 Para-Virtualization with Compiler Support: 

Para-virtualization needs to modify the guest operating systems. A para-virtualized VM 

provides special APIs requiring substantial OS modifications in user applications. Performance 

degradation is a critical issue of a virtualized system. No one wants to use a VM if it is much 

slower than using a physical machine. 

The virtualization layer can be inserted at different positions in a machine software stack. 

However, para-virtualization attempts to reduce the virtualization overhead, and thus improve 

performance by modifying only the guest OS kernel. The guest operating systems are para- 

virtualized. The traditional x86 processor offers four instruction execution rings: Rings 0,1, 2, 

and 3. The lower the ring number, the higher the privilege of instruction being executed. The OS 

is responsible for managing the hardware and the privileged instructions to execute at Ring 0, 

while user-level applications run at Ring 3. 

 

Figure 2.14 Para-virtualized VM architecture 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

36 

 

 

 

 

Figure 2.15 The use of a para-virtualized guest OS assisted by an intelligent compiler to 

replace non virtualizable OS instructions by hyper calls. 

 
Para-Virtualization Architecture: 

When the x86 processor is virtualized, a virtualization layer is inserted between the 

hardware and the OS. According to the x86 ring definitions, the virtualization layer should also 

be installed at Ring 0. The para-virtualization replaces non virtualizable instructions with hyper 

calls that communicate directly with the hypervisor or VMM. However, when the guest OS 

kernel is modified for virtualization, it can no longer run on the hardware directly. 

Although para-virtualization reduces the overhead, it has incurred other problems. First, 

its compatibility and portability may be in doubt, because it must support the unmodified OS as 

well. Second, the cost of maintaining para-virtualized OSes is high, because they may require 

deep OS kernel modifications. Finally, the performance advantage of para virtualization varies 

greatly due to workload variations. 

 
KVM (Kernel-Based VM): 

This is a Linux para-virtualization system—a part of the Linux version 2.6.20 kernel. 

Memory management and scheduling activities are carried out by the existing Linux kernel. The 

KVM does the rest, which makes it simpler than the hypervisor that controls the entire machine. 

KVM is a hardware-assisted para-virtualization tool, which improves performance and supports 

unmodified guest OSes such as Windows, Linux, Solaris, and other UNIX variants. Unlike the 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

37 

 

 

full virtualization architecture which intercepts and emulates privileged and sensitive instructions 

at runtime, para-virtualization handles these instructions at compile time. 

The guest OS kernel is modified to replace the privileged and sensitive instructions with 

hyper calls to the hypervisor or VMM. Xen assumes such a para virtualization architecture. The 

guest OS running in a guest domain may run at Ring 1instead of at Ring 0. This implies that the 

guest OS may not be able to execute some privileged and sensitive instructions. The privileged 

instructions are implemented by hypercalls to the hypervisor. After replacing the instructions 

with hyper calls, the modified guest OS emulates the behavior of the original guest OS. 

 
 VIRTUALIZATION OF CPU, MEMORY, AND I/O DEVICES 

To support virtualization, processors such as the x86 employ a special running mode and 

instructions, known as hardware-assisted virtualization. In this way, the VMM and guest OS run 

in different modes and all sensitive instructions of the guest OS and its applications are trapped 

in the VMM. To save processor states, modes witching are completed by hardware. For the 

x86architecture, Intel and AMD have proprietary technologies for hardware-assisted 

virtualization. 

Hardware Support for Virtualization: Modern operating systems and processors permit 

multiple processes to run simultaneously. If there is no protection mechanism in a processor, all 

instructions from different processes will access the hardware directly and cause a system crash. 

Therefore, all processors have at least two modes, user mode and supervisor mode, to ensure 

controlled access of critical hardware. Instructions running in supervisor mode are called 

privileged instructions. 

Other instructions are unprivileged instructions. In a virtualized environment, it is more 

difficult to make OSes and applications run correctly because there are more layers in the 

machine stack. 

CPU Virtualization: 

A VM is a duplicate of an existing computer system in which a majority of the VM 

instructions are executed on the host processor in native mode. Thus, unprivileged instructions of 

VMs run directly on the host machine for higher efficiency. Other critical instructions should be 

handled carefully for correctness and stability. The critical instructions are divided into three 

categories: 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

38 

 

 

Privileged instructions - Privileged instructions execute in a privileged mode and will be 

trapped if executed outside this mode. 

Control sensitive instructions - Control-sensitive instructions attempt to change the 

configuration of resources used. 

Behavior-sensitive instructions - Behavior-sensitive instructions have different behaviors 

depending on the configuration of resources, including the load and store 

operations over the virtual memory. 

A CPU architecture is virtualizable if it supports the ability to run the VM‘s privileged 

and privileged instructions in the CPU‘s user mode while the VMM runs in supervisor mode. 

When the privileged instructions including control- and behavior sensitive instructions of a VM 

are executed, they are trapped in the VMM. In this case, the VMM acts as a unified mediator for 

hardware access from different VMs to guarantee the correctness and stability of the whole 

system. RISC CPU architectures can be naturally virtualized because all control- and behavior- 

sensitive instructions are privileged instructions. 

Hardware-Assisted CPU Virtualization: 

This technique attempts to simplify virtualization because full or para virtualization is 

complicated. Intel and AMD add an additional mode called privilege mode level (some people 

call it Ring-1) to x86 processors. Therefore, operating systems can still run at Ring 0 and the 

hypervisor can run at Ring -1.All the privileged and sensitive instructions are trapped in the 

hypervisor automatically. This technique removes the difficulty of implementing binary 

translation of full virtualization. It also lets the operating system run in VMs without 

modification. 

Memory Virtualization: 

Virtual memory virtualization is similar to the virtual memory support provided by 

modern operating systems. In a traditional execution environment, the operating system 

maintains mappings of virtual memory to machine memory using page tables, which is a one- 

stage mapping from virtual memory to machine memory. All modern x86 CPUs include a 

memory management unit (MMU) and a translation lookaside buffer (TLB) to optimize virtual 

memory performance. 

However, in a virtual execution environment, virtual memory virtualization involves 

sharing the physical system memory in RAM and dynamically allocating it to the physical 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

39 

 

 

memory of the VMs. That means a two-stage mapping process should be maintained by the guest 

OS and the VMM, respectively: virtual memory to physical memory and physical memory to 

machine memory. Furthermore, MMU virtualization should be supported, which is transparent to 

the guest OS. The guest OS continues to control the mapping of virtual addresses to the physical 

memory addresses of VMs. But the guest OS cannot directly access the actual machine memory. 

The VMM is responsible for mapping the guest physical memory to the actual machine memory. 

Figure 2.16 shows the two-level memory mapping procedure. 

 
I/O Virtualization: 

I/O virtualization involves managing the routing of I/O requests between virtual devices and the 

shared physical hardware. There are three ways to implement I/O virtualization: 

 Full device emulation 

 Para virtualization 

 Direct I/O 

Figure 2.16 Two-level memory mapping procedure. 

 
 

Full device emulation is the first approach for I/O virtualization. Generally, this 

approach emulates well known, real-world devices. All the functions of a device or bus 

infrastructure, such as device enumeration, identification, interrupts, and DMA, are replicated in 

software. This software is located in the VMM and acts as a virtual device. The I/O access 

requests of the guest OS are trapped in the VMM which interacts with the I/O devices. 

A single hardware device can be shared by multiple VMs that run concurrently. 

However, software emulation runs much slower than the hardware it emulates. The para 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

40 

 

 

virtualization method of I/O virtualization is typically used in Xen. It is also known as the split 

driver model consisting of a frontend driver and a backend driver. The frontend driver is running 

in Domain U and the backend driver is running in Domain 0. They interact with each other via a 

block of shared memory. The frontend driver manages the I/O requests of the guest OSes and the 

backend driver is responsible for managing the real I/O devices and multiplexing the I/O data of 

different VMs. Although para I/O-virtualization achieves better device performance than full 

device emulation, it comes with a higher CPU overhead. 

 
 

Figure 2.17 Device emulation for I/O virtualization implemented inside the middle layer 

that maps real I/O devices into the virtual devices for the guest device driver to use. 

 
Virtualization in Multi-Core Processors: 

Virtualizing a multi-core processor is relatively more complicated than virtualizing a 

unicore processor. Though multicore processors are claimed to have higher performance by 

integrating multiple processor cores in a single chip, muti-core virtualization has raised some 

new challenges to computer architects, compiler constructors, system designers, and application 

programmers. 

There are mainly two difficulties: Application programs must be parallelized to use all cores 

fully, and software must explicitly assign tasks to the cores, which is a very complex problem. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

41 

 

 

 Virtualization Support and Disaster Recover: 

One very distinguishing feature of cloud computing infrastructure is the use of 

system virtualization and the modification to provisioning tools. Virtualizations of servers on a 

shared cluster can consolidate web services. As the VMs are the containers of cloud services, the 

provisioning tools will first find the corresponding physical machines and deploy the VMs to 

those nodes before scheduling the service to run on the virtual nodes. 

In addition, in cloud computing, virtualization also means the resources and 

fundamental infrastructure are virtualized. The user will not care about the computing resources 

that are used for pro-viding the services. Cloud users do not need to know and have no way to 

discover physical resources that are involved while processing a service request. 

Also, application developers do not care about some infrastructure issues such as 

scalability and fault tolerance (i.e., they are virtualized). Application developers focus on service 

logic. Figure 2.18 shows the infrastructure needed to virtualize the servers in a data center for 

implementing specific cloud applications. 

 
 Hardware Virtualization 

In many cloud computing systems, virtualization software is used to virtualize the 

hardware. System virtualization software is a special kind of software which simulates the 

execution of hardware and runs even unmodified operating systems. Cloud computing systems 

use virtualization software as the running environment for legacy software such as old operating 

systems and unusual applications. Virtualization software is also used as the platform for 

developing new cloud applications that enable developers to use any operating systems and 

programming environments they like. 

The development environment and deployment environment can now be the same, 

which eliminates some runtime problems. Some cloud computing providers have used 

virtualization technology to provide this service for developers. As mentioned before, system 

virtualization software is considered the hardware analog mechanism to run an unmodified 

operating system, usually on bare hardware directly, on top of software. Table 4.4 lists some of 

the system virtualization software in wide use at the time of this writing. Currently, the VMs 

installed on a cloud computing platform are mainly used for hosting third-party programs. VMs 

provide flexible runtime services to free users from worrying about the system environment 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

42 

 

 

 

 
 

Using VMs in a cloud computing platform ensures extreme flexibility for users. 

As the computing resources are shared by many users, a method is required to maximize the 

users‘ privileges and still keep them separated safely. Traditional sharing of cluster resources 

depends on the user and group mechanism on a system. Such sharing is not flexible. Users 

cannot customize the system for their special purposes. Operating systems cannot be changed. 

The separation is not complete. 

Figure 2.18 Virtualized Storage server and 
Networks 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

43 

 

 

 

 
 

 

 

 

An environment that meets one user‘s requirements often cannot satisfy another 

user. Virtualization allows users to have full privileges while keeping them separate. Users have 

full access to their own VMs, which are completely separate from other users‘ VMs. Multiple 

VMs can be mounted on the same physical server. Different VMs may run with different OSes. 

We also need to establish the virtual disk storage and virtual networks needed by the VMs. The 

virtualized resources form a resource pool. 

The virtualization is carried out by special servers dedicated to generating the 

virtualized resource pool. The virtualized infrastructure (black box in the middle) is built with 

many virtualizing integration managers. These managers handle loads, resources, security, data, 

and provisioning functions. 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

44 

 

 

 Virtualization Support in Public Clouds 

AWS provides extreme flexibility (VMs) for users to execute their own applications. 

GAE provides limited application-level virtualization for users to build applications only based 

on the services that are created by Google. Microsoft provides programming-level virtualization 

(.NET virtualization) for users to build their applications. The VMware tools apply to 

workstations, servers, and virtual infrastructure. The Microsoft tools are used on PCs and some 

special servers. The Xen Enterprise tool applies only to Xen-based servers. 

Everyone is interested in the cloud; the entire IT industry is moving toward the vision of 

the cloud. Virtualization leads to HA, disaster recovery, dynamic load leveling, and rich 

provisioning support. Both cloud computing and utility computing leverage the benefits of 

virtualization to provide a scalable and autonomous computing environment. 

 
 Storage Virtualization for Green Data Centers 

IT power consumption in the United States has more than doubled to 3 percent of the 

total energy consumed in the country. The large number of data centers in the country has 

contributed to this energy crisis to a great extent. More than half of the companies in the Fortune 

500 are actively implementing new corporate energy policies. Recent surveys from both IDC and 

Gartner confirm the fact that virtualization had a great impact on cost reduction from reduced 

power consumption in physical computing systems. This alarming situation has made the IT 

industry become more energy aware. 

With little evolution of alternate energy resources, there is an imminent need to con-serve 

power in all computers. Virtualization and server consolidation have already proven handy in 

this aspect. Green data centers and benefits of storage virtualization are considered to further 

strengthen the synergy of green computing. 

 
 Virtualization for IaaS 

VM technology has increased in ubiquity. This has enabled users to create customized 

environments atop physical infrastructure for cloud computing. 

Use of VMs in clouds has the following distinct benefits: 

(1) System administrators consolidate workloads of underutilized servers in fewer servers; 

(2) VMs have the ability to run legacy code without interfering with other APIs; 



CS8791-Cloud Computing Unit II Notes 

VII 
SEMESTER 

45 

 

 

(3) VMs can be used to improve security through creation of sandboxes for running 

applications with questionable reliability; 

(4)  Virtualized cloud platforms can apply performance isolation, letting providers offer 

some guarantees and better QoS to customer applications. 

 
2.9.5.5 VM Cloning for Disaster Recovery 

VM technology requires an advanced disaster recovery scheme. One scheme is to 

recover one physical machine by another physical machine. The second scheme is to recover one 

VM by another VM. Traditional disaster recovery from one physical machine to another is rather 

slow, complex, and expensive. Total recovery time is attributed to the hardware configuration, 

installing and configuring the OS, installing the backup agents, and the long time to restart the 

physical machine. To recover a VM platform, the installation and configuration times for the OS 

and backup agents are eliminated. 

Therefore, we end up with a much shorter disaster recovery time, about 40 percent of that 

to recover the physical machines. Virtualization aids in fast disaster recovery by VM 

encapsulation. The cloning of VMs offers an effective solution. The idea is to make a clone VM 

on a remote server for every running VM on a local server. Among all the clone VMs, only one 

needs to be active. The remote VM should be in a suspended mode. 

A cloud control center should be able to activate this clone VM in case of failure of the 

original VM, taking a snapshot of the VM to enable live migration in a minimal amount of time. 

The migrated VM can run on a shared Internet connection. 

Only updated data and modified states are sent to the suspended VM to update its state. 

The Recovery Property Objective (RPO) and Recovery Time Objective (RTO) are affected by 

the number of snapshots taken. Security of the VMs should be enforced during live migration of 

VMs. 



 

25 

 

COURSE OUTCOMES: 

Upon completion of the course the students should be able to: 

CO1: Write client side scripting HTML, CSS and JS. 

CO2: Implement and architect the server side of the web application. 

CO3: Implement Web Application using NodeJS. 

CO4: Architect NoSQL databases with MongoDB. 

CO5: Implement a full-stack Single Page Application using React, NodeJS and MongoDB and   

         deploy on Cloud. 

 

REFERENCES 

1. David Flanagan, “Java Script: The Definitive Guide”, O’Reilly Media, Inc, 7th Edition, 2020 

2. Matt Frisbie, "Professional JavaScript for Web Developers", Wiley Publishing, Inc, 4th Edition, 

ISBN: 978-1-119-36656-0, 2019 

3. Alex Banks, Eve Porcello, "Learning React", O’Reilly Media, Inc, 2nd Edition, 2020 

4. Marc Wandschneider, “Learning  Node”, Addison-Wesley Professional, 2nd Edition, 2016 

5. Joe Beda, Kelsey Hightower, Brendan Burns, “Kubernetes: Up and Running”, O’Reilly Media, 

1st edition, 2017 

6. Paul Zikopoulos, Christopher Bienko, Chris Backer, Chris Konarski, Sai Vennam, “Cloud 

Without Compromise”, O’Reilly Media, 1st edition, 2021 

 

CO-PO Mapping 

CO POs 

PO1 PO2 PO3 PO4 PO5 PO6 

1 1 1 2 2 2 2 

2 2 1 2 2 2 2 

3 2 1 3 2 3 2 

4 2 1 3 2 3 3 

5 2 1 3 2 3 3 

Avg 1.8 1 2.6 2 2.6 2.4 

 

 

MC4202          ADVANCED DATABASE TECHNOLOGY           L   T  P  C

                              3   0  0   3 

COURSE OBJECTIVES:   

 To understand the working principles and query processing of distributed databases. 

 To understand the basics of spatial, temporal and mobile databases and their applications. 

 To distinguish the different types of NoSQL databases. 

 To understand the basics of XML and create well-formed and valid XML documents. 

 To gain knowledge about information retrieval and web search. 

 

UNIT I   DISTRIBUTED DATABASES                                      9  

Distributed Systems – Introduction – Architecture – Distributed Database Concepts – Distributed 

Data Storage – Distributed Transactions – Commit Protocols – Concurrency Control – Distributed 

Query Processing  

 



 

26 

 

UNIT II  SPATIAL AND TEMPORAL DATABASES                                       9  

Active Databases Model – Design and Implementation Issues - Temporal Databases - Temporal  

Querying - Spatial Databases: Spatial Data Types, Spatial Operators and Queries – Spatial 

Indexing and Mining – Applications -– Mobile Databases: Location and Handoff Management, 

Mobile Transaction Models – Deductive Databases - Multimedia Databases.  

 

UNIT III  NOSQL DATABASES                                       9 

NoSQL – CAP Theorem – Sharding - Document based – MongoDB Operation: Insert, Update, 

Delete, Query, Indexing, Application, Replication, Sharding–Cassandra: Data Model, Key Space, 

Table Operations, CRUD Operations, CQL Types – HIVE: Data types, Database Operations, 

Partitioning – HiveQL – OrientDB Graph database – OrientDB Features 

 

UNIT IV  XML DATABASES                            9  

Structured, Semi structured, and Unstructured Data – XML Hierarchical Data Model – XML 

Documents – Document Type Definition – XML Schema – XML Documents and Databases – XML 

Querying – XPath – XQuery 

 

UNIT V  INFORMATION RETRIEVAL AND WEB SEARCH                          9  

IR concepts – Retrieval Models – Queries in IR system – Text Preprocessing – Inverted Indexing – 

Evaluation Measures – Web Search and Analytics – Current trends.  

TOTAL: 45 PERIODS 

Suggested Activities: 

1. Create a distributed database for any application (ex. book store) and access it using PHP 

and Python 

2. Create spatial database of any place and perform query operations 

3. Creating Databases and writing simple queries using MongoDB, DynamoDB, Voldemort Key-

Value Distributed Data Store Hbase and Neo4j.  

4. Creating XML Documents, Document Type Definition and XML Schema for any e-commerce 

website and perform XML Querying 

5. Perform sentiment analysis for any web document using text preprocessing techniques 

 

COURSE OUTCOMES:  

On completion of the course, the student will be able to:  

CO1: Design a distributed database system and execute distributed queries.  

CO2: Manage Spatial and Temporal Database systems and implement it in corresponding   

          applications. 

CO3: Use NoSQL database systems and manipulate the data associated with it. 

CO4: Design XML database systems and validate with XML schema. 

CO5: Apply knowledge of information retrieval concepts on web databases. 

 

 

REFERENCES:  

1. Abraham Silberschatz, Henry F Korth, S. Sudharshan, “Database System Concepts”, 

Seventh Edition, McGraw Hill, 2019.  

2. R. Elmasri, S.B. Navathe, “Fundamentals of Database Systems”, Seventh Edition, Pearson 

Education/Addison Wesley, 2017. 

3. Guy Harrison, “Next Generation Databases, NoSQL, NewSQL and Big Data”, First Edition, 

Apress publishers, 2015 



 

 

 

 

 

 

 

Introduction to NOSQL Systems 

 

NoSQL database stands for "Not Only SQL" or "Not SQL."  

 
 

NoSQL Database is a non-relational Data Management System, that does not require a fixed 

schema. It avoids joins, and is easy to scale. The major purpose of using a NoSQL database is for 

distributed data stores with humongous data storage needs. NoSQL is used for Big data and real-

time web apps. For example, companies like Twitter, Facebook and Google collect terabytes of 

user data every single day. 

 

Why NoSQL? 

The concept of NoSQL databases became popular with Internet giants like Google, Facebook, 

Amazon, etc. who deal with huge volumes of data. The system response time becomes slow 

when you use RDBMS for massive volumes of data. 

To resolve this problem, we could "scale up" our systems by upgrading our existing hardware. 

This process is expensive. 

The alternative for this issue is to distribute database load on multiple hosts whenever the load 

increases. This method is known as "scaling out." 

 

Brief History of NoSQL Databases 

1998- Carlo Strozzi use the term NoSQL for his lightweight, open-source relational database 

2000- Graph database Neo4j is launched 

2004- Google BigTable is launched 

2005- CouchDB is launched 

2007- The research paper on Amazon Dynamo is released 

2008- Facebooks open sources the Cassandra project 

2009- The term NoSQL was reintroduced 

 

 

 

 

UNIT II  NOSQL DATABASES          

NoSQL – CAP Theorem – Sharding - Document based – MongoDB Operation: Insert, 

Update, Delete, Query, Indexing, Application, Replication, Sharding, Deployment – Using 

MongoDB with PHP / JAVA – Advanced MongoDB Features – Cassandra: Data Model, Key 

Space, Table Operations, CRUD Operations, CQL Types – HIVE: Data types, Database 

Operations, Partitioning – HiveQL – OrientDB Graph database – OrientDB Features  
 



Emergence of NOSQL Systems 

Many companies and organizations are faced with applications that store vast amounts of data. 

Consider a free e-mail application, such as Google Mail or Yahoo Mail or other similar service—

this application can have millions of users, and each  user can have thousands of e-mail 

messages. There is a need for a storage system  that can manage all these e-mails; a structured 

relational SQL system may not be appropriate.  

 

Because (1) SQL systems offer too many services (powerful query language, concurrency 

control, etc.), which this application may not need; and (2) a structured data model such the 

traditional relational model may be too restrictive. 

 

Another example, consider an application such as Facebook, with millions of users who submit 

posts, many with images and videos; then these posts must be displayed on pages of other users 

using the social media relationships among the users. User profiles, user relationships, and posts 

must all be stored in a huge collection of data stores, and the appropriate posts must be made 

available to the sets of users that have signed up to see these posts  

 

Google developed a proprietary NOSQL system known as BigTable, which is used in many of 

Google’s applications that require vast amounts of data storage, such as Gmail, Google Maps, 

and Web site indexing s. Google’s innovation led to the category of NOSQL systems known as 

column-based or wide column stores; they are referred to as column family stores. 

 

Apache Hbase is an open source NOSQL system based on similar concepts. 

 

Google’s innovation led to the category of NOSQL systems known as column-based or wide 

column stores; 

Amazon developed a NOSQL system called DynamoDB that is available through Amazon’s 

cloud services. This innovation led to the category known as key-value data stores or sometimes 

key-tuple or key-object data stores. 

 

Facebook developed a NOSQL system called Cassandra, which is now open source and known 

as Apache Cassandra. This NOSQL system uses concepts from both key-value stores and 

column-based systems. 

 

MongoDB and CouchDB, which are classified as document-based NOSQL systems or 

document stores. 

 

Another category of NOSQL systems is the graph-based NOSQL systems, or graph databases; 

these include Neo4J and GraphBase. 

 

Features of NoSQL 

❖ Non-relational 

❖ NoSQL databases never follow the relational model 

❖ Never provide tables with flat fixed-column records 

❖ Work with self-contained aggregates or BLOBs 

❖ Doesn't require object-relational mapping and data normalization 

❖ No complex features like query languages, query planners, referential integrity joins, 

ACID. 

 



Characteristics of NOSQL Systems 

1. Scalability:    

There are two kinds of scalability in distributed systems: horizontal and vertical. In NOSQL 

systems, horizontal scalability is generally used, where the distributed system is expanded by 

adding more nodes for data storage and processing as the volume of data grows. 

Vertical scalability, on the other hand, refers to expanding the storage and computing power of 

existing nodes. In NOSQL systems, horizontal scalability is employed. 

    Scalability = the ability of a system to handle a growing amount of work 

2 ways to achieve scalability: 

Vertical scalability:  Handle more load by using faster processors         

Horizontal scalability:  Handle more load by using more processors         

 

NOSQL systems are always horizontally scalable: 

Processing/storage capacity in NOSQL systems are increased by adding more processing/storage 

nodes. 

 

2. Availability, Replication and Eventual Consistency:  Many applications that use NOSQL 

systems require continuous system availability. To accomplish this, data is replicated over two or 

more nodes in a transparent manner, so that if one node fails, the data is still available on other 

nodes. 

Replication improves data availability and can also improve read performance. 

 

3. Replication Models: Two major replication models are used in NOSQL systems: 

master-slave and master-master replication. Master-slave replication requires one copy to be 

the master copy; all write operations must be applied to the master copy and then propagated to 

the slave copies.  

The master-master replication allows reads and writes at any of the replicas but may not 

guarantee that reads at nodes that store different copies see the same values. 

Master-slave replication: 

o One of the copies is the master copy 

o All write operations must apply to the master copy 

o The slave copies will eventually receive the updates 

Read operations usually can access any data copy for performance. 

 

 

 

 

 

 

 



Master-master replication: 

o Allows read/write to any replica (copy) 

 

o The write operation includes a time stamp. 

 

4. Sharding of Files: In many NOSQL applications, files (or collections of data objects) can 

have many millions of records (or documents or objects), and these records can be accessed 

concurrently by thousands of users.  It is not practical to store the whole file in one node.  

Sharding (horizontal partitioning) is often employed in NOSQL systems. This serves to 

distribute the load of accessing  the file records to multiple nodes. 

 

5. High-Performance Data Access: In many NOSQL applications, it is necessary to find 

individual records or objects (data items) from among the millions of data records or objects in a 

file. To achieve this, most systems use one of two techniques: hashing or range partitioning on 

object keys. 

In hashing, a hash function h(K) is applied to the key K, and the location of the object with key 

K is determined by the value of h(K). In range partitioning, the location is determined via a 

range of key values;   

.  

 

Types / Categories of NoSQL Databases 

NoSQL Databases are mainly categorized into four types: Key-value pair, Column-oriented, 

Graph-based and Document-oriented. Every category has its unique attributes and limitations. 

None of the above-specified database is better to solve all the problems. Users should select the 

database based on their product needs. 

• Key-value Pair Based 

• Column-oriented Graph 

• Graphs based 

• Document-oriented 

 

1.  Document-based NOSQL systems: These 

systems store data in the form of documents using 

well-known formats, such as JSON (JavaScript 

Object Notation).  

Documents are accessible via their document id, but 

can also be accessed rapidly using other indexes. 

Amazon SimpleDB, CouchDB, MongoDB, Riak, 

Lotus Notes, MongoDB, are popular Document originated DBMS systems. 



2. NOSQL key-value stores: These systems have a simple data model based on fast access by 

the key to the value associated with the key; the value can  be a record or an object or a 

document or even have a more complex data structure. 

It is designed in such a way to handle lots of data and heavy load. Key-value pair storage 

databases store data as a hash table where each key is unique, and the value can be a JSON, 

BLOB(Binary Large Objects), string, etc. 

It is one of the most basic NoSQL database example. This kind of NoSQL database is used as a 

collection, dictionaries, associative arrays, etc. Key value stores help the developer to store 

schema-less data. They work best for shopping cart contents. 

Redis, Dynamo, Riak are some NoSQL examples of key-value store DataBases. 

 

3. Column-based or wide column NOSQL systems: 

These systems partition a table by column into column 

families (a form of vertical partitioning), where each 

column family is stored in its own files. They also allow 

versioning of data values. 

Column-oriented databases work on columns and are based 

on BigTable paper by Google. Every column is treated 

separately. Values of single column databases are stored 

contiguously. 

They deliver high performance on aggregation queries like SUM, COUNT, AVG, MIN etc. as 

the data is readily available in a column. 

Column-based NoSQL databases are widely used to manage data warehouses, business 

intelligence, CRM, Library card catalogs, 

HBase, Cassandra, HBase, Hypertable are NoSQL query examples of column based database. 

4. Graph-based NOSQL systems: A graph type 

database stores entities as well the relations 

amongst those entities. The entity is stored as a 

node with the relationship as edges. An edge gives a 

relationship between nodes. Every node and edge 

has a unique identifier. 

Data is represented as graphs, and related nodes can 

be found by traversing the edges using path 

expressions. 

 

 

 

5. Hybrid NOSQL systems: These systems have characteristics from two or Key Value Pair 

Based 

 

Advantages of NoSQL 

• Can be used as Primary or Analytic Data Source 

• Big Data Capability 

• No Single Point of Failure 

• Easy Replication 

• No Need for Separate Caching Layer 

• It provides fast performance and horizontal scalability. 

• Can handle structured, semi-structured, and unstructured data with equal effect 

• Object-oriented programming which is easy to use and flexible 

https://www.guru99.com/business-intelligence-definition-example.html
https://www.guru99.com/business-intelligence-definition-example.html


• NoSQL databases don't need a dedicated high-performance server 

• Support Key Developer Languages and Platforms 

• Simple to implement than using RDBMS 

• It can serve as the primary data source for online applications. 

• Handles big data which manages data velocity, variety, volume, and complexity 

• Excels at distributed database and multi-data center operations 

• Eliminates the need for a specific caching layer to store data 

• Offers a flexible schema design which can easily be altered without downtime or service 

disruption 

 

Disadvantages of NoSQL 

• No standardization rules 

• Limited query capabilities 

• RDBMS databases and tools are comparatively mature 

• It does not offer any traditional database capabilities, like consistency when multiple 

transactions are performed simultaneously. 

• When the volume of data increases it is difficult to maintain unique values as keys 

become difficult 

• Doesn't work as well with relational data 

• The learning curve is stiff for new developers 

• Open source options so not so popular for enterprises. 

 

CAP Theorem 

It is very important to understand the limitations of NoSQL database. NoSQL can not provide 

consistency and high availability together. This was first expressed by Eric Brewer in CAP 

Theorem. 

CAP theorem states that we can only achieve at most two out of three guarantees for a database: 

Consistency, Availability and Partition Tolerance. 

1. Consistency 

2. Availability 

3. Partition Tolerance 

Consistency: 

The data should remain consistent even after the 

execution of an operation. This means once data is 

written, any future read request should contain that 

data. For example, after updating the order status, all 

the clients should be able to see the same data. 

Availability: 

The database should always be available and 

responsive. It should not have any downtime. 

Availability means the system should always perform 

reads/writes on any non-failing node of the cluster 

successfully without any error. 

 

Partition Tolerance: 

Partition Tolerance means that the system should 

continue to function even if the communication among the servers is not stable. For example, the 

servers can be partitioned into multiple groups which may not communicate with each other. 

Here, if part of the database is unavailable, other parts are always unaffected. 



 
 

 
 

Eventual Consistency 

The term "eventual consistency" means to have copies of data on multiple machines to get high 

availability and scalability. Thus, changes made to any data item on one machine has to be 

propagated to other replicas. 

Data replication may not be instantaneous as some copies will be updated immediately while 

others in due course of time. These copies may be mutually, but in due course of time, they 

become consistent. Hence, the name eventual consistency. 

 
Sharding 

Technique to reduce the processing load per node 

Sharding (= horizontal partitioning) 

How the data is stored in sharding: 

Each "shard is stored at a different node 

Graphically: Load distribution using sharding: 

Processing is distributed over multiple nodes: 

 

Without sharding, 

a single node must process the entire data 

object: 



 

 

With sharding, multiple node can share the processing load: 

 

 

Sharding combined with data replication 

Availability and higher performance can be achieve by combining sharding and data replication 

 
 

Commonly used sharding techniques 

Hashing 

Range partitioning     

 

Hashing-based sharding: 

Used in key-value NOSQL systems 

Data is sharded using the key: 

 



 
 

This approach is similar to the tuple storage in parallel database processing: 

 

 

Range-based sharding: 

Data is sharded based on pre-defined ranges of key values: 

 

Range-based sharding can handle range-based queries !!!    

 

Increasing parallelism in NOSQL systems 

• NOSQL system adopt relaxed data consistency constraints: 

• An update is applied to one copy without locking the other copies: 



 

 

So: the data can be temporally inconsistent (see above figure) !!!! 

 

NOSQL characteristics related to distributed databases and distributed systems. 

 

How a Distributed System breaks Consistency or Availability? 

 

Scenario 1: Failing to propagate update request to other nodes. 

Say, we have two nodes(N1 & N2) in a cluster and both nodes can accept read and write requests. 

 
In the above diagram, the N1 node gets an update request for id 2 and updates the salary from 800 

to 1000. But, since there is network partition, hence, N1 can not send the latest update to N2. 

 

So, when a read request comes to N2, it can do either of two things: 

1. Respond with whatever data it has, in this case, salary = 800, and update the data when the 

network partition resolves — making the system Available but Inconsistent. 

2. Simply return with an error, saying “I do not have updated data” — making a system 

Consistent but Unavailable by not returning inconsistent data. 

 

 

 

 

 

 

 

 

 



Document-Based NOSQL Systems  and MongoDB 

Document-based or document-oriented NOSQL systems typically store data as 

collections of similar documents. These types of systems are also sometimes known 

as document stores. The individual documents somewhat resemble complex objects 

or XML documents. 

 

Although the documents in a collection should be similar, they can have different data elements 

(attributes). 

The system basically extracts the data element names from the self-describing documents in the 

collection, and the user can request that the system create indexes on some of the data elements. 

Documents can be specified in various formats, such as XML. A popular language to specify 

documents in NOSQL systems is JSON (JavaScript Object Notation). 

There are many document-based NOSQL systems, including MongoDB and CouchDB, among 

many others. 

 

Database 

Database is a physical container for collections. Each database gets its own set of files on the 

file system. A single MongoDB server typically has multiple databases. 

Collection 

Collection is a group of MongoDB documents. It is the equivalent of an RDBMS table. A 

collection exists within a single database. Collections do not enforce a schema. Documents 

within a collection can have different fields. Typically, all documents in a collection are of 

similar or related purpose. 

Document 

A document is a set of key-value pairs. Documents have dynamic schema. Dynamic schema 

means that documents in the same collection do not need to have the same set of fields or 

structure, and common fields in a collection's documents may hold different types of data. 

The following table shows the relationship of RDBMS terminology with MongoDB. 

 
 

 

 



 

Why Use MongoDB? 

• Document Oriented Storage − Data is stored in the form of JSON style documents. 

• Index on any attribute 

• Replication and high availability 

• Auto-Sharding 

• Rich queries 

• Fast in-place updates 

• Professional support by MongoDB 

 

Where to Use MongoDB? 

• Big Data 

• Content Management and Delivery 

• Mobile and Social Infrastructure 

• User Data Management 

• Data Hub 

 

MongoDB Data Model 

MongoDB is an open-source document database and leading NoSQL database.   

MongoDB is a cross-platform, document oriented database that provides, high performance, high 

availability, and easy scalability. MongoDB works on concept of collection and document. 

 

MongoDB documents are stored in BSON (Binary JSON) format, which is a variation of JSON 

with some additional data types and is more efficient for storage than JSON. 

Individual documents are stored in a collection. The operation createCollection is used to create 

each collection. 

Theoperation createCollection is used to create each collection. For example, the following 

command can be used to create a collection called project to hold PROJECT objects from the 

COMPANY database ; 

db.createCollection(“project”, { capped : true, size : 1310720, max : 500 } ) 

The first parameter “project” is the name of the collection, which is followed by an optional 

document that specifies collection options. In our example, the collection is capped; this means 

it has upper limits on its storage space (size) and number ofdocuments (max). 

 

For our example, we will create another document collection called worker to hold information 

about the EMPLOYEEs who work on each project;  

For example: 

db.createCollection(“worker”, { capped : true, size : 5242880, max : 2000 } ) ) 

 

Each document in a collection has a unique ObjectId field, called _id, which is automatically 

indexed in the collection unless the user explicitly requests no index  for the _id field. The value 

of ObjectId can be specified by the user, or it can be  system-generated if the user does not 

specify an _id field for a particular document. 

System-generated ObjectIds have a specific format, which combines the timestamp when the 

object is created (4 bytes, in an internal MongoDB format), the node id (3 bytes), the process id 

(2 bytes), and a counter (3 bytes) into a 16-byte Id value. 

A collection does not have a schema. The structure of the data fields in documents is chosen 

based on how documents will be accessed and used, and the user can choose a normalized design 

or denormalized form. 



 

Sample Document 

Following example shows the document structure of a blog site, which is simply a comma 

separated key value pair. 

 

.  

 



 
Advantages of MongoDB over RDBMS 

• Schema less − MongoDB is a document database in which one collection holds different 

documents. Number of fields, content and size of the document can differ from one 

document to another. 

• Structure of a single object is clear. 

• No complex joins. 

• Deep query-ability. MongoDB supports dynamic queries on documents using a 

document-based query language that's nearly as powerful as SQL. 

• Tuning. 

• Ease of scale-out − MongoDB is easy to scale. 

• Conversion/mapping of application objects to database objects not needed. 

• Uses internal memory for storing the (windowed) working set, enabling faster access of 

data. 

 

MongoDB CRUD Operations 

MongoDb has several CRUD operations, where CRUD stands for (create, read, update, delete). 

Documents can be created and inserted into their collections using the insert operation, whose 

format is: 

db.<collection_name>.insert(<document(s)>) 

The parameters of the insert operation can include either a single document or an array of 

documents, as shown in Figure 24.1(d). The delete operation is called remove, and the format is: 

db.<collection_name>.remove(<condition>) 

The documents to be removed from the collection are specified by a Boolean condition on some 

of the fields in the collection documents. There is also an update operation, which has a 

condition to select certain documents, and a $set clause to specify the update. It is also possible 

to use the update operation to replace an existing document with another one but keep the same 

ObjectId. 

 

For read queries, the main command is called find, and the format is: 

db.<collection_name>.find(<condition>) 

The use Command 

MongoDB use DATABASE_NAME is used to create database. The command will create a 

new database if it doesn't exist, otherwise it will return the existing database. 

use DATABASE_NAME 

Example 

 

 



If you want to use a database with name <mydb>, then use DATABASE statement would be as 

follows − 

>use mydb 

switched to db mydb 

 

To check your currently selected database, use the command db 

>db 

mydb 

 

If you want to check your databases list, use the command show dbs. 

>show dbs 

local     0.78125GB 

test      0.23012GB 

 

The dropDatabase() Method 

MongoDB db.dropDatabase() command is used to drop a existing database. 

  

Basic syntax of dropDatabase() command is as follows − 

db.dropDatabase() 

This will delete the selected database. If you have not selected any database, then it will delete 

default 'test' database. 

>use mydb 

switched to db mydb 

>db.dropDatabase() 

>{ "dropped" : "mydb", "ok" : 1 } 

> 

 

The createCollection() Method 

MongoDB db.createCollection(name, options) is used to create collection. 

  

Basic syntax of createCollection() command is as follows − 

db.createCollection(name, options) 

In the command, name is name of collection to be created. Options is a document and is used 

to specify configuration of collection. 

Parameter Type Description 

Name String Name of the collection to be created 

Options Document (Optional) Specify options about memory size 

and indexing 

>use test 

switched to db test 

>db.createCollection("mycollection") 

{ "ok" : 1 } 

> 

 

 

 



MongoDB supports many datatypes. Some of them are − 

• String − This is the most commonly used datatype to store the data. String in MongoDB 

must be UTF-8 valid. 

• Integer − This type is used to store a numerical value. Integer can be 32 bit or 64 bit 

depending upon your server. 

• Boolean − This type is used to store a boolean (true/ false) value. 

• Double − This type is used to store floating point values. 

• Min/ Max keys − This type is used to compare a value against the lowest and highest 

BSON elements. 

• Arrays − This type is used to store arrays or list or multiple values into one key. 

• Timestamp − ctimestamp. This can be handy for recording when a document has been 

modified or added. 

• Object − This datatype is used for embedded documents. 

• Null − This type is used to store a Null value. 

• Symbol − This datatype is used identically to a string; however, it's generally reserved 

for languages that use a specific symbol type. 

• Date − This datatype is used to store the current date or time in UNIX time format. You 

can specify your own date time by creating object of Date and passing day, month, year 

into it. 

• Object ID − This datatype is used to store the document’s ID. 

• Binary data − This datatype is used to store binary data. 

• Code − This datatype is used to store JavaScript code into the document. 

• Regular expression − This datatype is used to store regular expression. 

 

The insert() Method 

To insert data into MongoDB collection, you need to use MongoDB's insert() or save() method. 

  

The basic syntax of insert() command is as follows − 

>db.COLLECTION_NAME.insert(document) 

Example 

> db.users.insert({ 

... _id : ObjectId("507f191e810c19729de860ea"), 

... title: "MongoDB Overview", 

... description: "MongoDB is no sql database", 

... by: "tutorials point", 

... url: "http://www.tutorialspoint.com", 

... tags: ['mongodb', 'database', 'NoSQL'], 

... likes: 100 

... }) 

WriteResult({ "nInserted" : 1 }) 

> 

 

 

 

 

 

 

 

 



The insertOne() method 

If you need to insert only one document into a collection you can use this method. 

> db.createCollection("empDetails") 

{ "ok" : 1 } 

> db.empDetails.insertOne( 

 { 

  First_Name: "Radhika", 

  Last_Name: "Sharma", 

  Date_Of_Birth: "1995-09-26", 

  e_mail: "radhika_sharma.123@gmail.com", 

  phone: "9848022338" 

 }) 

{ 

 "acknowledged" : true, 

 "insertedId" : ObjectId("5dd62b4070fb13eec3963bea") 

} 

> 

 

The insertMany() method 

You can insert multiple documents using the insertMany() method. To this method you need to 

pass an array of documents. 

Following example inserts three different documents into the empDetails collection using the 

insertMany() method. 

> db.empDetails.insertMany( 

 [ 

  { 

   First_Name: "Radhika", 

   Last_Name: "Sharma", 

   Date_Of_Birth: "1995-09-26", 

   e_mail: "radhika_sharma.123@gmail.com", 

   phone: "9000012345" 

  }, 

  { 

   First_Name: "Rachel", 

   Last_Name: "Christopher", 

   Date_Of_Birth: "1990-02-16", 

   e_mail: "Rachel_Christopher.123@gmail.com", 

   phone: "9000054321" 

  }, 

  { 

   First_Name: "Fathima", 

   Last_Name: "Sheik", 

   Date_Of_Birth: "1990-02-16", 

   e_mail: "Fathima_Sheik.123@gmail.com", 

   phone: "9000054321" 

  } 

 ] 

) 



The find() Method 

To query data from MongoDB collection, you need to use MongoDB's find() method. 

  

The basic syntax of find() method is as follows − 

>db.COLLECTION_NAME.find() 

find() method will display all the documents in a non-structured way. 

The findOne() method 

Apart from the find() method, there is findOne() method, that returns only one document. 

  

>db.COLLECTIONNAME.findOne() 

Example 

Following example retrieves the document with title MongoDB Overview. 

 

> db.mycol.findOne({title: "MongoDB Overview"}) 

{ 

 "_id" : ObjectId("5dd6542170fb13eec3963bf0"), 

 "title" : "MongoDB Overview", 

 "description" : "MongoDB is no SQL database", 

 "by" : "tutorials point", 

 "url" : "http://www.tutorialspoint.com", 

 "tags" : [ 

  "mongodb", 

  "database", 

  "NoSQL" 

 ], 

 "likes" : 100 

} 

MongoDB's update() and save() methods are used to update document into a collection. The 

update() method updates the values in the existing document while the save() method replaces 

the existing document with the document passed in save() method. 

 

MongoDB Update() Method 

The update() method updates the values in the existing document. 

Syntax 

The basic syntax of update() method is as follows − 

>db.COLLECTION_NAME.update(SELECTION_CRITERIA, UPDATED_DATA) 

 

MongoDB Save() Method 

The save() method replaces the existing document with the new document passed in the save() 

method. 

Syntax 

The basic syntax of MongoDB save() method is shown below − 

>db.COLLECTION_NAME.save({_id:ObjectId(),NEW_DATA}) 

 

 

 

 

 

 



The remove() Method 

MongoDB's remove() method is used to remove a document from the collection. remove() 

method accepts two parameters. One is deletion criteria and second is justOne flag. 

• deletion criteria − (Optional) deletion criteria according to documents will be removed. 

• justOne − (Optional) if set to true or 1, then remove only one document. 

Syntax 

Basic syntax of remove() method is as follows − 

>db.COLLECTION_NAME.remove(DELLETION_CRITTERIA) 

 

Remove Only One 

If there are multiple records and you want to delete only the first record, then 

set justOne parameter in remove() method. 

>db.COLLECTION_NAME.remove(DELETION_CRITERIA,1) 

 

Remove All Documents 

If you don't specify deletion criteria, then MongoDB will delete whole documents from the 

collection. This is equivalent of SQL's truncate command. 

> db.mycol.remove({}) 

WriteResult({ "nRemoved" : 2 }) 

> db.mycol.find() 

> 

 



 

 

 

 

 

 

 

A distributed computing system consists of a number of Processing sites (or) Nodes or CPUs 

that are interconnected by a computer network and that cooperate in performing certain assigned 

tasks. 

 

A distributed system is a collection of autonomous computers linked by a computer network that 

appear to the users of the system as a single computer. 

By running distributed system software the computers are enabled to:  

1. Coordinate their activities 

2. Share resources: hardware, software, data. 

 

Examples of distributed systems 

 

  MC5105 - ADVANCED DATABASE TECHNOLOGY 

UNIT I  DISTRIBUTED DATABASES            
Distributed Systems – Introduction – Architecture – Distributed Database Concepts – 
DistributedData Storage – Distributed Transactions – Commit Protocols – Concurrency 
Control – DistributedQuery Processing   
 



 
DISTRIBUTED SYSTEMS 

In a distributed database system, the database is stored on several computers. The computers in 

a distributed system communicate with one another through various communication media, such 

as high-speed private networks or the Internet. 

The  computers in a distributed system may vary in size and function, ranging from workstations 

up to mainframe systems. 

 

The computers in a distributed system are 

referred to by a number of different names, 

such as sites or nodes, depending on the 

context in which they are mentioned. We 

mainly use the term site, to emphasize the 

physical distribution of these systems. 

The main differences between shared-nothing 

parallel databases and distributed databases are 

that distributed databases are typically 

geographically separated, are separately 

administered, and have a slower 

interconnection. 

A local transaction is one that accesses data only from sites where the transaction was initiated. 

A global transaction  is one that either accesses data in several different sites. 

 

Reasons for building distributeddatabase systems 

Sharing data - The major advantage in building a distributed database system is the provision of 

an environment where users at one site may be able to access the data residing at other sites. For 

instance, in a distributed university system, where each campus stores data related to that campus, 

it is possible for a user in one campus to access data in another campus. 

 

Autonomy - In a centralized system, the database administrator of the  central site controls the 

database. In a distributed system, there is a global database administrator responsible for the 

entire system. 

A part of these responsibilities is delegated to the local database administrator for each site. 

Depending on the design of the distributed database system, each administrator may have a 

different degree of local autonomy. 

Availability - If one site fails in a distributed system, the remaining sites may be able to continue 

operating. In particular, if  data items are replicated in several sites, the failure of a site does not 

necessarily imply the shutdown of the system. 



Recovery -  The failure of one site must be detected by the system, and appropriate action may be 

needed to recover from the failure. The system must no longer use the services of the failed site. 

Finally, when the failed site recovers or is repaired, mechanisms must be available to integrate it 

smoothly back into the system. 

 

Example of  Distributed Sysem 

To illustrate the difference between the two types of transactions—local and global—at the sites, 

consider a transaction to add $50 to account number A-177 located at the Valleyview branch.  

If the transaction was initiated at the Valleyview branch, then it is considered local;  

otherwise, it is considered global.   

A transaction to transfer $50 from account A-177 to account A-305, which is located at the 

Hillside branch, is a global transaction, since accounts in two different sites are accessed as a 

result of its execution. 

In an ideal distributed database system, the sites would share a common global schema (although 

some relations may be stored only at some sites), all sites would run the same distributed 

database-management software, and the sites would be aware of each other’s existence. 

 

Advantages of  Distributed System 

Performance: very often a collection of processors can provide higher performance than a 

centralized computer. Many tasks can be executed concurrently at different computers. 

Distribution: many applications involve, by their nature, spatially separated machines (banking, 

commercial, automotive system).  

Reliability (fault tolerance): If  few computers fail others are available and hence the system 

continues. 

Incremental growth: As requirements on processing power grow, new hardware and software 

resources can be added without replacing the existing resources. 
Sharing of data/resources: Due  to communication between connected computers  resources  can be 

shared among computers. Shared data is essential to many applications (banking, computer 

supported cooperative work, reservation systems); other resources can be also shared (e.g. 

expensive printers). 

 

Disadvantage of  Distributed System 

Difficulties of developing distributed software: how should operating systems, programming 

languages and applications look like? 

Networking problems: several problems are created by the network infrastructure, which have to 

be dealt with: loss of messages, overloading, ... 

Security problems: sharing generates the problem of data security. 

 

Difference between Centralized Database & Distributed database 

 

 



Design Issues / Characteristics of  Distributed Systems 

Design issues that arise specifically from the distributed nature of the application:  

1. Transparency 

2. Communication 

3. Performance  

4. Scalability 

5. Heterogeneity 

6. Openness 

7. Reliability & fault tolerance 

8. Security 

 

1.  Transparancy 

Access transparency – Hiding how the resources are accessed. 

Location transparency - users cannot tell where hardware and software resources (CPUs, files, 

data bases) are located; the name of the resource shouldn’t encode the location of the resource. 

Migration (mobility) transparency - resources should be free to move from one location to 

another without having their names changed. 

Replication transparency - the system is free to make additional copies of files and other 

resources (for purpose of performance and/or reliability), without the users noticing.  

Example: several copies of a file; at a certain request that copy is accessed which is the closest to 

the client. 

Concurrency transparency - the users will not notice the existence of other users in the system 

(even if they access the same resources). 

Failure transparency - applications should be able to complete their task despite failures 

occurring in certain components of the system. 

Performance transparency - load variation should not lead to performance degradation.  

 

 
 

2. Communication: 

Components of a distributed system have to communicate in order to interact. This implies 

support at two levels:  

1. Networking infrastructure (interconnections & network software).  

2. Appropriate communication primitives and models and their implementation: 

a. communication primitives:  

i. send  

ii. receive 

iii. remote procedure call (RPC)  

 

 

 



b. communication models 

i. Client-Server communication: implies a message exchange between two 

processes:                

   the process which requests a service and the one which provides it;   

                        ii. Group Multicast: the target of a message is a set of processes,  

                            which are members of   a given group. 

3. Performance  

Several factors are influencing the performance of a distributed system:  

The performance of individual workstations. 

The speed of the communication infrastructure. 

Extent to which reliability (fault tolerance) is provided (replication and preservation of coherence 

imply large overheads). 

 Flexibility in workload allocation: for example, idle processors (workstations) could be allocated 

automatically to a user’s task.  

4. Scalability 

The system should remain efficient even with a significant increase in the number of users and 

resources connected:   

❖ Cost of adding resources should be reasonable;  

❖ Performance loss with increased number of users and resources should be controlled;  

 

5. Heterogeneity 

Distributed applications are typically heterogeneous  

❖ Different hardware: mainframes, workstations, PCs, servers, etc.;  

❖ Different software: UNIX, MS-Windows, IBM OS/2, Real-time OSs, etc.; 

❖ Unconventional devices: teller machines, telephone switches, robots, manufacturing 

systems 

❖ Diverse networks and protocols: Ethernet, FDDI, ATM, TCP/IP, Novell Netware, etc.  

An additional software layer called middleware used to mask heterogeneity. 

 

6. Openness 

One of the important features of distributed systems is openness and flexibility:   

❖ Every service is equally accessible to every client (local or remote); 

❖ It is easy to implement, install and debug new services; 

❖ Users can write and install their own services.  

Key aspect of openness: 

Standard interfaces and protocols (like Internet communication protocols) 

Support of heterogeneity (by adequate middleware, like CORBA)  

 

7. Reliability and Fault Tolerance 

One of the main goals of building distributed systems is improvement of reliability.  

Availability: If machines go down, the system should work with the reduced amount of 

resources.  

There should be a very small number of critical resources;  

Critical resources: resources which have to be up in order the distributed system to work.  

Key pieces of hardware and software (critical resources) should be replicated i.e. if one of them 

fails another one takes up - redundancy. 

Data on the system must not be lost, and copies stored redundantly on different servers must be 

kept consistent.  

The more copies kept, the better the availability, but keeping consistency becomes more difficult.  

 

  



Fault-tolerance is a main issue related to reliability: the system has to detect faults and act in a 

reasonable way:   

 Mask the fault: continue to work with possibly reduced performance but without loss of data/ 

information.   

Fail gracefully: react to the fault in a predictable way and possibly stop functionality for a short 

period, but without loss of data/information. 

1)Node failure -Hardware or software failure. 

2)Malicious Error-Caused by unauthorized Access. 

 

8. Security 

Security of information resources:  

Confidentiality: Protection against disclosure to un-authorized person 

Integrity: Protection against alteration and corruption 

Availability: Keep the resource accessible 

 

Characteristics of  Distributed Systems 

A Distributed System has the following characteristics: 

❖ It consists of several independent computers connected through communication network. 

❖ The computers communicate with each other by exchanging message over a 

communication  

❖ network. 

❖ Each computer has its own memory, clock and runs its own operating system. 

❖ Each computer has its own resources, called local resources. 

❖ Remote resources are accessed through the network. 

 

……..  Additionally Write,  Design Issues with Distributed System. 

 

System Architecture Types 
Distributed systems can be modeled into several types.  Various models are used for building distributed 

computing systems. These models can be broadly classified into following categories, described below: 
1. Mini Computer Model, 

2. Workstation Model,  
3. Workstation Server Model, 

4. Processor Pool Model, 

5. Hybrid Model.  

 
1. Mini Computer Model 
In this model, the distributed system consists 

of several minicomputers. Each computer 

supports multiple users and provides access to 

remote resources. The ratio of processors to 

users is normally less than one. 

 

Minicomputer model is a simple extension of 

the centralized time-sharing system. As shown 

in Figure, a distributed computing system 

based on this model consists of a few 

minicomputers.  

They may be large supercomputers as well  

interconnected by a communication network.  Each minicomputer  usually has multiple users 

simultaneously logged on to it. 

Several interactive terminals are connected to each minicomputer. Each user is logged on to one specific 

minicomputer, with remote access to other minicomputers. 



The minicomputer model may be used when resource sharing (such as sharing of information databases 

of different types, with each type of database located on a different machine) with remote users is desired. 

 

2. Workstation Model  
In this model, the distributed system consists of several workstations; every user has a workstation where 

user’s work is performed. With the help of distributed file system, a user can access data regardless of the 

location of the data. The ratio of processors to users is normally one. The workstations are independent 

computers with memory, hard disks, keyboard and console. Workstations are connected with each other 

through communication network. 

 

A company's office or a university department may have several  workstations scattered throughout a 

building or compass each workstation equipped with its own disk and serving as a single-user computer. 

 

 

In this model a user logs onto one of the workstations called his or her home workstation and submits jobs 

for execution. When the system finds that  the user's workstation does not have sufficient processing 

power  for  executing the processes  of  the  submitted jobs efficiently,  it  transfers  one  or  more  of  the 

processes from the user's workstation to some other workstation that is currently idle and gets the process 

executed there, and finally the result of execution is returned to the user’s, in. workstation. 

 

 
 

  

DISTRIBUTED DATABASE CONCEPTS  

A distributed database is a collection of multiple interconnected databases, which are spread 

physically across various locations that communicate via a computer network. 

Distributed database management system 

(DDBMS) is as a software system that manages 

a distributed database while making the 

distribution transparent to the user . 

 

 

 

 

 

 



The sites may all be located in physically  within the same building or a group of adjacent 

buildings—and connected via a local area network, or they may be geographically distributed 

over large distances and connected via  wide area network. Local area networks typically use 

wireless hubs or cables, whereas long-haul or wide area networks use telephone lines, cables, 

wireless communication infrastructures or satellites. 

 

Networks may have different topologies that define the direct communication paths among sites. 

The type and topology of the network used  for distributed query processing and distributed 

database design. 

 

Features 

• Databases in the collection are logically interrelated with each other. Often they represent 

a single logical database. 

• Data is physically stored across multiple sites. Data in each site can be managed by a 

DBMS independent of the other sites. 

• The processors in the sites are connected via a network. They do not have any 

multiprocessor configuration. 

• A distributed database is not a loosely connected file system. 

• A distributed database incorporates transaction processing, but it is not synonymous with 

a transaction processing system. 

 

Rules of Distributed database 

 

Rule 1: Local Site Independence 

Each local site can act as an independent, autonomous, centralized DBMS. Each site is 

responsible for security, concurrency control, backup, and recovery.  

 

Rule 2: Central Site Independence  

No site in the network relies on a central site or any other site. All sites have the same  

capabilities.  

 

Rule 3: Failure Independence  

The system is not affected by node failures.The system is in continuous operation even  

in the case of a node failure or an expansion of the network. 

 

Rule 4: Location Transparency  

The user does not need to know the location of the data in order to retrieve those data.  

 

Rule 5: Fragmentation Transparency  

The user sees only one single logical database. Data fragmentation is transparent to the  

user. The user does not need to know the name of the database fragments in order to  

retrieve them.  

 

Rule 6: Replication Transparency  

The user sees only one single logical database. The DDBMS transparently selects the  

database fragment to access.The DDBMS manages all fragments transparently to the user  

 

Rule 7: Distributed Query Processing  

A distributed query may be executed at several different DP sites. Query optimization  

is performed transparently by the DDBMS. 

  



Rule 8: Distributed Transaction Processing  

A transaction may update data at several different sites. The transaction is transparently  

executed at several different DP sites.  

 

Rule 9: Hardware Independence  

The system must run on any hardware platform.  

 

Rule 1O: Operating System Independence  

The system must run on any operating system software platform.  

 

Rule 11: Network Independence  

The system must run on any network platform.  

 

Rule 12: Database Independence  

The system must support any vendor's database product. 

 

Distributed Database Management System 

A distributed database management system (DDBMS) is a centralized software system that 

manages a distributed database in a manner as if it were all stored in a single location. 

Features 

• It is used to create, retrieve, update and delete distributed databases. 

• It synchronizes the database periodically and provides access mechanisms by the virtue of 

which the distribution becomes transparent to the users. 

• It ensures that the data modified at any site is universally updated. 

• It is used in application areas where large volumes of data are processed and accessed by 

numerous users simultaneously. 

• It is designed for heterogeneous database platforms. 

• It maintains confidentiality and data integrity of the databases. 

 

Factors Encouraging DDBMS 

The following factors encourage moving over to DDBMS − 

• Distributed Nature of Organizational Units − Most organizations in the current times 

are subdivided into multiple units that are physically distributed over the globe. Each unit 

requires its own set of local data. Thus, the overall database of the organization becomes 

distributed. 

• Need for Sharing of Data − The multiple organizational units often need to 

communicate with each other and share their data and resources. This demands common 

databases or replicated databases that should be used in a synchronized manner. 

• Support for Both OLTP and OLAP − Online Transaction Processing (OLTP) and 

Online Analytical Processing (OLAP) work upon diversified systems which may have 

common data. Distributed database systems aid both these processing by providing 

synchronized data. 

• Database Recovery − One of the common techniques used in DDBMS is replication of 

data across different sites. Replication of data automatically helps in data recovery if 

database in any site is damaged. Users can access data from other sites while the 

damaged site is being reconstructed. Thus, database failure may become almost 

inconspicuous to users. 



• Support for Multiple Application Software − Most organizations use a variety of 

application software each with its specific database support. DDBMS provides a uniform 

functionality for using the same data among different platforms. 

Components of Distributed Data Base Management System: 

 

*Computer workstations (sites or nodes) that form the network system. The distributed database 

system must be independent of the computer system hardware.  

• Network hardware and software components that reside in each workstation.  The network 

components allow all sites to interact and exchange data. Network system independence is a 

desirable distributed database system attribute. 

*Communications media that carry the data from one workstation to another.  

*The DDBMS must be communications media-independent; that is, it must be able to support 

several types of communications media.  

*The transaction processor (TP), which is the software component found in each computer that 

requests data. The transaction processor receives and processes the application's data requests 

(remote and local). The TP is also known as the application processor (AP) or the transaction 

manager (TM).  

*The data processor (DP), which is the software component residing on each  computer that 

stores and retrieves data located at the site. The DP is also known as the data manager (DM). A 

data processor may even be a centralized DBMS. 

 

The protocols determine how the distributed database system will:  

Interface with the network to transport data and commands between data processors (DPs) and 

transaction processors (TPs).  

• Synchronize all data received from DPs (TP side) and route retrieved data to the appropriate TPs 

(DP side).  

Ensure common database functions in a distributed system. Such functions include security, 

Concurrency control, backup, and recovery. 

Advantages of Distributed Databases 

Following are the advantages of distributed databases over centralized databases. 

Improved ease and flexibility of application development. Developing and maintaining 

applications at geographically distributed sites of an organization is facilitated owing to 

transparency of data distribution and control. 

Modular Development − If the system needs to be expanded to new locations or new units, in 

centralized database systems, adding new computers and local data to the new site and finally 

connecting them to the distributed system, with no interruption in current functions. 

More Reliable − In case of database failures, the total system of centralized databases comes to 

a halt. However, in distributed systems, when a component fails, the functioning of the system 

continues may be at a reduced performance. Hence DDBMS is more reliable. 

Better Response − A distributed DBMS fragments the database by keeping the data closer to 

where it is needed most. Data localization reduces the contention for CPU and I/O services and 

simultaneously reduces access delays involved in wide area networks.  

Lower Communication Cost − In distributed database systems, if data is located locally where 

it is mostly used, then the communication costs for data manipulation can be minimized. This is 

not feasible in centralized systems. 



Additional Functions of  Distributed Databases 

Keeping track of data distribution. The ability to keep track of the data distribution,  

fragmentation, and replication by expanding the DDBMS catalog. 

Distributed query processing. The ability to access remote sites and transmit Queries and data 

among the various sites via a communication network. 

Distributed transaction management. The ability to devise execution strategies for queries and 

transactions that access data from more than one site and to synchronize the access to distributed 

data and maintain the integrity of the overall database. 

Replicated data management. The ability to decide which copy of a replicated data item to access 

and to maintain the consistency of copies of a replicated data item. 

Distributed database recovery. The ability to recover from individual site crashes and from new 

types of failures, such as the failure of communication links. 

Security. Distributed transactions must be executed with the proper management Of the security 

of the data and the authorization/access privileges of users. 

Distributed directory (catalog) management. A directory contains information (metadata) about 

data in the database. 

The directory may be global for the entire DDB, or local for each site. The placement and 

distribution of the directory are design and policy issues. 

Disadvantages of Distributed Database System 

• The distributed database is quite complex and it is difficult to make sure that a user gets a 

uniform view of the database because it is spread across multiple locations. 

• It is difficult to provide security in a distributed database as the database needs to be 

secured at all the locations it is stored. Moreover, the infrastructure connecting all the 

nodes in a distributed database also needs to be secured. 

• It is difficult to maintain data integrity in the distributed database because of its nature. 

There can also be data redundancy in the database as it is stored at multiple locations. 

 

 

Types of Distributed Databases 

Distributed databases can be broadly classified into homogeneous and heterogeneous distributed 

database environments, each with further sub-divisions, as shown in the following illustration. 

 
 

 

 

 

 



Homogeneous Distributed Databases 

In a homogeneous distributed database, all the sites use identical DBMS software and Operating 

systems and same data model.  

These database management systems are much easier to handle and the database can even be 

scaled if required. 

If all servers (or individual local DBMSs) use identical software and all users (clients) use 

identical software, the DDBMS is called homogeneous; 

 
Its Properties / Advantages are − 

• The sites use very similar software. 

• Much easier to design and manage. 

• The sites use identical DBMS or DBMS from the same vendor. 

• Each site is aware of all other sites and cooperates with other sites to process user 

requests. 

• The database is accessed through a single interface as if it is a single database. 

 

Disadvantages: 

Difficult for most organizations to force a homogenous environment. 

 
Types of Homogeneous Distributed Database 

There are two types of homogeneous distributed database − 

• Autonomous − Each database is independent that functions on its own. They are 

integrated by a controlling application and use message passing to share data updates. 

• Non-autonomous − Data is distributed across the homogeneous nodes and a central or 

master DBMS co-ordinates data updates across the sites. 

 

Heterogeneous Distributed Databases 

In a heterogeneous distributed database, different sites have different operating systems, DBMS 

products and data models. Its properties are − 

• Different sites use dissimilar schemas and software. 

• The system may be composed of a variety of DBMSs like relational, network, 

hierarchical or object oriented. 

• Query processing is complex due to dissimilar schemas. 

• Transaction processing is complex due to dissimilar software. 

• A site may not be aware of other sites and so there is limited co-operation in processing 

user requests. 



 
 

Types of Heterogeneous Distributed Databases 

• Federated − The heterogeneous database systems are independent in nature and 

integrated together so that they function as a single database system. 

• Un-federated − The database systems employ a central coordinating module through 

which the databases are accessed. 

 

In this type of database, different data center may run different DBMS products with possibly 

different underlying data models. 

Occurs when sites have implemented their own database and integration is considered later. 

 

Advantages : 

Huge data can be stored in one global center from different databases center. 

Remote access is done using the global schema. 

Different DBMS may be used at each node. 

 

Disadvantage 

1.  Difficult to design and manage. 

 

Students, Heterogenous DBMS for understanding purpose 

 



 

DISTRIBUTED DATA STORAGE 

A distributed DBMS manages the distributed database in a manner so that it appears as on one 

single database to users. 

A distributed database is a collection of multiple interconnected databases, which are spread 

physically across various locations that communicate via computer network. 

 

1.  Data Replication 

Data Replication is the process of storing data in more than one site or node for faster retrieval 

and fault tolerance.  

It is useful in improving the availability of data. 

It is simply copying data from one server to another server so that all user’s can share the same 

data without any inconsistency. 

User’s can access data relevant to their tasks without interfering of other’s tasks. 

  

Replication & Fragmentation – Replication and Fragmentation can be combined . Relation is 

partitioned into several fragments, system maintains several identical replicas of each fragment. 

 
 



 

 
 

 

Replication Schemes: 

1.  Full Replication: 

 
 

2.  No Replication: 

 
 

 



3. Partial Replication 

 
 

Advantages of Repliation 

• Reliability − In case of failure of any site, the database system continues to work since a 

copy is available at another site(s). 

• Reduction in Network Load /Data Transfer− Since local copies of data are available, 

query processing can be done with reduced network usage, particularly during prime 

hours. Data updating can be done at non-prime hours. 

• Quicker Response − Availability of local copies of data ensures quick query processing 

and consequently quick response time.  

• Simpler Transactions − Transactions require less number of joins of tables located at 

different sites and minimal coordination across the network. Thus, they become simpler 

in nature. 

• Data Replication supports multiple user’s and gives high performance. 

• To perform faster execution of queries. 

 

Disadvantages of Data Replication 

• Increased Storage Requirements − Maintaining multiple copies of data is associated 

with increased storage costs.  It consumes more space. 

• Increased Cost and Complexity of Data Updating − Each time a data item is updated, 

the update needs to be reflected in all the copies of the data at the different sites. This 

requires complex synchronization techniques and protocols. 

•  

 

2. Fragmentation (Sharding) 

Fragmentation is the task of dividing a table into a set of smaller tables. The subsets of the table 

are called fragments and each  of the fragment is stored in different sites when they are required. 

Fragmentation can be of three types: horizontal, vertical, and hybrid (combination of horizontal 

and vertical). 

Fragments must be used to reconstruct the original relation (database). 

Fragmentation does not create copies of data, consistency is not a problem. 

 

 



 
 

 
 

To illustrate the use of various transparency levels, let us suppose we have an EMPLOYEE table 

containing the attributes EMP_NAME, EMP_DOB, EMP_ADDRESS, EMP_DEPARTMENT, 

and EMP_SALARY The EMPLOYEE data are distributed over three different locations: New 

York, Atlanta, and Miami. The table is divided by location; that is, all New York employee data 

are stored in fragment El, Atlanta employee data are stored in fragment E2, and Miami employee 

data are stored in fragment E3. 

 

 
 

 

Case 1: The Database Supports Fragmentation Transparency  

The query conforms to a nondistributed database query format; that is, it does not specify 

fragment names or locations.    The query reads:  

SELECT * FROM EMPLOYEE WHERE EMP_DOB < 01/01/40; 

Case 2: The Database Supports Location Transparency  

Fragment names must be specified in the query, but fragment location is not specified.  The query 

reads:  

 



SELECT * FROM EI WHERE EMP_DOB < 01/01/40;  

UNION  

SELECT * FROM E2 WHERE EMP_DOB < 01/01/40;  

UNION  

SELECT * FROM E3 WHERE EMP_DOB < 01/01/40; 

Case 3: The Database Supports Local Mapping Transparency  

Both the fragment name and location must be specified in the query. Using pseudo-SQL:  

SELECT * FROM El  NODE  NY  WHERE EMP_DOB < 01/01/40;  

UNION  

SELECT * FROM E2  NODE ATL WHERE EMP_DOB < 01/01/40;  

UNION  

SELECT * FROM E3 NODE MIA WHERE EMP_DOB < 01/01/40; 

 

NODE indicates the .location of the database fragment. 

 

For 2nd example, in the student schema, if the details of all students of Computer Science 

Course needs to be maintained at the School of Computer Science, then the designer will 

horizontally fragment the database as follows − 

CREATE COMP_STD AS  

   SELECT * FROM STUDENT   

   WHERE COURSE = "Computer Science"; 

 

Vertical Fragmentation 

In vertical fragmentation, the fields or columns of a table are grouped into fragments. Vertical 

Fragmentation. Each site may not need all the attributes of a relation, which would indicate the 

need for a different type of fragmentation.  

 

Vertical  fragmentation divides a relation “vertically” by columns. A vertical fragment of a 

relation keeps only certain attributes of the relation. For example, we may want to fragment the 

EMPLOYEE relation into two vertical fragments. 

 

The first vertical fragment 

includes personal information— 

Empno, Name, Bdate, Address, and Gender—and the second fragment 

includes work-related information— 

Empno,  Salary, DA, HRA, Netpay 

 

In Second example, let us consider that a University database keeps records of all registered 

students in a Student table having the following schema. 

STUDENT 

Regd_No Name Course Address Semester Fees Marks 

 

Now, the fees details are maintained in the accounts section. In this case, the designer will 

fragment the database as follows − 

CREATE TABLE STD_FEES AS  

   SELECT Regd_No, Fees  

   FROM STUDENT; 



Mixed (Hybrid) Fragmentation. In hybrid fragmentation, a combination of horizontal and 

vertical fragmentation techniques are used. This is the most flexible fragmentation technique 

since it generates fragments with minimal extraneous information. However, reconstruction of 

the original table is often an expensive task. 

Advantages of Fragmentation: 

Horizontal : 

 Allows parallel processing on fragments of a relation. 

Since data is stored close to the site of usage, efficiency of the database system is 

increased. 

Vertical : 

 

 Allows tuples to be split up so that each part of the tuple is stored where it is most  

               frequently accessed. 

 Tuple-id attribute allows efficient joining of vertical fragments. 

 Allows parallel processing on a relation. 

 

❖ Local query optimization techniques are sufficient for most queries since data is locally 

available. 

❖ Since irrelevant data is not available at the sites, security and privacy of the database 

system can be maintained. 

 

Disadvantages of Fragmentation 

• When data from different fragments are required, the access speeds may be very high. 

• In case of recursive fragmentations, the job of reconstruction will need expensive 

techniques. 

• Lack of back-up copies of data in different sites may render the database ineffective in 

case of failure of a site. 

 

Distribution Transparency 

Distribution transparency is the property of distributed databases by the virtue of which the 

internal details of the distribution are hidden from the users. The DDBMS designer may choose 

to fragment tables, replicate the fragments and store them at different sites. However, since users 

are oblivious of these details, they find the distributed database easy to use like any centralized 

database. 

The three dimensions of distribution transparency are − 

• Location transparency 

• Fragmentation transparency 

• Replication transparency 

Location Transparency 

 

Location transparency ensures that the user can query on any table(s) or fragment(s) of a table as 

if they were stored locally in the user’s site. The fact that the table or its fragments are stored at 

remote site in the distributed database system, should be completely oblivious to the end user. 

The address of the remote site(s) and the access mechanisms are completely hidden. 

Users cannot tell where hardware and software resources (CPUs, files, data bases) are located; the 

name of the resource shouldn’t encode the location of the resource. 

 



Fragmentation Transparency 

Fragmentation transparency enables users to query upon any table as if it were unfragmented. 

Thus, it hides the fact that the table the user is querying on is actually a fragment or union of 

some fragments. It also conceals the fact that the fragments are located at diverse sites. 

This is somewhat similar to users of SQL views, where the user may not know that they are 

using a view of a table instead of the table itself. 

Replication Transparency 

Replication transparency ensures that replication of databases are hidden from the users. It 

enables users to query upon a table as if only a single copy of the table exists. 

The system is free to make additional copies of files and other resources (for purpose of 

performance and/or reliability), without the users noticing.  

Example: several copies of a file; at a certain request that copy is accessed which is the closest to 

the client. 

Replication transparency is associated with concurrency transparency and failure transparency. 

Whenever a user updates a data item, the update is reflected in all the copies of the table. 

However, this operation should not be known to the user. This is concurrency transparency. 

Also, in case of failure of a site, the user can still proceed with his queries using replicated copies 

without any knowledge of failure. This is failure transparency. 

Transaction Transparency 

Transaction transparency is a DDBMS property that ensures that database transactions will 

maintain the distributed database's integrity and consistency. Transaction transparency ensures 

that the transaction will be completed only if all database sites involved in the transaction 

complete their part of the transaction. 

 

Distributed database systems require complex mechanisms to manage transactions and ensure the 

database's consistency and integrity. 

Combination of Transparencies 

In any distributed database system, the designer should ensure that all the stated transparencies 

are maintained to a considerable extent. The designer may choose to fragment tables, replicate 

them and store them at different sites; all oblivious to the end user. However, complete 

distribution transparency is a tough task and requires considerable design efforts. 

Access transparency – Hiding how the resources are accessed. 

Concurrency transparency - the users will not notice the existence of other users in the system 

(even if they access the same resources). 

Failure transparency - applications should be able to complete their task despite failures 

occurring in certain components of the system. 

Performance transparency - load variation should not lead to performance degradation.  

 



 
 

Students, this is for Understanding purpose 

 

 

The single logical database  consists of two database fragments AI and A2, located at sites I and 

2, respectively. Mary can query the database as if it were a local database; and so can Tom. Both 

users "see" only one logical database and do not need to know the names of the fragments. In fact, 

the end users need not even know that the database is divided into separate fragments, nor do they 

need to know where the fragments are located. 

 

 
 

     TRANSACTIONS 

A transaction is a logical unit of work that must be either entirely completed or  aborted.  A 

transaction that changes the contents of the database  must alter the database from one consistent 

state to another.   A consistent database state is one in which all data integrity constraints are 

satisfied. 

 

 



To ensure consistency of the database, every transaction must begin with the database  

in a known consistent state. If the database is not in a consistent state, the transaction  

will yield an inconsistent database that violates its integrity and business rules. 

 

Once a transaction has been guaranteed access to the database, it may manipulate the  

database contents. Using Figure of  example, the data item X must be read from  

permanent storage to primary memory;  

the data value is then updated by subtracting 10;  

the new value of X is written back from primary memory to permanent storage.  

 

As this transaction is taking place, the DBA/IS must ensure that no other  transaction accesses X. 

When the transaction is concluded, all data used by the transaction are released to give subsequent 

transactions data access. The database is returned to a consistent state. 
 

Example: 

An  example illustrates a more complex set of transactions. Suppose that an accountant wishes to 

register the credit sale of 100 units of product X to customer Y in the amount of $500.00.The 

required transactions can be completed by;  

 

• Reducing product X's Quantity on hand (QOH) by 100.  

• Adding $500.00 to customer Y's accounts receivable.  

 

These 2 SQL Commands to be completed for  above transactions correctly   

UPDATE PRODUCT SET QOH = QOH - 100  

WHERE PROD_CODE = 'X'; 

 

UPDATE  BANK  SET BALANCE = BALANCE + 500  

WHERE ACC_NUM = ‘Y’; 

 

But, if both transactions are not completely executed, the transaction yields an  inconsistent 

database. 

Now suppose that the DBMS completes the first transaction by updating the quantity on hand for 

product X Then, during the execution of the second part of the transaction (the UPDATE of the 

accounts receivable table),the computer system experiences a loss of electrical power.  

If the computer does not have a backup power supply, the second transaction cannot be 

completed. Therefore, while the PRODUCT table was updated to represent the sale of product X, 

customerY was not charged. 

The database is now in an inconsistent state, and it is not usable for subsequent transactions. The 

DBA/IS must be able to recover the database to a previous consistent state. 
 

Transaction Properties: 

Atomicity : 

Requires that all operations of a transaction be completed; if not, the transaction is aborted. 

 

Durability: Once DBMS informs the user that a transaction has been successfully completed, its 

effect should persist even if system crashes. 

 

 

 

 

 



Serializability : 

Describes the result of the concurrent execution of several transactions. More specifically, the 

concurrent transactions are treated as though they were executed in serial order (one after 

another).This property is important in multi-user and distributed databases, where several 

transactions are likely to be executed concurrently. 

 

Isolation:  

Means that the data used during the execution of a transaction cannot be used by a  second 

transaction until the first one is completed. In other words, if a transaction Tl is being executed 

and is using the data item X, that data item cannot be accessed by any other transaction (T2...Tn) 

until TI ends.This property is particularly useful in multi-user database environments because 

several different users can access and update the  database at the same time. 

 

Transaction Management with SQL 

Transaction support is provided by two SQL statements:  

 

COMMIT and ROLLBACK. When a transaction sequence is initiated by a user or an application 

program, it must continue through all succeeding SQL statements until one of the following four 

events occurs:  

 

1. A COMMIT statement is reached, in which case all changes are permanently recorded within 

the database.The COMMIT statement automatically ends the SQL transaction.  

2. A ROLLBACK statement is reached, in which case all the changes are aborted and the 

database is rolled back to its previous consistent state.  

3. The end of a program is successfully reached, in which case all changes are permanently 

recorded within the database.This action is equivalent to COMMIT  

4. The program is abnormally terminated, in which case the changes made in the database are 

aborted and the database is rolled back to its previous  consistent state.This action is equivalent to 

ROLLBACK. 

 

Example of  Commit: 

The use of COMMIT is illustrated in the following sales sequence, which updates a product's 

quantity on hand (PROD_QOHJ and the customer's accounts receivable:  

 

UPDATE PRODUCT SET QOH = QOH - 100  

WHERE PROD_CODE = 'X'; 

 

UPDATE  BANK  SET BALANCE = BALANCE + 500  

WHERE ACC_NUM = ‘Y’; 

 

COMMIT; 

 

The Transaction Log  

A DBMS uses a transaction log to keep track of all transactions that update the database. The 

information stored in this log is used by the DBMS for a recovery requirement triggered by a 

ROLLBACK statement, a program's abnormal termination, or a system failure such as a network 

discrepancy or a disk crash. Some RDBMSs use the transaction log to recover a database forward 

to a currently consistent state.  

After a server failure, for example, ORACLE automatically rolls back uncommitted  transactions 

and rolls forward transactions that were committed but not yet written to the physical database.  

 



While the DBMS executes transactions that modify the database, it also automatically updates the 

transaction log.The transaction log stores before-and-after data about the database and any of the 

tables, rows, and attribute values that participated in the transaction. The beginning and ending 

(COMMIT) of the transaction are also recorded. Although using a transaction log increases the 

processing overhead of a DBMS, the ability to restore a corrupted database is worth the price. 

 

 
 

If a ROLLBACK is issued before the termination of a transaction, the DBMS will restore the 

database only for that particular transaction, rather than for all transactions, in order to maintain 

the durability of the previous transactions. In other words, committed  transactions are not rolled 

back.  

The transaction log is itself a database, and it is managed by the DBMS like any other database. 

The transaction log is subject to such common database dangers as disk-full conditions and disk 

crashes. 

 

Distributed Transaction 

 

A distributed transaction allows a transaction to reference several different (local or remote) DP 

sites. Although each single request can reference only one remote DP site, the transaction as a 

whole can reference multiple DP sites because each request can reference a different site. 

 

 
 



 

 

DISTRIBUTED REQUEST 

A distributed request  reference data from several remote DP sites.  

Because each request can access data from more than one DP site, a transaction can access several 

sites. 

The ability to execute a distributed request provides fully distributed  database processing 

capabilities because we are able to:  

 

1. Partition a database table into several fragments.  

2. Reference one or more of those fragments with only one request. In other words, we have 

fragmentation transparency.  

The location and partition of the data should be transparent to the end user. 

 

 
 

The distributed request feature also allows a single request to reference a physically partitioned 

table. For example, suppose that a CUSTOMER table is divided into two fragments, CI and C2, 

located at sites B and C, respectively. Let us further suppose that the end user wants to obtain a 

list of all customers whose balances exceed $250.00. 

 

 
 

 



 

 

 

 

 

What is a Data Warehouse? 

A single, complete and consistent store of data obtained from a variety of different sources made 

available to end users in a what they can understand and use in a business context. 

 

• Data should be integrated across the enterprise 

• Summary data has a real value to the organization 

• Historical data holds the key to understanding data over time 

• What-if capabilities are required 

 

A process of transforming data into information and making it available to users in a timely. 

 

A data warehouse is a large centralized repository of data that contains information from many 

sources within an organization. The collated data is used to guide business decisions through 

analysis, reporting, and data mining tools. 

 

Definition : "A warehouse is a subject-oriented, integrated, time-variant and non-volatile 

collection of data in support of management's decision making process". 

Subject Oriented: Data that gives information about a particular subject instead of about a 

company's ongoing operations.  

Integrated:  Data that is gathered into the data warehouse from a variety of sources and merged 

into a coherent whole.  

Time-variant:  All data in the data warehouse is identified with a particular time period.  

Non-volatile:  Data is stable in a data warehouse. More data is added but data is never removed.  

 

Characteristics of  data warehousing 

1) A data warehouse can be viewed as an information system with the following attributes: 

        – It is a database designed for analytical tasks. 

        – It’s content is periodically updated. 

        – It contains current and historical data to provide a historical perspective of information. 

2) It is separate from operational database. 

3) It integrates from heterogeneous systems. 

4) It stores huge amount of data, more historical than current data. 

5) Does not require data to be highly accurate. 

6) Queries are generally complex. 

7) Goal is to execute statistical queries and provide results which can influence decision making 

in favor of the Enterprise. 

8) These systems are thus called Online Analytical Processing Systems (OLAP). 

 

 

 

 

 

 

 

UNIT IV XML AND DATAWAREHOUSE         

XML Database: XML – XML Schema – XML DOM and SAX Parsers – XSL – XSLT – 

XPath and XQuery – Data Warehouse: Introduction – Multidimensional Data Modeling – Star 

and 

SnowflakeSchema – Architecture – OLAP Operations and Queries.   

 

https://panoply.io/data-warehouse-guide/


Benefits of data warehousing 

 Data warehouses are designed to perform well with aggregate queries running on large 

amounts of data. 

 The structure of data warehouses is easier for end users to navigate, understand and query 

against unlike the relational databases primarily designed to handle lots of transactions. 

 Data warehouses enable queries that cut across different segments of a company's 

operation. E.g. production data could be compared against inventory data even if they 

were originally stored in different databases with different structures. 

 Queries that would be complex in very normalized databases could be easier to build and 

maintain in data warehouses, decreasing the workload on transaction systems.  

 Data warehousing is an efficient way to manage and report on data that is from a variety 

of sources, non uniform and scattered throughout a company.  

 It is an efficient way to manage demand for lots of information from lots of users.  

 Data warehousing provides the capability to analyze large amounts of historical data for 

that can provide an organization with competitive advantage. 

 Data warehouses facilitate decision support system applications such as trend reports,  

exception reports, and reports that show actual performance versus goals 

 

Very Large Data Bases 

 
 

Data Mart 

A data mart is a subset of a data warehouse oriented to a specific business line. Data marts 

contain repositories of summarized data collected for analysis on a specific section or unit within 

an organization, for example, the sales department. 

 

 Data mart is a subset of the information content of a data warehouse that is stored in its 

own database, summarized or in detail.  

 Data marting can improve query 

performance, simply by reducing the 

volume of data. 

 

When is a data mart appropriate 

Data marts are created for the following 

reasons 

 to speed up queries by reducing the 

volume of data to be scanned;  

  to structure data in a form suitable for a 

user access tool; 

  to partition data in order to impose access 

control strategies; 

  to segment data into different hardware 

platforms 



Identify Functional Splits  
 we must determine whether the business is structured in such a way as to benefit from 

functionally splitting the data  

 Look for departmental splits, and then determine whether the way in which the 

departments use information tends to be in isolation from the rest of the organization.  

 

A data-marting strategy in the retail sector  

Example  

  a retail organization in which each merchant is responsible for maximizing the sales of a 

group of products 

  information in the  data warehouse  

- sales transactions on a daily level, to  monitor actual sales; 

- sales forecasts on a weekly basis; 

- stock positions on a daily basis, to monitor stock levels 

- stock movements on a daily basis, to monitor supplier or shrinkage issues  

  the merchant is not interested in products that he or she is not responsible 

 the merchant is extremely unlikely to query information about other products 

 

Identify User Access Tool Requirements  
 Data marts are required in order to support any user access tools that require internal data 

structures 

 Data within those structures is outside the control of the data warehouse . they need to be 

populated and updated on a regular basis. 

 

Sno Feature DATA MART DATA WAREHOUSE 

1 Focus A single subject or functional 

organization area. 

Enterprise-wide repository of 

disparate data sources. 

2 Data Sources Relatively few sources linked to one 

line of business. 

 Many external and internal 

sources from different areas of an 

organization. 

3 Size Less than 100 GB 

 

100 GB minimum but often in the 

range of terabytes for large 

organizations. 

4 Normalization No preference between a 

normalized and denormalized 

structure. 

Modern warehouses are mostly 

denormalized for quicker data 

querying and read performance. 

5 Decision 

Types 

Tactical decisions pertaining to 

particular business lines and ways 

of doing things. 

Strategic decisions that affect the 

entire enterprise. 

6 Setup Time 3-6 months 

 

At least a year for on-premise 

warehouses; cloud data 

warehouses are much quicker to 

set up. 



7 Data Held Typically summarized data. Raw data, metadata, and 

summary data. 

 

 

 

1.2 Operational Database Systems 

An operational system is a system that is used daily or constantly to perform routine operations 

or part of normal business processes.  For example, Order Entry, Purchasing, Stock/Trading, 

Bank operations. 

 

Features of Operational Systems 

• They are OLTP systems 

• They generally use the E-R data model. 

• Need to work for routine tasks 

• It is used to store transactional data. 

• The information content is generally recent. 

• Optimized to handle large numbers of simple read/write transactions 

• Optimized for fast response to predefined transactions 

• Used by people who deal with customers, products -- clerks, salespeople etc. 

• Their goals are data accuracy & consistency , Concurrency , Recoverability, Reliability 

(ACID Properties). 

Database Systems have been used traditionally for OLTP 

– clerical data processing tasks 

– detailed, up to date data 

– structured repetitive tasks 

– read/update a few records 

– isolation, recovery and integrity are critical 

 

OLTP vs. Data Warehouse   (or) Operational data Vs Datawarehouse 

 

 



 
 

1.3 Multidimensional DataModel. (Data cubes) 

In relational databases constructed from E-R diagrams, relational tables represent either   entity 

sets or relationship sets. Then, relational tables representing such relationship sets correspond to 

2D data cubes: a mapping between two dimensions. 

In multidimensional data model, 3- and higher dimensional data cubes correspond to relationship 

sets that connect more 3 or more different entity sets. 

 

Data Cubes. A data cube is a relational table that consists of two types of attributes: 

1. Measure attributes. These attributes measure certain quantities within the data. They can be 

aggregate (e.g., number of items purchased) or nonaggregate (e.g., price). 

2. Dimension attributes. These attributes specify the features over which the measures are 

established/ computed. 

Data cube tables also often are called fact tables. 

 

Example. Consider a video-rentals 

Locations(Id, Street, City, State, Zip, County); 

Movies(Id, Title, Year, Studio,  RentalPrice); 

Customers(MemberId, Name, Address, City, State, Zip, Phone); 

InStock(Location, Movie, NumCopies); 

Rentals(Location, Movie, Customer, RentalDate, Due, Returned); 

 

create a data cube (fact) table based on the table of rentals by aggregating the customer 

information: 

CREATE TABLE RentalCube3D AS 

(SELECT Location, Movie, RentalDate, COUNT(*) AS NumRentals FROM Rentals 

GROUP BY Location, Movie, RentalDate); 

The statement above generates a 3D data cube with the dimensions Movie Title, Store Location 

and Time. 

 

Lattice of Cuboids 

The Lattics of Cuboids is a graph G 

whose vertices are all subsets of a 

(cuboids). There is an edge from a node A 

to a node B is A ⊂ B. 

The Lattice of cuboids is typically shown 

in layers, with the apex cuboid at the top 

(or bottom) layer and the base cuboid - at 

the bottom (top). 

 

 

 



 

1.4 Schemas for Multidimensional Databases 

Star schema: The star schema is a modeling paradigm in which the data warehouse contains (1) 

a large central table (fact table), and (2) a set of smaller attendant tables (dimension tables), one 

for each dimension. The schema graph resembles a starburst, with the dimension tables displayed 

in a radial pattern around the central fact table. 

                Figure Star schema of a data warehouse for sales. 

 

Defining a Star Schema in DMQL 

define cube sales_star [time, item, branch, location]: 

dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*) 

define dimension time as (time_key, day, day_of_week, month, quarter, year) 

define dimension item as (item_key, item_name, brand, type, supplier_type) 

define dimension branch as (branch_key, branch_name, branch_type) 

define dimension location as (location_key, street, city, province_or_state, country) 

Snowflake schema: The snowflake schema is a variant of the star schema model, where some 

dimension tables are normalized, thereby further splitting the data into additional tables. The 

resulting schema graph forms a shape similar to a snowflake. The major difference between the 

snowflake and star schema models is that the dimension tables of the snowflake model may be 

kept in normalized form. Such a table is easy to maintain and also saves storage space because a 

large dimension table can be extremely large when the dimensional structure is included as 

columns. 

 



 
 

 

Defining a Snowflake Schema in DMQL 

define cube sales_snowflake [time, item, branch, location]: 

dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*) 

define dimension time as (time_key, day, day_of_week, month, quarter, year) 

define dimension item as (item_key, item_name, brand, type, supplier(supplier_key, 

supplier_type)) 

define dimension branch as (branch_key, branch_name, branch_type) 

define dimension location as (location_key, street, city(city_key, province_or_state, country)) 

Advantage of Snowflake Schema 
 The main advantage of Snowflake Schema is the improvement of query performance due 

to minimized disk storage requirements and joining smaller lookup tables. 

 It is easier to maintain. 

 Increase flexibility. 

Disadvantage  of Snowflake Schema 
 The main disadvantage of the Snowflake Schema is the additional maintenance efforts 

needed to the increase number of  lookup tables. 

 Makes the queries much more difficult to create because more tables need to be joined. 

 

Fact constellation: Sophisticated applications may require multiple fact tables to share 

dimension tables. This kind of schema can be viewed as a collection of stars, and hence is called 

a galaxy schema or a fact constellation. 

 



What is Measure? 

Measure: a function evaluated on aggregated data corresponding to given dimension-value pairs. 

Measures can be: 

 distributive: if the measure can be calculated in a distributive manner. 

 E.g., count(), sum(), min(), max(). 

 algebraic: if it can be computed from arguments obtained by applying distributive 

aggregate functions.  

 E.g.,  avg()=sum()/count(), min_N(), standard_deviation(). 

 holistic: if it is not algebraic.   

 E.g., median(), mode(), rank(). 

 

Data Cube 

Cube Computation: ROLAP-Based Method 

 Efficient cube computation methods 

o ROLAP-based cubing algorithms   

o Array-based cubing algorithm   

o Bottom-up computation method  

 ROLAP-based cubing algorithms 

o Sorting, hashing, and grouping operations are applied to the dimension attributes 

in order to reorder and cluster related tuples 

 Grouping is performed on some subaggregates as a “partial grouping step” 

 Aggregates may be computed from previously computed aggregates, rather than 

from the base fact table 

Cube Operations;    Write OLAP operations here. 

1.5  OLAP  
OLAP is the application that use of a set of powerful graphical visualization tools that provides users with 
multidimensional views of their data and allows them to analyze the data. 
 
 OLAP allows users to analyze database information from multiple database systems at one time. 

OLAP data is stored in multidimensional databases. 



 

Some popular OLAP server software programs   

Oracle Express Server  

Hyperion Solutions Essbase 

 

OLAP (Online Analytical Processing) is a term used to describe the analysis of complex data 

from the data warehouse.  OLAP  is the dynamic analysis, and consolidation  of large volumes of 

multi-dimensional data. 

It views of aggregate data to provide quick access to strategic information for the purposes of 

advanced analysis. 

OLAP enables users to gain a deeper understanding and knowledge about various aspects of their 

corporate data through fast, consistent, interactive access to a variety of possible views of data. 

Examples of OLAP 

Comparisons (this period v.s. last period) 

– Show me the sales per region for this year and compare it to that of the previous 

year to identify discrepancies 

Multidimensional ratios (percent to total) 

– Show me the contribution to weekly profit made by all items sold in the northeast 

stores between may 1 and may 7 

Ranking and statistical profiles (top N/bottom N) 

– Show me sales, profit and average call volume per day for my 10 most profitable 

salespeople 

Custom consolidation (market segments, ad hoc groups) 

– Show me an abbreviated income statement by quarter for the last four quarters for 

my northeast region operations 

Features of OLAP 

 Multi-dimensional views of data. 

 Support for complex calculations. 

 Time Intelligence. 

 

 



OLAP Applications 

Finance: Budgeting, activity-based costing, financial performance analysis, and financial 

modeling. 

Sales: Sales analysis and sales forecasting. 

Marketing: Market research analysis, sales forecasting, promotions analysis, customer analysis, 

and market/customer segmentation. 

Manufacturing: Production planning and defect analysis. 

 

OLAP Operations   

OLAP operations on multidimensional data. 

1. Roll-up: The roll-up operation performs aggregation by climbing-up a concept hierarchy for a 

dimension  (or) by  reducing dimensions. The following example shows the result of a roll-up 

operation performed on the central cube by climbing up the concept hierarchy for location. This 

hierarchy was defined as the total order street < city < state <. country 

SELECT productname, Location, SUM(sales)FROM market 

GROUP BY productname, Location; 

2. Drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data to more 

detailed data. Drill-down can be realized by either stepping-down a concept hierarchy for a 

dimension or introducing additional dimensions. Figure shows the result of a drill-down 

operation performed on the central cube by stepping down a concept hierarchy for time defined 

as Year > Quarter > Month > Day. Drill-down occurs by descending the time hierarchy from the 

level of quarter to the more detailed level of month. 

3. Slice and dice: The slice operation performs a selection on one dimension of the given cube 

which returns subcube. Figure shows a slice operation where the sales data are selected from the 

central cube for the dimension time using the criteria location=”NewDelhi". The dice operation 

defines a subcube by performing a selection on two or more dimensions.  

SELECT productname, Location, sales FROM market where location=’NewDelhi’; 

 

4. Pivot (rotate): Pivot is a visualization operation which rotates the data axes so the data cube 

does not change, but the viewpoint from which it is viewed is shifted. 



 

OLTP vs OLAP 

SNO                          OLTP                      OLAP 

1. On-Line Transaction Processing On-Line Analytical Processing 

2. Short transactions both queries and 

updates. 

Long transactions usually complex queries. 

3. Queries are simple. Queries are complex. 

4. Updates are frequent. 

(eg. Reservation ticket, bankbalance. 

Infrequent updates. 

5. User is IT Professional. User is Knowledge worker. 

6. Its function is daily task.  Its function is decision making. 

7. Its DB design is application oriented. Its design is subject oriented. 

8. Data – upto date, detail, relational Historical, Multidimensional, Integrated. 

9. Access – Read / Write Access Read-only. 

10. DB Size – 100 mb to 100 gb 100 gb – 1 tb 

1.6  Data warehouse Architecture and its seven components 

1. Warehouse/database technology 

2. Data sourcing, cleanup, transformation, and migration tools 

3. Metadata repository 

4. Data marts 

5. Data query, reporting, analysis, and mining tools 

6. Data warehouse administration and management 

7. Information delivery system 

 



1. Data warehouse database 

Data warehouse is an environment, not a product which is based on relational database 

management system that functions as the central storage area for informational data. 

The central storage area information is surrounded by number of  key components designed to 

make the environment is functional, manageable and accessible. 

 

The data source for data warehouse is coming from operational applications. The data entered 

into the data warehouse transformed into an integrated structure and format. The transformation 

process involves conversion, summarization, filtering and condensation. The data warehouse 

must be capable of holding and managing large volumes of data as well as different structure of 

data structures over the time. 

 

2. Sourcing, Acquisition, Clean 

up, and Transformation Tools 

They perform conversions, 

summarization, key changes, 

structural changes and 

condensation. The data 

transformation is required so that 

the information can by used by 

decision support tools. The 

transformation produces 

programs, control statements,  

COBOL code, UNIX scripts, and 

SQL DDL code etc., to move the 

data into data warehouse from 

multiple operational systems.  

 

The functionalities of these tools are listed below: 

 To remove unwanted data from operational db. 

 Converting to common data names and attributes. 

 Calculating summaries and derived data. 

 Establishing defaults for missing data. 

 Accommodating source data definition changes. 

Issues to be considered while data sourcing, cleanup, extract and transformation: 

Data heterogeneity: It refers to the different way the data is defined and used in different 

modules, it may have different access languages, it may have data navigation methods, 

operations, concurrency, integrity and recovery processes etc., 

 

Some experts involved in the development of such tools: 

Prism Solutions, Evolutionary Technology Inc., Vality, Praxis and Carleton 

 

 



3. Meta data 

It is data about data. It is used for maintaining, managing and using the data warehouse. It is 

classified into two: 

Technical Meta data: It contains information about data warehouse data used by warehouse 

designer, administrator to carry out development and management tasks. It includes, 

 Info about data stores 

 Transformation descriptions.- That is mapping methods from operational db to 

warehouse db 

 Warehouse- Object and data structure definitions for target data 

 The rules used to perform clean up, and data enhancement 

 Data mapping operations 

 Access authorization, backup history, archive history, info delivery history, data 

acquisition history, data access etc., 

Business Meta data: It contains information that gives information stored in data warehouse to 

users. It includes, 

 Subject areas, and info object type including queries, reports,  images, video, audio clips 

etc. 

 Internet home pages 

 Info related to info delivery system 

 Data warehouse operational info such as ownerships, audit trails etc., 

 

Meta data helps the users to understand content and find the data. Meta data are stored in a 

separate data stores which is known as informational directory or Meta data repository which 

helps to integrate, maintain and view the contents of the data warehouse. The following lists the 

characteristics of info directory/ Meta data: 

 It is the gateway to the data warehouse environment. 

 It supports easy distribution and replication of content for high performance and 

availability 

 It should be searchable by business oriented key words 

 It should act as a launch platform for end user to access data and analysis tools 

 It should support the sharing of info. 

 It should support scheduling options for request 

 It should support and provide interface to other applications 

 It should support end user monitoring of the status of the data warehouse environment 

4 Access tools 

Its purpose is to provide info to business users for decision making. There are five categories: 

 Data Query and Reporting tools 

 Application Development tools 

 Executive info system tools (EIS) 

 OLAP tools 

 Data mining tools 

Query and reporting tools are used to generate query and report.  There are two types of 

reporting tools. They are: 

 Production reporting tool used to generate regular operational reports 

 Desktop report writer are inexpensive desktop tools designed for end users. 



 

Managed Query tools: used to generate SQL query. It uses Meta layer software in between users 

and databases which offers a point-and-click creation of SQL statement. This tool is a preferred 

choice of users to perform segment identification, demographic analysis, territory management 

and preparation of customer mailing lists etc. 

Application development tools: This is a graphical data access environment which integrates 

OLAP tools with data warehouse and can be used to access all db systems 

OLAP Tools: are used to analyze the data in multi dimensional and complex views. To enable 

multidimensional properties it uses MDDB and MRDB where MDDB refers multi dimensional 

data base and MRDB refers multi relational data bases. 

Data mining tools: are used to discover knowledge from the data warehouse data also can be 

used for data visualization and data correction purposes. 

 

5. Data marts 

Departmental subsets that focus on selected subjects. They are independent used by dedicated 

user group. They are used for rapid delivery of enhanced decision support functionality to end 

users. Data mart is used in the following situation: 

 Extremely urgent user requirement. 

 The absence of a budget for a full scale data warehouse strategy. 

 The decentralization of business needs. 

 The attraction of easy to use tools and mind sized project. 

Data mart presents two problems: 

1. Scalability: A small data mart can grow quickly in multi dimensions. So that while 

designing it, the organization has to pay more attention on system scalability, consistency 

and manageability issues 

2. Data integration 

 

6.  Data warehouse admin and management 

The management of data warehouse includes, 

 Security and priority management 

 Monitoring updates from multiple sources 

 Data quality checks 

 Managing and updating meta data 

 Auditing and reporting data warehouse usage and status  

 Removing data 

 Replicating, sub setting and distributing data 

 Backup and recovery  

 Data warehouse storage management which includes capacity planning, hierarchical 

storage management and purging of aged data etc., 

 

7 Information delivery system 

• It is used to enable the process of subscribing for data warehouse info. 

• Delivery to one or more destinations according to specified scheduling algorithm. 

 


	What is Research?
	What are the characteristics of research?
	What is the purpose of research?
	Research design definition
	You can further break down the types of research design into five categories:


	Observation studies and experiment :
	Observational studies
	Experimental studies
	Strengths and weaknesses
	Exploratory research: Definition
	Types and methodologies of Exploratory research
	Primary research methods
	Secondary research methods

	Exploratory research: Steps to conduct a research
	Characteristics of Exploratory research
	Advantages of Exploratory research
	Disadvantages of Exploratory research
	Importance of Exploratory research

	What is a patent?
	Objectives of the global patent system
	Principles and commentary
	1. Non-prejudicial disclosures / grace period
	Circumstances in which applicants should have the opportunity to patent a disclosed invention
	Other characteristics of a potential grace period
	Rights of third parties

	2. Publication of applications
	3. Conflicting applications
	4. Prior user rights
	5. Prior art
	Advantages of patents
	Disadvantages of patents

	Patent applications: the three criteria
	 Novelty
	 Inventive step
	 Industrial applicability

	What Is the Inventive Step?
	Why is the Inventive Step Rule Important?
	Reasons to Consider Not Using the Inventive Step
	Reasons to Consider Using the Inventive Step
	Examples of the Inventive Step
	Types of Patent Application
	Patent Application
	Types of Patent
	Provisional Application
	Ordinary or Non-Provisional Application
	Convention Application
	PCT International Application
	PCT National Phase Application
	Patent of Addition
	Divisional Application
	1. Understand Your Invention
	2. Research Your Invention
	3. Choose the Type of Protection
	4. Draft Your Patent Application
	5. Wait for a Formal Response

	Patentability: Applying For Patent
	Procedure for Grant of Patent
	Grounds of Opposition to Patent
	Types of Patent Application (1)
	Documents Required For Patent Application
	Rights of Patentee
	Infringement and Remedies for patent
	Filing suits for infringement

	Remedies for patent
	Injunction
	Types of Injunction


	Exceptions and Limitations of Patent in India
	Types of Exceptions & Limitations
	 Exception on Non-Commercial use
	 Exception on Experimental / Scientific Research
	 Exception on Regulatory use or Private use
	 Exception on Foreign Vessels, Aircraft or Land Vehicles


	Conclusion
	Revocation of Patents in India

	Equitable Assignment: Everything You Need to Know
	Equitable Assignment
	The Doctrine of Equitable Assignment in Wisconsin

	Nature of intellectual Property
	Scope of intellectual Property
	Why promote and protect Intellectual Property?
	Kinds of intellectual Property
	Copyright
	Patent
	Trademark
	Geographical indication
	Industrial design
	Plant variety
	What Is a Trade Secret?

	The WTO and World Intellectual Property Organization
	1995 WIPO-WTO Cooperation Agreement
	Joint Technical Assistance
	Rule 1: Get Professional Help
	Rule 2: Know Your (Intellectual Property) Rights
	Rule 3: Think about Why You Want IP (i.e., What You Will Actually Do with It)
	Rule 4: If You Don't Protect the IP, Your Innovation Is Less Likely to Happen
	Rule 5: What's in a Name?
	Rule 6: Be Realistic about What You Can, and Cannot, Protect
	Rule 7: It's Big Business and Controversial
	Rule 8: Keep Your Idea Secret until You Have Filed a Patent Application
	Rule 9: Trade Secrets
	Rule 10: Make Sure the IP Is Owned in a Way That Allows Development
	Reference
	FOUR TYPES OF INTELLECTUAL PROPERTY PROTECTIONS
	TRADE SECRETS
	PATENTS
	COPYRIGHTS
	TRADEMARKS

	UNESCO: United Nations Educational, Scientific and Cultural Organization

	Is a Questionnaire Just Another Word for “Survey”?
	Why Are Questionnaires Effective in Research?
	Advantages of Questionnaires
	Disadvantages of Questionnaires

	Types of Questionnaires in Research
	A research instrument is a tool used to collect, measure, and analyze data related to your subject.

	What are the Different Types of Interview Research Instruments?
	What is sampling?
	Types of sampling: sampling methods
	Types of probability sampling with examples:
	Uses of probability sampling
	Types of non-probability sampling with examples
	Uses of non-probability sampling
	How do you decide on the type of sampling to use?

	Difference between probability sampling and non-probability sampling methods

	Data Preparation Steps
	1. Gather data
	2. Discover and assess data
	3. Cleanse and validate data
	4. Transform and enrich data
	5. Store data

	What is Data Exploration?
	Data Exploration Tools
	Why is Data Exploration Important?
	What is Data Preparation?
	Benefits of Data Preparation + The Cloud
	Why is Data Analysis Important?
	What Is the Importance of Data Analysis in Research?
	What is Data Analysis: Types of Data Analysis
	Tables for displaying data in research
	 Parts of a table
	 Title
	 Stub
	 Caption
	 Body
	 Footnotes

	 Types of tables
	 Graphs to display data
	 Types of graphs
	 The histogram
	 The bar chart
	 The frequency polygon
	 The cumulative frequency polygon
	 The stem and leaf display
	 The pie chart
	 The trend curve
	 The area chart
	 The scattergram


	Multivariate analysis (MVA) is a Statistical procedure for analysis of data involving more than one type of measurement or observation. It may also mean solving problems where more than one dependent variable is analysed simultaneously with other vari...
	1. What is multivariate analysis?
	Advantages and Disadvantages of Multivariate Analysis
	Advantages
	Disadvantages

	Classification Chart of Multivariate Techniques
	Multiple Regression
	Conjoint analysis
	Multiple Discriminant Analysis
	A linear probability model
	Multivariate Analysis of Variance and Covariance
	Canonical Correlation Analysis
	Structural Equation Modelling
	Interdependence Technique
	Factor Analysis
	Cluster analysis
	Multidimensional Scaling
	Correspondence analysis
	The Objective of multivariate analysis
	Dependence methods
	Interdependence methods

	What Is Hypothesis Testing?
	How Hypothesis Testing Works
	4 Steps of Hypothesis Testing

	Real-World Example of Hypothesis Testing
	Hypothesis Testing _ (Alternate Content)
	Methods of analysis
	Pearson’s correlation coefficient
	Spearman rank-order correlation coefficient
	Chi-square test

	UNIT -2
	A Brief History
	Object-Oriented Analysis
	Object-Oriented Design
	Object-Oriented Programming
	Objects and Classes
	Object
	Class

	Encapsulation and Data Hiding
	Encapsulation
	Data Hiding

	Message Passing
	Inheritance
	Types of Inheritance

	Polymorphism
	Generalization and Specialization
	Generalization
	Specialization

	Links and Association
	Link
	Association
	Degree of an Association
	Cardinality Ratios of Associations

	Aggregation or Composition
	Benefits of Object Model
	Phases in Object-Oriented Software Development
	Object–Oriented Analysis
	Object–Oriented Design
	Object–Oriented Implementation and Testing


	ANALYSIS
	DESIGN
	OBJECT ORIENTED ANALYSIS (OOA)
	OBJECT ORIENTED DESIGN (OOD)
	OBJECT ORIENTED ANALYSIS AND DESIGN (OOAD)
	UNIFIED PROCESS (UP)
	Reasons to use UP
	Best Practices and Key Concepts in UP

	UP PHASES
	INCEPTION
	ELABORATION
	CONSTRUCTION
	TRANSITION
	UP DISCIPLINES
	Several UP Disciplines

	UML DIAGRAMS UML:
	Three ways to apply UML:
	2. UML as blueprint:
	3. UML as programming language:
	Three perspectives to apply UML:

	USE CASE DIAGRAM
	Purpose:
	Uses:

	CLASS DIAGRAM:
	Purpose:
	Uses:

	INTERACTION DIAGRAM
	Purpose:

	I. SEQUENCE DIAGRAM
	Uses:

	II. COLLABORATION DIAGRAM
	Uses:

	STATE DIAGRAM
	Purpose:
	Uses:

	ACTIVITY DIAGRAM
	Purpose:
	How to apply Activity Diagrams?
	Uses:

	PACKAGE DIAGRAM
	Uses:

	COMPONENT DIAGRAM
	Purpose:
	Uses:

	DEPLOYMENT DIAGRAM
	Purpose:
	Uses:

	Why to Learn Software Testing?
	Applications of Software Testing
	Audience
	Prerequisites
	What is Testing?
	Who does Testing?
	When to Start Testing?
	When to Stop Testing?
	Verification & Validation
	ISO/IEC 9126
	ISO/IEC 9241-11
	ISO/IEC 25000:2005
	ISO/IEC 12119
	Miscellaneous
	Manual Testing
	Automation Testing
	What to Automate?
	When to Automate?
	How to Automate?
	Software Testing Tools
	 Black-Box Testing
	 White-Box Testing
	 Grey-Box Testing
	 A Comparison of Testing Methods
	Functional Testing
	Unit Testing
	Limitations of Unit Testing

	Integration Testing
	System Testing
	Regression Testing
	Acceptance Testing
	Alpha Testing
	Beta Testing
	Non-Functional Testing
	Performance Testing
	Load Testing
	Stress Testing

	Usability Testing
	UI vs Usability Testing

	Security Testing
	Portability Testing
	Test Plan
	Test Scenario
	Test Case
	Traceability Matrix
	What is Structural Testing ?
	Structural Testing Techniques:
	Calculating Structural Testing Effectiveness:
	Advantages of Structural Testing:
	Disadvantages of Structural Box Testing:
	What is Structured Walkthrough?
	Benefits:
	Structured Walkthrough Participants:
	What is Mutation Testing?
	Mutation Testing Benefits:
	Mutation Testing Types:
	Types of maintenance
	Cost of Maintenance
	Real-world factors affecting Maintenance Cost
	Software-end factors affecting Maintenance Cost

	Maintenance Activities
	Software Re-engineering
	Re-Engineering Process
	Reverse Engineering
	Program Restructuring
	Forward Engineering

	Component reusability
	Example
	Reuse Process

	What is Regression Testing?
	Selecting Regression Tests:
	Regression Testing Steps:
	What is User Interface Testing?
	GUI Testing - Characteristics:
	GUI Testing - Approaches:
	Model Based Testing - In Brief:
	GUI Testing Checklist:
	GUI Automation Tools
	Binary Search Trees: Basics – Querying a Binary search tree – Insertion and Deletion- Red Black trees: Properties of Red-Black Trees – Rotations – Insertion – Deletion -B-Trees: Definition of B trees – Basic operations on B-Trees – Deleting a key from...
	TERMINOLOGY:
	1. The Root node is the top node in the hierarchy
	2. A Child node has exactly one Parent node, a Parent node  has at most two child nodes, Sibling nodes share the same  Parent node (ex. node 22 is a child of node 15)
	3. A Leaf node has no child nodes, an Interior node has at  least one child node (ex. 18 is a leaf node)
	4. Every node in the BST is a Subtree of the BST rooted at that node.
	IMPLEMENTING BINARY SEARCH TREE:
	Self-referential class is used to build Binary Search Trees
	public class BSTNode
	{
	Comparable data;
	BSTNode left;
	BSTNode right;
	public BSTNode(Comparable d)
	{ (1)
	data = d; left = right = null;
	} }
	• left refers to the left child
	• right refers to the left child
	• data field refers to object that implements the Comparable  interface, so that data fields can be compared to order nodes  in the BST
	• Single reference to the root of the BST
	 All BST nodes can be accessed through root reference  by recursively accessing left or right child nodes
	OPERATIONS:
	• Naturally recursive:
	– Each node in the BST is itself a BST
	• Some Operations:
	– Create a BST
	– Find node in BST using its key field
	– Add a node to the BST
	– Traverse the BST
	 visit all the tree nodes in some order
	(1) Create a BST:
	bst_node root = null; // an empty BST
	root = new BSTNode(new Integer(35)); // a BST w/1 node         Root.setLeft(new BSTNode(new Integer(22)); // add left  child
	(2) Find node in BST using its key field
	• Use the search key to direct a recursive binary search for a matching node
	1. Start at the root node as current node
	2. If the search key’s value matches the current  node’s key then found a match
	3. If search key’s value is greater than current  node’s
	1. If the current node has a right child, search right
	2. Else, no matching node in the tree
	4. If search key is less than the current node’s
	1. If the current node has a left child, search left
	2. Else, no matching node in the tree (1)
	(3) Add a node to the BST
	1. Always insert new node as leaf node
	2. Start at root node as current node
	3. If new node’s key < current’s key
	i. If current node has a left child, search left
	ii. Else add new node as current’s left child
	4. If new node’s key > current’s key
	i. If current node has a right child, search right
	ii. Else add new node as current’s right child
	Eg: Insert 60 in the tree
	1. start at the root, 60 is greater than 25, search in right subtree
	2. 60 is greater than 50, search in 50’s right subtree
	3. 60 is less than 70, search in 70’s left subtree
	60 is less than 66, add 60 as 66’s left child
	(4) Traversal
	 Visit every node in the tree and perform some operation on it, (eg) print out the data fields of each node
	 Three steps to a traversal
	 Visit the current node
	 Traverse its left subtree
	 Traverse its right subtree
	 The order in which you perform these three steps  results in different traversal orders:
	 Pre-order traversal:(1) (2) (3)
	 In-order traversal: (2) (1) (3)
	 Post-order traversal: (2) (3) (1)
	Eg:
	public void InOrder(bst_node root)
	{ (2)
	// stop the recursion:
	if(root == null)
	{ (3)
	return;
	}
	// recursively traverse left subtree:  InOrder(root.leftChild());
	// visit the current node:  Visit(root);
	// recursively traverse right subtree:  InOrder(root.rightChild());
	} (1)
	QUERYING A BINARY SEARCH TREE
	Searching

	Dia: Binary Search Tree
	Minimum and maximum
	Successor and predecessor

	Search Operation in B-Tree
	Insertion Operation in B-Tree
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Single-source shortest path
	Dijkstra's algorithm
	Bellman-Ford algorithm
	All-pairs shortest path problem
	Floyd's algorithm
	Dynamic Programming
	How does the dynamic programming approach work?
	Approaches of dynamic programming
	Top-down approach
	Bottom-Up approach

	Components of Dynamic Programming
	Stages
	States and State Variables
	State Transition
	Optimal Choice

	Elements Of Dynamic Programming

	Matrix Chain Multiplication
	Development of Dynamic Programming Algorithm
	Dynamic Programming Approach

	Example of Matrix Chain Multiplication
	Algorithm with Explained Example

	Longest Common Sequence (LCS)
	Characteristics of Longest Common Sequence

	Algorithm of Longest Common Sequence
	Example of Longest Common Sequence
	Counting Coins
	Examples
	Components of Greedy Algorithm (Elements)
	Pseudo code of Greedy Algorithm
	Disadvantages of using Greedy algorithm


	An Activity Selection Problem
	Algorithm Of Greedy- Activity Selector:

	Huffman Codes
	Prefix Codes:
	Greedy Algorithm for constructing a Huffman Code:

	Algorithm of Huffman Code
	Definition of NP-Completeness
	NP-Complete Problems
	NP-Hard Problems
	TSP is NP-Complete
	POLYNOMIAL TIME VERIFICATION
	Hamiltonian cycle problem:-
	Note:-For the verification in the Polynomial-time of an undirected Hamiltonian cycle graph G. There must be exact/specific/definite path must be given of Hamiltonian cycle then you can verify in the polynomial time.

	Relation of P and NP classes

	NP-COMPLETENESS AND REDUCIBILITY
	Reductions:
	Polynomial Time Reduction:
	Note1:- If you satisfy both points then your problem comes into the category of NP-complete class
	Note2:- If you satisfy the only 2nd points then your problem comes into the category of NP-hard class


	Preface
	The Strange History of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Contributor List

	1. The Way of the Program
	What Is a Program?
	Running Python
	The First Program
	Arithmetic Operators
	Values and Types
	Formal and Natural Languages
	Debugging
	Glossary
	Exercises

	2. Variables, Expressions and Statements
	Assignment Statements
	Variable Names
	Expressions and Statements
	Script Mode
	Order of Operations
	String Operations
	Comments
	Debugging
	Glossary
	Exercises

	3. Functions
	Function Calls
	Math Functions
	Composition
	Adding New Functions
	Definitions and Uses
	Flow of Execution
	Parameters and Arguments
	Variables and Parameters Are Local
	Stack Diagrams
	Fruitful Functions and Void Functions
	Why Functions?
	Debugging
	Glossary
	Exercises

	4. Case Study: Interface Design
	The turtle Module
	Simple Repetition
	Exercises
	Encapsulation
	Generalization
	Interface Design
	Refactoring
	A Development Plan
	docstring
	Debugging
	Glossary
	Exercises

	5. Conditionals and Recursion
	Floor Division and Modulus
	Boolean Expressions
	Logical Operators
	Conditional Execution
	Alternative Execution
	Chained Conditionals
	Nested Conditionals
	Recursion
	Stack Diagrams for Recursive Functions
	Infinite Recursion
	Keyboard Input
	Debugging
	Glossary
	Exercises

	6. Fruitful Functions
	Return Values
	Incremental Development
	Composition
	Boolean Functions
	More Recursion
	Leap of Faith
	One More Example
	Checking Types
	Debugging
	Glossary
	Exercises

	7. Iteration
	Reassignment
	Updating Variables
	The while Statement
	break
	Square Roots
	Algorithms
	Debugging
	Glossary
	Exercises

	8. Strings
	A String Is a Sequence
	len
	Traversal with a for Loop
	String Slices
	Strings Are Immutable
	Searching
	Looping and Counting
	String Methods
	The in Operator
	String Comparison
	Debugging
	Glossary
	Exercises

	9. Case Study: Word Play
	Reading Word Lists
	Exercises
	Search
	Looping with Indices
	Debugging
	Glossary
	Exercises

	10. Lists
	A List Is a Sequence
	Lists Are Mutable
	Traversing a List
	List Operations
	List Slices
	List Methods
	Map, Filter and Reduce
	Deleting Elements
	Lists and Strings
	Objects and Values
	Aliasing
	List Arguments
	Debugging
	Glossary
	Exercises

	11. Dictionaries
	A Dictionary Is a Mapping
	Dictionary as a Collection of Counters
	Looping and Dictionaries
	Reverse Lookup
	Dictionaries and Lists
	Memos
	Global Variables
	Debugging
	Glossary
	Exercises

	12. Tuples
	Tuples Are Immutable
	Tuple Assignment
	Tuples as Return Values
	Variable-Length Argument Tuples
	Lists and Tuples
	Dictionaries and Tuples
	Sequences of Sequences
	Debugging
	Glossary
	Exercises

	13. Case Study: Data Structure Selection
	Word Frequency Analysis
	Random Numbers
	Word Histogram
	Most Common Words
	Optional Parameters
	Dictionary Subtraction
	Random Words
	Markov Analysis
	Data Structures
	Debugging
	Glossary
	Exercises

	14. Files
	Persistence
	Reading and Writing
	Format Operator
	Filenames and Paths
	Catching Exceptions
	Databases
	Pickling
	Pipes
	Writing Modules
	Debugging
	Glossary
	Exercises

	15. Classes and Objects
	Programmer-Defined Types
	Attributes
	Rectangles
	Instances as Return Values
	Objects Are Mutable
	Copying
	Debugging
	Glossary
	Exercises

	16. Classes and Functions
	Time
	Pure Functions
	Modifiers
	Prototyping versus Planning
	Debugging
	Glossary
	Exercises

	17. Classes and Methods
	Object-Oriented Features
	Printing Objects
	Another Example
	A More Complicated Example
	The init Method
	The __str__ Method
	Operator Overloading
	Type-Based Dispatch
	Polymorphism
	Interface and Implementation
	Debugging
	Glossary
	Exercises

	18. Inheritance
	Card Objects
	Class Attributes
	Comparing Cards
	Decks
	Printing the Deck
	Add, Remove, Shuffle and Sort
	Inheritance
	Class Diagrams
	Data Encapsulation
	Debugging
	Glossary
	Exercises

	19. The Goodies
	Conditional Expressions
	List Comprehensions
	Generator Expressions
	any and all
	Sets
	Counters
	defaultdict
	Named Tuples
	Gathering Keyword Args
	Glossary
	Exercises

	20. Debugging
	Syntax Errors
	I keep making changes and it makes no difference.

	Runtime Errors
	My program does absolutely nothing.
	My program hangs.
	Infinite loop
	Infinite recursion
	Flow of execution

	When I run the program I get an exception.
	I added so many print statements I get inundated with output.

	Semantic Errors
	My program doesn’t work.
	I’ve got a big hairy expression and it doesn’t do what I expect.
	I’ve got a function that doesn’t return what I expect.
	I’m really, really stuck and I need help.
	No, I really need help.


	21. Analysis of Algorithms
	Order of Growth
	Analysis of Basic Python Operations
	Analysis of Search Algorithms
	Hashtables
	Glossary

	Index
	1. LIST OPERATIONS:
	2. List looping: (traversing a list)
	5. Cloning:
	List parameter:
	TUPLES:
	Creating tuple:
	Accessing element in tuple:
	Deleting and updating tuple:
	Tuple Assignment:
	Tuple as return value:
	Set:
	Example

	Set Items
	Example:

	Get the Length of a Set
	Example

	Set Items - Data Types
	Example
	Example (1)

	Type()
	Example

	The set() Constructor
	Example

	Python Collections (Arrays)
	Access Items
	Example

	Set Methods
	Syntax:

	Creating String in Python
	Strings indexing and splitting
	Deleting the String
	String Operators

	MODULES IN PYTHON
	1. Import statement:
	Example:
	2. Import with renaming:
	Writing modules:
	3. Import file name
	Output:
	4. from……import statement:
	Output: (1)
	5. OS Module
	import os
	import sys
	MODULES IN PYTHON
	1. Import statement:
	Example:
	2. Import with renaming:
	Writing modules:
	3. Import file name
	Output:
	4. from……import statement:
	Output: (1)
	5. OS Module
	import os
	import sys
	Tabular Data
	Text data
	Audio and musical data
	Images

	Numerical data
	Database Used
	Tips Database

	Matplotlib
	Scatter Plot
	Line Chart
	Bar Chart


	Unit-V- Object oriented programming in python
	Python OOPs Concepts:
	Main Concepts of Object-Oriented Programming (OOPs)
	Class:
	Class Objects:
	Declaring Objects (Also called instantiating a class)

	The self
	__init__ method
	Class and Instance Variables:
	Inheritance:
	Polymorphism:
	Encapsulation:
	Protected members:
	What is a class?
	How to create a class:
	Attributes and Methods in class:
	Attributes:
	Methods:
	Instance attributes in python and the init method


	Class method vs Static method in Python:
	differences between Classmethod and StaticMehtod?
	Example code
	Output

	01. Native Apps
	02. Web Apps
	03. Hybrid Apps
	WHY CSS?
	CSS Syntax:
	Selector -- h1
	CSS Versions
	Supported Browser:
	What is JavaScript introduction?
	Web Application
	The Basic Characteristics of HTTP (Hyper Text Transfer Protocol):
	The Basic Features of HTTP (Hyper Text Transfer Protocol):
	The Basic Architecture of HTTP (Hyper Text Transfer Protocol):
	HTTP Request
	HTTP Response
	HTML DOCUMENTS STRUCTURE
	I MCA
	Structure of an HTML Document
	Example
	2. Paragraph Tag
	Example (1)
	3. Line Break Tag
	Example (2)
	4. Centering Content
	Example (3)
	5. Horizontal Lines
	Example (4)
	6. Preserve Formatting
	Example (5)
	Text Color
	CSS Text Alignment

	Text Alignment
	Text Align Last
	Text Direction
	Vertical Alignment
	img.a {
	}
	vertical-align: text-top;
	img.c {
	} (1)
	vertical-align: sub;
	img.e {
	} (2)
	2. CSS Text Decoration

	Add a Decoration Line to Text
	h1 {
	} (3)
	text-decoration-line: line-through; text-decoration-color: blue;
	h3 {
	} (4)
	text-decoration-line: overline underline; text-decoration-color: purple;
	All CSS text-decoration Properties
	3. CSS Text Transformation
	4. CSS Text Spacing

	Text Indentation
	White Space
	The CSS Text Spacing Properties
	5. CSS Text Shadow

	h1 { (1)
	} (5)
	img {
	width: 150px;
	img:hover {
	}
	<img src="paris.jpg" alt="Paris">

	1. Responsive Images:
	<!DOCTYPE html>
	<head>
	max-width: 100%; height: auto;
	</style>
	<body>
	"https://sparc.org.in/courses/university/it_courses/mca/ mca-course-in-gtb- nagar-sparc-academy "
	</body>
	2. Transparent Image:
	<!DOCTYPE html>
	<head>
	<style> img {
	}
	</head>
	<img src= "https://sparc.org.in/courses/university/it_courses/mca/mca- course-in-gtb-nagar-sparc-academy"
	</body>

	Output:
	1. The CSS element Selector
	2. The CSS id Selector
	3. The CSS class Selector
	4. The CSS Universal Selector
	5. The CSS Grouping Selector
	Features of flexbox:
	Output: (1)
	Main Axis:
	left to right:
	right to left:
	top to bottom:
	bottom to top:
	Supported Browsers:
	// Java(Statically typed)
	// Javascript(Dynamically typed) var x = 5; // can store an integer
	2. Variables in JavaScript:
	var x;

	// declaring single variable var name;
	var name, title, num;
	name = "Rakesh";
	// storing a mathematical expression var x = 5 + 10 + 1;
	// let variable let x; // undefined let name = 'Mukul';
	// assignment let a =3;
	Variable Scope in Javascript
	let globalVar = "This is a global variable"; function fun() {
	} (6)
	let globalVar = "This is a global variable"; function fun() { (1)
	} (7)
	3. JavaScript function

	JavaScript Function Syntax
	(parameter1, parameter2, ...)

	Function Invocation
	Function Return
	Why Functions?
	The () Operator Invokes the Function
	Functions Used as Variable Values
	Local Variables
	HTML Events
	With single quotes:
	With double quotes:
	JavaScript Event Handlers
	HTTP Request: GET vs. POST
	jQuery $.get() Method
	Syntax:
	jQuery $.post() Method
	Syntax: (1)
	Characteristics of web servers
	Web Server Working
	Architecture Concurrent Approach
	1. Multi-processing
	2. Multi-threaded
	3. Hybrid
	The Contenders Chrome Applications
	node-webkit
	atom-shell
	Pros
	Cons
	Command Line Client
	Installing npm
	Software Package Manager
	Managing Dependencies
	Sharing Your Software
	Publishing a Package
	C:\>npm whoami

	Installing Express
	$ npm install express --save
	Installing Express on Windows (WINDOWS 10)

	Hello world Example
	var express = require('express'); var app = express();
	})
	var port = server.address().port
	}) (1)
	Template Engines for Node.js
	Template Engine
	 Jade
	 EJS
	 Dust.js
	 Handlebars

	Advantages of Template engine in Node.js
	for Embedded JavaScript template. Feature of EJS Module:
	1. Use plain javascript.
	3. Simple syntax.
	5. Easy Debugging.

	Installation of request module:
	npm install ejs
	const ejs = require('ejs');
	node app.js Render file using EJS renderFIle() method
	Syntax: (2)
	Filename: app.js JAVASCRIPT
	const express = require('express'); const app = express();
	// Render index.ejs file app.get('/', function (req, res) {
	{}, function (err, template) { if (err) {
	} else {
	app.listen(port, function (error) { if (error)
	<!DOCTYPE html> (1)
	<head> (1)
	<meta name="viewport" content= "width=device-width, initial-scale=1.0">
	<body> (1)
	</body></html>
	1. Folder Structure:
	EXAMPLE:
	<html>
	<h2>JavaScript async / await</h2>
	<script>
	} (8)
	function(value) {myDisplayer(value);}, function(error) {myDisplayer(error);}
	OUTPUT:
	EXAMPLE: (1)
	<html> (1)
	<h2>JavaScript async / await</h2> (1)
	<h1 id="demo"></h1>
	async function myDisplay() {
	});
	} (9)
	myDisplay();
	</script></body></html>
	OUTPUT: (1)
	Example:
	res.json({ username: 'Flavio' })
	read json file node js
	UNIT III
	Introduction to NoSQL databases

	Advantages of NoSQL:
	1. High scalability –
	2. High availability –
	Disadvantages of NoSQL:
	2. Open-source –
	3. Management challenge –
	4. GUI is not available –
	5. Backup –
	6. Large document size –
	Types of NoSQL database:
	MongoDB system overview

	What is a Database?
	What are Collections?
	What is a Document?
	Popular Organizations That Use MongoDB
	Advantages of Using MongoDB
	Basic querying with MongoDB shell

	Methods for Performing Queries in MongoDB
	Syntax: (3)
	Example: (1)
	Syntax: (4)
	Example: (2)
	Filtering Criteria in MongoDB Queries
	Example: (3)
	MongoDB Query Which Specify "AND" Condition
	Example: (4)
	MongoDB Query Which Specify "OR" Condition
	Example: (5)
	$in operator
	Example: (6)
	Using $explain
	Using $hint
	 busboy and connect-busboy
	 formidable
	 JSON body parser
	 Text body parser
	 body

	Installation
	bodyParser.json([options])
	inflate
	limit
	reviver
	strict
	type
	verify

	bodyParser.raw([options])
	inflate
	limit
	type
	verify

	bodyParser.text([options])
	defaultCharset
	inflate
	limit
	type
	verify

	bodyParser.urlencoded([options])
	extended
	inflate
	limit
	parameterLimit
	type
	verify

	Examples
	Express route-specific
	Change accepted type for parsers
	npm install mongodb
	const client = new MongoClient(uri);
	await listDatabases(client);
	Adding and retrieving data to MongoDB from NodeJS

	MongoDB module:
	Running the server on Local IP: data is folder name
	MongoDB Database:
	Index.js
	const MongoClient = require("mongodb"); const url = 'mongodb://localhost:27017/'; const databasename = "GFG"; // Database name MongoClient.connect(url).then((client) => {
	// Connect to collection const collection = connect
	// Fetching the records having
	collection.find({ "name": "saini" })
	}); (1)
	// Printing the error message console.log(err.Message);
	JAVASCRIPT:
	const connect = client.db(databasename);
	.collection("GFGcollections"); collection.find({}).toArray().then((ans) => {
	}); (2)
	// Printing the error message console.log(err.Message); (1)
	Handling SQL databases from NodeJS

	MySQL Database
	Install MySQL Driver
	Create Connection
	demo_db_connection.js
	var mysql = require('mysql');
	});
	}); (1)

	Install package
	Use this middleware
	Set Cookie
	res.cookie(cookie_name , 'cookie_value', {expire : 24 * 60 * 60 * 1000 });
	res.cookie(cookie_name , 'cookie_value', { HttpOnly: true});
	Read Cookies
	Delete cookies
	HTTP Cookies in Node.js

	let express = require('express');
	//basic route for homepage app.get('/', (req, res)=>{ res.send('welcome to express app');
	//server listens to port 3000 app.listen(3000, (err)=>{ if(err)
	console.log('listening on port 3000');
	Introduction
	Set Up a Mongo Database
	const Mongoose = require("mongoose")
	Set Up the Server
	Connect to the Database
	Create User Schema
	Perform CRUD Operations
	Register Function
	Set Up Register Route
	Test the Register Route
	Login Function
	Set Up Login Route
	Test the Login Route
	Update Function
	Set Up Update Route
	Testing the Update Route
	Delete Function
	Set up the deleteUser Route
	Test the deleteUser Route
	Hash User Passwords
	Refactor Register Function
	Test the Register Function
	Refactor the Login Function
	Test the Login Function
	Authenticate Users with JSON Web Token (JWT)
	npm i jsonwebtoken  Refactor the Register Function
	Output: (2)
	Refactor the Login Function (1)
	Protect the Routes
	npm i cookie-parser
	Admin Authentication
	Basic User Authentication
	Protect the Routes (1)
	Populate the Database with Admin User
	UNIT IV
	React JS

	npx create-react-app myapp
	ReactDOM

	What is DOM?
	What is ReactDOM?
	import ReactDOM from 'react-dom'
	Syntax: (5)
	2. findDOMNode() Function
	Syntax: (6)
	3. unmountComponentAtNode() Function
	4. hydrate() Function
	Syntax: (7)
	5. createPortal() Function
	Syntax: (8)
	Important Points to Note:
	JSX

	sample JSX code:
	Why JSX?
	import React from 'react';
	const element = <h1>Hello,{ name }.Welcome to MAMCE.< /h1>; ReactDOM.render( element,document.getElementById("root"));
	Hello, Learner.Welcome to MAMCE.
	import React from 'react'; (1)
	const element = <h1>{ (i == 1) ? 'Hello World!' : 'False!' } < /h1>; ReactDOM.render( element,document.getElementById("root")); OUTPUT:
	Attributes in JSX:
	import React from 'react'; (2)
	const element = <div><h1 className = "hello">Hello MCA</h1>
	< /div>;
	Specifying attribute values:
	Wrapping elements or Children in JSX:
	import React from 'react'; (3)
	const element = <div><h1>This is Heading 1 < /h1>
	<h3>This is Heading 3 < /h3>
	ReactDOM.render( element,document.getElementById("root")); OUTPUT:
	import React from 'react'; (4)
	const element = <div><h1>Hello World !</h1>
	</div>;
	React Components
	const Democomponent=()=>
	return <h1>Welcome Message!</h1>;
	class Democomponent extends React.Component
	render(){
	} (10)
	const elementName = <ComponentName />;
	src index.js:
	import ReactDOM from 'react-dom';
	{
	} (11)
	<Welcome />, document.getElementById("root")
	Output: (3)
	Properties

	output:
	What is fetch API in JavaScript?
	API

	Example: (7)
	import React from "react"; import './App.css';
	// Constructor constructor(props) {
	this.state = {
	} (12)
	// ComponentDidMount is used to
	fetch("https://jsonplaceholder.typicode.com/users")
	.then((json) => {
	items: json, DataisLoaded: true
	}) (2)
	render() {
	<h1> Pleses wait some time </h1> </div> ;
	<div className = "App">
	items.map((item) => (
	User_Name: { item.username }, Full_Name: { item.name }, User_Email: { item.email }
	))
	</div>
	} (13)
	export default App;
	.App {
	} (14)
	background-color: #282c34; min-height: 100vh;
	flex-direction: column; align-items: center; justify-content: center;
	} (15)
	color: #61dafb;
	@keyframes App-logo-spin { from {
	to {
	} (16)
	npm start
	Using the JavaScript Fetch API
	fetch(`https://jsonplaceholder.typicode.com/posts`)
	}, []);
	} (17)
	What is state in react JS?
	What are the lifecycle of react JS?
	OUTPUT: (2)
	OUTPUT: (3)
	OUTPUT: (4)
	OUTPUT: (5)
	OUTPUT: (6)
	OUTPUT: (7)
	OUTPUT: (8)
	import React from 'react'; (5)
	super(props);
	} (18)
	this.setState({favoritecolor: "yellow"})
	} (19)
	"Before the update, the favorite was " + prevState.favoritecolor;
	componentDidUpdate() { document.getElementById("div2").innerHTML = "The updated favorite is " + this.state.favoritecolor;
	render() { return (
	<h1>My Favorite Color is {this.state.favoritecolor}</h1>
	<div id="div2"></div>
	OUTPUT: (9)
	OUTPUT: (10)
	JavaScript localStorage
	localStorage Methods
	Add data
	localStorage.setItem("city", "Noida"); Retrieve data
	const res = localStorage.getItem("city");
	localStorage.removeItem("city"); Clear localStorage
	localStorage.clear()Advantage of localStorage
	Browser compatibility
	1. <html>
	4. <script>
	16. </script> </body></html>
	Clear all records
	window.localStorage.clear();
	localStorage.clear();
	Check localStorage
	Events

	Event declaration in plain HTML:
	1. <button onclick="showMessage()">

	Event declaration in React:
	1. <button onClick={showMessage}>
	3. </button>
	1. <a href="#" onclick="console.log('You had clicked a Link.'); return false">
	1. function ActionLink() {
	3. e.preventDefault();
	7. <a href="#" onClick={handleClick}>
	10. );
	1. import React, { Component } from 'react';
	3. constructor(props) {
	6. companyName: '' 7. };
	9. changeText(event) {
	11. companyName: event.target.value 12. });
	14. render() {
	16. <div>
	18. <label htmlFor="name">Enter company name: </label>
	20. <h4>You entered: { this.state.companyName }</h4>
	23. }

	Output
	When you execute the above code, you will get the following output.

	Adding Events
	EXAMPLE: (2)
	Lifting State Up

	Complete File Structure:
	Before:
	After:
	import C from './C'
	this.state = {text: ''};
	handleTextChange(newText) { this.setState({text: newText});
	render() { return ( (1)
	<B text={this.state.text} handleTextChange={this.handleTextChange}/>
	</React.Fragment>
	}}
	super(props); (1)
	} (20)
	} (21)
	return (
	); }}
	import React,{ Component } from 'react'; class C extends Component {
	return ( (1)
	);
	} (22)
	Output: Now, component C can Access text in component B through component A.

	Composition Patterns
	1.Lifting State & Container/Presenter
	text: 'foo'
	changeText = newText => this.setState({text: newText}) render() {
	<Presenter1 text={this.state.text} changeText={this.changeText} />
	<div>
	} (23)
	Examples (1)
	Disadvantages
	3. Render Prop/Function-as-Child
	return children(time)
	InjectTimestamp.propTypes = { children: PropTypes.func,
	const Foo = () => { return (
	<InjectTimestamp>
	</InjectTimestamp>
	)
	return render(time)
	InjectTimestamp.propTypes = { render: PropTypes.func,
	const Foo = () => { return ( (1)
	<InjectTimestamp render={time => (
	)} />
	) (1)
	Disadvantages (1)
	4. “Renderless” State Provider
	What is inheritance in react JS?
	Two classes exist are:
	Creating React Application:
	import ChildComponent from "./ChildComponent"; class App extends React.Component {
	super(props); this.state = {
	};
	render() { (1)
	<div> (1)
	</div> (1)
	}} (1)
	FileName:ChildComponent.js import React from "react";
	const { message } = this.props; return (
	<p> Message from App component : <b>{message}</b> </p>
	); (1)
	export default ChildComponent;
	OUTPUT: (11)
	Advantages of cloud computing
	Virtual Private Cloud
	What is a public cloud? What is a private cloud?
	How is a VPC isolated within a public cloud?
	Key technologies for isolating a VPC from the rest of the public cloud:
	Three-tier architecture in a VPC
	Scaling (Horizontal and Vertical) Vertical Scaling
	How does vertical cloud scaling work?

	Step I: Forecast and plan for demand
	Step II: Set a perpetual number of instances
	Step III: Become familiar with manual scaling
	Step IV: Set scaling as per a fixed schedule
	Step V: Ensure demand is driving scalability
	Step VI: Remember to scale back down
	Horizontal Scaling
	Disadvantages of horizontal scaling
	Horizontal Scaling Process: 6 Key Steps Step 1: Begin with the blueprint
	Step 2: Plan for hardware acquisition
	Step 3: Opt for stateless scalability
	Step 4: Leverage microservices as required
	Step 5: Aim for multi-cloud compatibility

	Step 6: Finally, automate!
	The Difference
	How virtualization works
	Advantages and benefits of VMs
	Types of VMs
	Windows virtual machines
	Android virtual machines
	Mac virtual machines
	iOS virtual machines
	Java virtual machines
	Python virtual machines
	Linux virtual machines
	VMware virtual machines
	Ubuntu virtual machines
	The Docker platform
	Docker provides tooling and a platform to manage the lifecycle of your containers:
	Docker architecture
	The Docker daemon
	The Docker client
	Docker Desktop
	Docker registries
	Docker objects
	Images
	Containers
	Example docker run command

	Kubernetes work
	Use of Kubernetes
	components :
	API Server
	Key-Value Store (etcd)
	Controller
	Scheduler
	Worker Node
	Kubelet
	Container Runtime
	Kube-proxy
	Pod
	Kubernetes Services
	1. Traditional Deployment
	2. Virtualized Deployment
	3. Container Deployment

